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Abstract: The use of drones is very extended for multiple applications. Some of them impose attitude
and navigation requirements that need appropriate measurements. Pixhawk is an open-source
autopilot used on board drones that includes a magnetometer as part of its inertial measurement unit.
A testing facility based on a Helmholtz cage is used to evaluate the metrological features of different
magnetometer units. The first test induces a magnetic field rotation around six different Pixhawk
magnetometers, simulating changes in attitude and course for a drone. The data show a standard
deviation higher than 250 mG, in comparison with the standard deviation of 30 mG in the standard
gaussmeter model HMR2300. The second test is focused on the stability of the magnetometer, where
the Helmholtz cage simulates a certain flight altitude and course. Values obtained from Pixhawk
magnetometers range between 25 mG and 116 mG for the highest peak-to-peak magnetic field
amplitude, while the standard gaussmeter range is only between 1.3 mG to 5.4 mG. Considering
these results, it is possible to determine the limitations of the Pixhawk autopilot magnetometer, both
in terms of manufacturing tolerances and measuring stability. Therefore, users should be very careful
when using this type of autopilot in professional applications that require precision and safety.

Keywords: magnetometer; drone autopilot; metrology; Helmholtz cage

1. Introduction

Unmanned aerial vehicles (UAV), also known as drones, are systems with a wide
range of applications, both in military and civil sectors. Although they appeared in the
early 20th century for military purposes, it was not until the 1990s that NASA began
to focus on UAV research for civil applications [1]. Since then, and most specifically in
the 21st century, the civil use of drones has rapidly increased in several fields due to
their low maintenance cost, high mobility, easy deployment and ability to hover, as well
as their reduction of manufacturing cost because of the technological development and
software implementation [2,3]. The most important civil applications of drones are related
to remote sensing, infrastructure inspection, spraying systems for precision agriculture and
logistics [4,5].

For UAV operation success, an accurate and robust autopilot is fundamental. The
autopilot is in charge of UAV guidance during flights, limiting human operation [6]. An
autopilot system should provide the hardware and software required to achieve different
functions from the operational point of view. These functions are related with attitude
control, way-point flight or landing and taking off operations, among others. Different
elements needed for this are power management modules, on-board computers, commu-
nication links and different systems such as pressure sensors, Global Navigation Satellite
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System (GNSS) and inertial measurement units (IMUs). This last element includes dif-
ferent sensors such as gyroscopes, accelerometers and magnetometers [7,8]. In terms of
software, autopilots usually include mission and trajectory planning, trajectory generation
and control and digital signal processing.

Pixhawk is an open-source autopilot used in research, amateur and industrial sectors,
providing advantages and disadvantages, like other open-source projects. The main benefit
is the opportunity for users to adapt the system to their specific requirements, whereas one
weak point is the quality control, as there is not a third-party company to provide aerospace
certification and evaluate its metrological characteristics [7,9]. One of the sensors included
in a Pixhawk autopilot is the magnetometer, which is used to measure the magnetic field
in three axes, providing information about the course, attitude and location in space,
increasing, in this way, the accuracy of the IMU [10,11].

Magnetometers can be analyzed using a Helmholtz cage-based facility. A Helmholtz
cage consists of a pair of coils parallel to each other with a number of N wrappings per coil,
which creates a uniform and controlled magnetic field between them for a certain current
intensity. Using three orthogonal Helmholtz coils, which can be circular or squared, the
magnetic field can be controlled in space [12]. There are several studies related with the use
of this type of facility for small satellite testing, some focused on the design, implementation
and testing of an Earth magnetic field simulator [13] and others that outline a procedure for
calibrating and testing small satellite magnetometers and analyze the magnetic interference
of on-board electrical activity [14]. Other examples discuss the idea of an implementable
software-in-the-loop testing procedure for attitude determination systems, showing testing
results using Pixhawk sensors to measure different variables and use them for attitude
determination [15].

The aim of this work is the metrological analysis of the magnetometers placed on
different Pixhawk devices by using a Helmholtz cage-based facility, considering tests
related with magnetic field stability, for a constant drone altitude and course, and tests
related with a rotational magnetic field, simulating a course or attitude change. This paper
improves the characterization of on-board sensors, which is fundamental to determining the
accuracy of attitude determination and subsequently the guidance, navigation and control
of drone flight. The manuscript is organized as follows. First, materials and methods are
listed, defining different components of the testing facility, the main characteristics of all
Pixhawk devices used as well as the ground control station software and measurement
procedures. Section 3 presents the numerical and graphical results obtained for these tests.
Finally, conclusions of the paper are given.

2. Materials and Methods
2.1. Materials
2.1.1. Testing Facility

The testing facility had different elements: a Helmholtz cage, three programmable
power supplies and a HMR2300 gaussmeter, which is used as a metrological standard to
provide feedback between simulated and measured magnetic field values during testing,
and a personal computer to control the different instruments (Figure 1). All the systems
were placed in a temperature-controlled room at 20 ◦C. The control computer was used to
select the current intensity value for the power supplies according to magnetic requirements;
the Helmholtz cage generated the magnetic field depending on selected parameters of the
power supplies; and, finally, the standard magnetometer measured the magnetic field in
the Helmholtz cage and provided a reliable value.
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Figure 1. Testing facility scheme with components.

The Helmholtz cage is a device capable of simulating a magnetic field using three
orthogonal pairs of coils to control its value in three directions, with these coils, for the
selected model, having a squared shape. The selected model was a BHSC2000-3-B from Ser-
viciencia (Toledo, Spain), which is suited to cancel the local magnetic field of the Earth. The
main highlights of its specifications are a maximum dimensions of 2086 × 2040 × 2086 mm,
a maximum magnetic field of 2.4 G for each axis and a relation field-current of approx-
imately 0.15 G/A [16]. The Helmholtz cage allows the simulation of a magnetic field
by using power supplies. To control the magnetic field’s modulus and direction, three
programmable power supplies, model SPD3303X from Siglent, were used. They provided a
range of use in terms of current intensity between−6.4 A to 6.4 A, working in parallel mode,
applying the negative current by reversing the power supply polarity. Figure 2 shows the
results obtained in a test to establish the relationship between the current intensity and the
magnetic field in each coil. A linear relation between both variables can be easily calculated.
The power supplies were controlled by a computer using the Python language, defining
the initial parameters of the test, power supply voltage, current and time. The magnetic
field in the center of the cage was measured using the HMR2300 gaussmeter to provide
in-situ feedback from the experiment. This gaussmeter was previously calibrated by one of
higher metrological accuracy with traceability to the National Institute of Standards and
Technology (NIST, Gaithersburg, MD, USA). The calibration certificate was provided by
the manufacturer.

Figure 2. Relation between magnetic field in each axis and intensity applied. Linear fitting is shown
for each power supply. I represents the current intensity, Bxx the magnetic field measured in the x
direction, Byy in the y direction, and Bzz in the z direction.
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2.1.2. Pixhawk Magnetometers

Pixhawk is a low-cost autopilot based on different versions on the Pixhawk project
FMU open hardware design. It runs PX4 flight control software, which provides a standard
to deliver drone hardware support and software stack [15], with FMU the name assigned to
the board design standard [17]. Each Pixhawk contains on-board sensors, whose number de-
pends on the Pixhawk model, to measure different parameters related with the vehicle state
as well as environment. These sensors are three-axis gyroscopes, a three-axis accelerometer,
a three-axis magnetometer, barometer and a Global Navigation Satellite System (GNSS).
Using data provided by these, the autopilot can provide information related with position,
speed and acceleration, as well as attitude, magnetic field and ambient pressure.

This work is focused on the accuracy of the magnetometer measurements mounted on
Pixhawk boards and the tolerance in manufacturing. Tolerance indicates the metrological
variability that magnetometers on-board different autopilots have. Since this is an open-
source non-certified system, there is no robust metrological information, as in the case of
other commercial systems, which show the traceability of the sensors to reference standards.
Therefore, it is interesting that potential Pixhawk users are aware of their metrological
limitations before planning the use of Pixhawk for commercial services with drones on
which this autopilot is functional and could derive in risks for third parties.

Table 1 shows the different models of Pixhawk autopilots and magnetometers used
in the study. Pixhawk model CubeBlack, which is named Pixhawk 6, has two different
magnetometers on-board, named magnetometer-2 and magnetometer-3. Both were used to
analyze this autopilot, while the other models selected had only one. All magnetometer
data of these instruments are read in mG units. The table also shows the only magnetic
parameters presented in the datasheet of the sensors [18,19]: the magnetic measurement
range and the magnetic sensitivity. No other characteristics such as precision, accuracy or
drift are shown, which also justifies the study carried out in this work.

Table 1. Pixhawk and magnetometer sensor models. Pixhawks 1 to 4 are different units of the
same model.

Pixhawk
Reference Model

Magnetic
Measurement

Range (G)

Magnetic
Sensitivity
(mG/LSB)

Magnetometer
Model

Pixhawk 1 2.4.8

12 0.479
ST Micro

LSM303D 3 [18]

Pixhawk 2 2.4.8
Pixhawk 3 2.4.8
Pixhawk 4 2.4.8
Pixhawk 5 1

Pixhawk 6 2.1-CubeBlack
12 0.479 ST Micro

LSM303D 3 [18]

48 6 MPU9250 [19]

The acquisition of magnetometer data was performed using the Mission Planner
software. Mission Planner is a free, open-source ground station suite for planes, helicopters
and rovers. Pixhawk can be connected in different ways, using a telemetry radio or directly
using an USB cable connected to the computer [20]. For the tests in this paper, the last
method was selected, and it did not imply any restriction from an operational point of
view. Once autopilot is connected and firmware is installed, sensor data can be read on the
computer screen (Figure 3). To automatize the data acquisition, a Python script to save the
sensor data was implemented, granting the chance to analyze all the data after testing.
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Figure 3. Mission Planner Pixhawk data display, highlighting some sensor data as magnetometer or
gyroscope measurements.

2.2. Testing Methodology

The methodology included two main tests: one in which the magnetic field varied
around one axis and another in which the stability of the sensor is shown over time.

2.2.1. Magnetic Field Rotation Test

The goal of the test consisted of studying magnetometer measurements provided
by the Pixhawk board when the magnetic field direction changed considerably. This is
a flight situation that occurs when there are variations in the trajectory of the aircraft or
when there are ascents or descents of the flight level. The way to experimentally study
the response of the sensors to this situation was through the implementation of rotating
magnetic fields in the Helmholtz cage. To meet all the requirements, this test needed to be
repeated considering different rotation axes. In this case, it was performed around the Z
axis and around the Y axis. A magnetic field was created in the analyzed plane, changing
values and directions in steps of current intensity of 0.2 A to complete the rotation. Figure 4
shows these changes in terms of power supply intensity.

Figure 4. Power supply intensity values for the rotation test. The left side shows information for the
test around the z-axis, whereas the right side shows information for the test around the y-axis. Ix
represents intensity applied on the x-axis coil, Iy the intensity applied on the y-axis coil and Iz the
intensity applied on z-axis coil. Orange arrows show the direction of tests.
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Both tests started with an increment of intensity in the X direction until a maximum
was achieved. Then, in the case of the test around the z-axis, the power supply intensity in
the Y direction was increased to reach its upper limit, whereas, in case of the test around the
y-axis, this intensity increment was applied to the Z-coil. After that, the process continued
increasing and decreasing intensity in the applied axes following Figure 4. Once power
supply input values were programmed, the Pixhawk autopilot and standard gaussmeter
were be placed in the Helmholtz cage as shown Figure 5, controlling their position relative
to the Helmholtz cage centre. For this, a non-magnetic system created with carbon fiber
bars and 3D printed components, including a box to place instrumentation, was used. To
avoid errors related with magnetic field uniformity in the Helmholtz cage, instruments
were positioned in the center of the testing facility.

Figure 5. Pixhawk and HMR2300 gaussmeter placed in a 3D printed cage in the Helmholtz-based
testing facility.

After creating power supply input files and placing the instrumentation in the Helmholtz
cage, the magnetic field rotation test was started by running the Python control scripts to
manage power supplies and acquire data from the HRM2300 gaussmeter and Pixhawk.
The power supplies were switched on 30 min before starting the tests to reach regime
temperature and avoid errors. The test was repeated for each of the six Pixhawks and
magnetometers under study.

2.2.2. Magnetic Field Stability Test

One of the key aspects of any sensor is to avoid metrological drifts when it is per-
forming a measurement. Such instabilities in an aircraft autopilot magnetometer could
cause deviations when following a given course. In this context, a stability test of the
magnetometers embedded in a Pixhawk autopilot was performed. Therefore, the test’s
goal was to analyze changes over time in the Pixhawk magnetometers for a defined and
constant magnetic field, selected considering a determined drone flight altitude and course.
Firstly, the magnetic field desired to be simulated was selected. For this, the magnetic
environment in the center of the testing facility, where a gaussmeter and Pixhawk would be
placed, was measured (Table 2). The magnetic field at the testing facility location (Ourense,
Spain) was calculated according to the International Geomagnetic Reference Field (IGRF)
model by using the National Oceanic and Atmospheric Administration (NOAA) online
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calculator [21]. Considering initial and target magnetic field values, the last step needed for
the simulation was to use the relation between power supply intensity and the magnetic
field generated in the testing facility.

Table 2. Helmholtz cage parameters, where B0 is the initial magnetic field at the Helmholtz cage
centre, BOU is the magnetic field (NED coordinates) in Ourense (Spain) according to IGRF models,
and Itest is the current intensity values used during the test.

Direction B0 (mG) BOU (mG) Itest (A)

X −382.47 246.63 2.205
Y 282.22 −6.53 −0.947
Z 95.73 382.32 −1.666

After defining power supply inputs and placing gaussmeters and Pixhawks as shown
in Figure 5, the stability test was started, measuring a synchronized acquisition for one hour
with both the HMR2300 gaussmeter standard and each of the Pixhawk magnetometers. In
the end, one file for each Pixhawk magnetometer measurements was obtained as well as
six files with HRM2300 data—one for each stability test. As mentioned for the previous
test, power supplies were switched on at least 30 min before starting testing to avoid errors
due to operational temperature.

3. Results and Discussion

Section 3 shows the results for both the magnetic field rotation and magnetic field
stability tests, focusing on the difference with respect to the gaussmeter applied as standard
and also on the variation in measurements between the different Pixhawk magnetometers
used during the metrological test. These comparisons define the limits on operations in
terms of magnetic field measurement accuracy and tolerance.

In Figure 6, the left part shows the results for the magnetic field rotation test around
the Z-axis, displaying error bars related with standard deviation for each data series, using
blue color for the standard gaussmeter and orange for Pixhawk magnetometers. In the
first case, the standard deviation comes from the variability of the seven measurements
performed with the standard gaussmeter, and in the case of Pixhawk magnetometers, the
standard deviation came from the variability of the different magnetic sensors of each
autopilot (Equations (1) and (2)). The standard deviation allows us, in the measurement
of uncertainty calculations, to estimate the contribution of type A or random errors. The
objective of the manuscript is not to evaluate a complete uncertainty budget, so type B or
systematic errors are not taken into account.

Bm =
∑n

i=1 Bi

n
(1)

where Bm is the magnetic field average obtained for each point of the graphs, Bi the
magnetic field of each sensor (Pixhawk magnetometers) or the magnetic field in the different
experiments (standard gaussmeter), and n the number of Pixhawk magnetometer units (7
in this study).

Bst =

√
∑n

i=1(Bi − Bm)
2

n− 1
(2)

where Bm is the magnetic field average obtained for each point of the graphs, Bi the
magnetic field of each sensor (Pixhawk magnetometers) or the magnetic field in the different
experiments (standard gaussmeter), n the number of Pixhawk magnetometer units (7 in
this study), and Bst the standard deviation of the measurements, used to represent the error
bars on the graphs.
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Figure 6. Left: Magnetic field rotation test around z-axis for X, Y and Z directions, showing mean
value (solid lines) and error bars (vertical segments) for standard gaussmeter (blue) and for Pixhawk
(orange). B represents magnetic field, with Bx being the x-axis magnetic field, By the y-axis magnetic
field and Bz the z-axis magnetic field; t represents time. Right: Magnetic field rotation test around y-
axis for X, Y and Z directions, showing mean value (solid lines) and error bars (vertical segments) for
standard gaussmeter (blue) and for Pixhawk (orange). B represents magnetic field, with Bx being the
x-axis magnetic field, By the y-axis magnetic field and Bz the z-axis magnetic field; t represents time.

It is possible to appreciate a considerable difference in the magnitude of the error bars
for both cases, with the data of the HMR2300 being almost insignificant with respect to
Pixhawk magnetometer data. In terms of numerical values, the average standard deviation
considering all axis is, in the case of the standard gaussmeter, approximately 15 mG,
whereas in the case of the Pixhawk, this parameter is higher than 170 mG.

Following the same procedure, the right part of Figure 6 shows the results for the
magnetic field rotation test around the Y-axis, representing error bars in the same way as
the left part of Figure 6. As with magnetic field rotation around the z-axis, the results show
a remarkable difference in magnitude between error bars associated with Pixhawk and
those associated with the standard gaussmeter. Considering the three axes, the mean value
of the standard deviations obtained for the test associated wit the standard gaussmeter was
almost 16 mG, while the same parameter obtained for the Pixhawk was 170 mG.

The attitude determination accuracy for a Pixhawk flight controller based on the
method of direct cosine matrix (DCM) over a magnetometer is in the order of 3◦ [22]. A
representative variation of 5 mG in the magnetometer measurement could produce an
angular variation of 1◦ in the attitude data, in agreement with experimental results, and
impair the guidance, navigation and control of the drone. Taking this into account, an
initial calibration of the Pixhawk magnetometer with the results presented in this paper
could improve the attitude determination by close to one order of magnitude.

Figure 7 depicts the results for the magnetic field stability test. It provides information
about the differences between the Pixhawk magnetometers and the standard gaussmeter. In
most autopilots, there is an error in terms of the initial calibration showing a displacement
of the magnetic field value, with this situation more pronounced in the Pixhawk-1 Y-axis
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with a displacement of approximately 400 mG, the Pixhawk-2 X-axis with a value around
240 mG and the Pixhwak-4 Y-axis with a difference close to 225 mG.

Figure 7. Magnetic field stability test results. B represents magnetic field, with Bx being the X-axis
magnetic field, By the Y-axis magnetic field, and Bz the Z-axis magnetic field; t represents time.

The peak-to-peak amplitude, considered as the difference between the maximum and
minimum values measured by an instrument for the same conditions, also shows relevant
information. This parameter is higher in the case of Pixhawk magnetometers than in the
HMR2300 gaussmeter. For example, the worst value in terms of peak-to-peak amplitude
considering the autopilot magnetometers was higher than 100 mG for Pixhawk-4, whereas
the worst case for the HMR2300 gaussmeter was 5.4 mG. In a similar way, the maximum
difference value was 25 mG for the Pixhwak-6 magnetometer-2, while this value only
reached 1.3 mG for HMR2300 gaussmeter during the same test. A numerical comparison
between the peak-to-peak amplitude for each Pixhawk and HMR2300 is collected in Table 3.

The other result of this test is the greater time needed to stabilize the magnetic field
value in the case of Pixhawk magnetometers, which can be appreciated in Figure 7. The
time needed ranged between 9 and 17 min for stabilization, depending on autopilot
and axis, whereas it was in the order of tenths of seconds for the HMR2300 gaussmeter.
According to this, to increase the accuracy of the Pixhawk autopilot in terms of magnetic
field measurement, it should be switched-on for at least 17 min before starting its operations.
The magnetic field data obtained were measured directly from the magnetometers without
applying any additional filtering or data processing.
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Table 3. Maximum peak-to-peak amplitude of magnetic field BPP considering the three axes.

Magnetometer Test Instrument BPP (mG)

Pixhawk-1
HMR2300 2.5
Pixhawk 40

Pixhawk-2
HMR2300 5.3
Pixhawk 86

Pixhawk-3
HMR2300 5.4
Pixhawk 65

Pixhawk-4
HMR2300 2.2
Pixhawk 116

Pixhawk-5
HMR2300 1.5
Pixhawk 42

Pixhawk-6
HMR2300 1.3

Pixhawk-mag2 25
Pixhawk-mag3 49

The information shown in Figure 7 could also allow the calibration of the Pixhawk
magnetometers by calculating the difference between the measured values and those shown
by the standard magnetometer. In this way, the calibration equation that corrects the results
can be determined (Equation (3)).

BPixhawk = Bstmg + C (3)

where Bstmg is the magnetic field measured by the standard magnetometer, C is the cor-
rection of the magnetic field, and BPixhawk is the magnetic field measured by each of the
Pixhawk magnetometer sensors.

4. Conclusions

In this work, the description of a testing facility for magnetic field analysis has been
shown, using a Helmholtz cage to simulate a homogeneous magnetic area controlled
by power supplies. This facility was used to analyze the metrological features of drone
autopilot magnetometers—more specifically, Pixhawk magnetometers—by a comparison
between their results and the results of a standard gaussmeter.

Results concerning the magnetic field rotation show how similar the data obtained for
a test repeated six times for the standard gaussmeter are, whereas there is an important
variability between the six Pixhawks under study. Their maximum standard deviation
is 10 times higher than that for the HMR2300 in both cases studied—around the Z-axis
and around Y-axis. In terms of stability, tests showed a higher peak-to-peak amplitude in
Pixhawk magnetometers, achieving a value higher than 100 mG for the case of Pixhawk-4.
The analysis from the stability test shows the amount of time needed to stabilize autopilot
magnetometer measurements. This value is around 17 min to avoid an error, which is
almost 70 mG for Pixhawk-4 and is between 20 mG and 35 mG for the other autopilots.

In conclusion, for Pixhawk operations, the initial time to stabilize magnetometer
measurements should be taken into consideration, as well as a possible disturbance in its
absolute value of tenths of mG. In addition to this, an initial calibration of the magnetome-
ters on-board Pixhawk is recommended to increase navigation accuracy. This calibration
could be implemented on any Pixhawk using open autopilot software such as PX4, con-
tributing to improving the accuracy of the drone flight. This calibration is focused on
avoiding sensor errors and complements the calibration typically performed in drones
related to environmental errors. Future works could include, for example, flight tests to
quantify the influence of the magnetometer sensor accuracy on the behavior of the drone
dynamics. Thus, the results obtained in the present work could be tested under flight
conditions and be extrapolated rigorously.
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