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Abstract: This paper discusses the process of developing a novel and robust algorithm for an interior
permanent magnet synchronous motor controller. This is necessary for the simplification of the
setting of control parameters and maintaining the proper operation of the motor. A 3D torque lookup
table was used in which two inputs were considered, i.e., accelerator movements and the motor
rotational speed. These two inputs allowed the lookup table to generate a specified torque at any
motor rotation, which was then fed-forward to the field-oriented control and space vector pulse width
modulation algorithm. Modeling, simulation, and experimental tests were performed to design and
validate the proposed controller. The experimental validation shows that the proposed controller
worked as intended. This was indicated by its ability to control the motor to obtain a 7% higher
torque output than in the simulation in the constant torque region. In the field-weakening region,
the controller could make the motor reach a maximum speed of 5500 RPM. There was only an 8%
difference compared to the simulation (6500 RPM). In terms of maximum power generated, the
controller was able to match the simulation output with only a 5% difference.

Keywords: three-dimensional lookup table; electric vehicle; field-oriented control; field weakening;
novel and intuitive controller; lookup table; space vector pulse width modulation; PI controller;
interior permanent magnet synchronous motor

1. Introduction

The permanent magnet synchronous motor (PMSM) and interior permanent magnet
synchronous motor (IPMSM) are proven by their nature to be promising options for
use in an electric vehicle traction motor, but some challenges need to be addressed in
terms of their implementation. Some of these have been previously reported in several
studies, such as the voltage and current limitation constraints identified in work by [1].
A novel algorithm known as the discrete-time field-oriented control was implemented in
the IPMSM controller and observed to have produced optimal torque dynamics over full
speed operation range. The authors of [2] also identified torque loss control in PMSM due
to heavy-load or high-speed operating conditions and proposed a load-angle-feedback
direct torque control solution. The experiment, validation, and analysis of their research
showed that the proposed modifications to the current direct torque control were able
to extend the motor operating conditions, including the wider load capacity and speed
operation range. An improvement of direct torque control to deal with torque loss was
proposed by [3]. They used the so-called firefly algorithm combined with a fractional order
PID controller. Moreover, Ref. [4] confirmed that a PMSM experienced instability issues
during overloading and its overload capabilities were heavily dependent on the speed.
The investigation was discovered to focus on implementing the IPMSM as a servo drive
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with the proposal of a modified direct torque control space vector machine to solve the
instability issues.

This research focused on developing an alternative IPMSM controller algorithm in
electric vehicles. It is based on an engine controller unit (ECU) philosophy. The ECU has
been reported to usually deal with nonlinearities due to variations of the operating point
when applied in electric vehicles or automotive fields [5]. The operating point is typically
a combination of the function of the engine speed n and the engine torque T, which are
dynamically or rapidly changing due to the load and driving behavior. Therefore, there is
the need to design a robust controller to cope with the problem. Previous studies agreed
that there are current drawbacks in implementing the IPMSM controller for electric vehicles
due to its dynamic nature, which is reflected in the need for higher flexibility with the
ever-changing torque and RPM requirements. This is a nonlinear phenomenon considered
unsolvable using most conventional control algorithm methods that are assumed to be
based on linear phenomenon [6]. Therefore, this study proposed an alternative framework
incorporating the torque versus rotational speed and field-weakening lookup tables into
the FOC algorithm. The torque lookup table, however, consists of two inputs, including the
accelerator degree of movement and the rotational speed of the IPMSM. The interaction
between them was designed to represent the load to be handled at any point of the operating
speed. The introduction of the two inputs is more intuitive as it directly measures driver
behaviors into the lookup table. Furthermore, it is more practical, as is the case with the
engine controller unit (ECU) in conventional (internal combustion engine-driven) vehicles.
Meanwhile, the field-weakening lookup table was used to control the motor beyond its
base rotational speed. The IPMSM controller also needs to possess a real-time capability
to handle such dynamic and ever-changing operation [7,8]. Several control algorithms
have been proposed to deal with these situations and were categorized into feedback,
feedforward, and a mixture of feedback and feedforward control algorithms [9,10]. These
algorithms use current, voltage, and torque as input parameters based on IPMSM governing
equations for the constant torque region in Equation (14) and the constant power/flux
weakening region in Equation (15).

The authors of [11,12] used current errors in id and iq as feedback signals in their
method of improving PMSM control and applied the current errors in the hysteresis current
regulator of the controller. Other works reporting on this development area were conducted
by [13,14], using voltage as the feedback to improve the PMSM control algorithm. However,
work carried out by [15,16] found that using current error and voltage error as feedback
signals in the PMSM controller has a limitation: the inability to determine the optimal
current operating point. This led to a proposal of another method to improve the PMSM
controller performance using torque and motor speed as the signals for the feedforward
control algorithm. The process involved setting a torque and field-weakening 3D lookup
table based on the IPMSM performance determined through torque vs. speed and torque
vs. efficiency curves. It is important to note that the 3D torque lookup table has the ability
to examine two inputs, accelerator movements and IPMSM rotational speed, usually used
in generating a specified torque and subsequently fed forward to the FOC-SVPM algorithm.
Moreover, the 3D torque lookup table enables the users to input easily and intuitively the
targeted torque for each operating point. In this case, the torque curve from the IPMSM
modeling and simulation was used as the source for the targeted torque. It is also important
to note that the torque versus rotational speed curve is the most important characteristic
of an electric motor. However, the information contained in this curve is rarely used in
developing controller algorithms, with most programmers observed to only focus on the
maximum value required to limit the electric motor operating point.

The lookup table had been applied to control IPMSM as indicated in the previous
studies [17]. They proposed to use the lookup table to improve the IPMSM performance
in high-torque, low-speed applications around field weakening. The lookup table was
based on the calculated value for both d-axis current using an offline method as well as
the online calculation of q-axis current using the torque equation. The results still showed
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the proposed methodology was unable to meet the desired target. This was observed
to be due to the coupling phenomenon on the d- and q-axes as well as the variation of
the motor parameters. Nevertheless, the lookup table was discovered to have the ability
to improve the PMSM performance over a wider range of operations. The lookup table
constructed from experimental data, such as the dynamometer test, is superior to that
estimated from calculation as shown by [18]. They proposed torque output improvement
based on constructing a lookup table-based controller by characterizing it to ensure it is
applicable in a wide operation range, such as in an electric traction motor for an electric
vehicle. Moreover, it focused on improving IPMSM controller performance, especially in
the field-weakening area. This involved using lookup tables of motor rotation and the
motor torque feedforward technique to derive torque command for the weakening field
operation. The experimental results showed the technique’s ability to maximize the output
torque and improve torque stability in the flux weakening field.

The viability of implementing the lookup table in the PMSM controller has been
reported by several researchers [19,20]. They were both employing the torque and rotational
speed of the PMSM as the inputs of their controllers. They introduced a feedforward
interpolation compensation error for different ranges of the PMSM operation. The authors
of [19] focused on the performance evaluation of their proposed controller in the field-
weakening region while [20] focused their research on the maximum power control region.
Their lookup table contains a discrete torque map. An extensive set of torque data is
required to explore the best performance of this method. However, some controllers have
insufficient memory to contain all those data. Linear interpolation is commonly used
to obtain an estimated torque based on limited data. However, the linear interpolation
method does not match the nonlinear characteristic of PMSM. The authors of [20] added a
compensation block to correct the linear interpolation using DC-link voltage feedforward
and obtain precise output torque from the limited data. Later, Ref. [19] improved the
compensation method using two feedforward compensators and a PI controller. This
method is beneficial if we use a controller with limited memory. Both reported that their
lookup table compensation could improve the performance of the conventional lookup
table controller.

The electric motor performance curves were used in this research as the basis for the
torque and field-weakening lookup table, as previously explained, to ensure the direct
development of the controller. The curves also allow the users of the proposed controller to
specify the targeted torque to match specific requirements intuitively. Moreover, they make
the controller easily reprogrammable to work with any electric motor in the same class.
These performance curves also contain information on the working envelope of electric
motors and ensure the controller no longer needs its limiter values (as in the case of [19,20])
after they have been incorporated using the torque and field-weakening lookup tables.
Furthermore, the lookup table aids the safe operation of the controller by integrating the
maximum value of torque, current, and current ramping up in the system. This is mainly
required when the motor is subjected to ever-increasing and changing loads. The novelty of
the paper is in its simplified approach of integrating all electric motor parameters into one
3D lookup table to obtain maximum performance on each operating point (torque:RPM) of
the motor in the whole range of its operation.

The paper is organized as follows: Section 2 discusses the methodology of the pro-
posed work. It includes a mathematical model of the FOC algorithm for IPMSM controller
and MATLAB or Simulink model to estimate the performance of the proposed IPMSM
controller. Section 3 explains the experimental setup to validate the performance of the
controller. Subsequently, Sections 4 and 5 discuss the experimental results and conclu-
sions, respectively.
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2. Methodology
2.1. Basic Mathematical Control Equations of the 3-Phase V-Shaped IPMSM

The permanent magnet synchronous motor (PMSM) investigated is the 3-phase interior
mounted permanent magnet motor presented in Figure 1. It was developed by the authors
of [21] in 2021 to be used in an electric utility vehicle.
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Figure 1. Exploded view of the PMSM to be controlled by the proposed controller.

According to Figure 1, the PMSM has three phases and a V-shaped interior permanent
magnet synchronous motor (IPMSM) with the specifications tabulated in Table 1.

Table 1. Specifications of the proposed interior permanent magnet synchronous machine (IPMSM).

Parameter Value Unit

Stator outer/inner diameters 180 mm
Rotor outer/inner diameters 108 mm

Tooth width 15.9 mm
Tooth depth 22 mm
Stack length 90 mm

Magnet type/thickness N42H/5 mm
Magnet width 90 mm
Magnet angle 43 Deg (◦)

Slots/poles (SP) 12/8
Air-gap 1 mm

Rated power 20 kW
Rated speed 6000 RPM
Rated torque 82 Nm

Phase 3 Phase
Direct current (DC) link voltage 100 V

Peak current 550 A
RMS current 389 A

Inertia 0.007629 Kgm2

Resistance 0.002405 Ohms
D-axis inductance 0.00002939 H
Q-axis inductance 0.00004914 H
D-axis reactance 0.0714 Ohms
Q-axis reactance 0.1194 Ohms

Flux linkage D (Q-axis current) 20.2085 mVs
Flux linkage Q (Q-axis current) 14.6478 mVs

Flux linkage D (on load) 10.8567 mVs
Flux linkage Q (on load) 15.6358 mVs

Phase (elec deg) 45 Deg (◦)
Drive mode Sine

Winding connection Star/Wye
Magnetization Radial
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The permanent magnets of the V-shaped PMSM are embedded into the rotor in the
V-shaped configuration as presented in Figure 2, making it mechanically robust for high-
speed applications. The figure shows the three-phase V-shaped IPMSM (8 poles) along
with its direct (d-) and quadrature (q-) magnetic and its three-phase axis definition.
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It is possible to approach the mathematical model of the three-phase V-shape IPMSM
as a generic radial magnetization of IPMSM, as suggested by [22]. This involves aligning
the d-axis with the maximum reluctance axis. Moreover, the peak reluctance and peak
magnet torque in the conventional PMSMs in this system were also phase-shifted by 45◦.
Therefore, the mathematical expressions were, therefore, defined by several works [23–27]
to be written as follows. [

ψq
ψd

]
=

[
Lq 0
0 Ld

][
iq
id

]
+ ψm

[
0
1

]
(1)[

vq
vd

]
= rs

[
iq
id

]
+

d
dt

[
ψq
ψd

]
+ ωr

[
0 1
−1 0

][
ψq
ψd

]
(2)

Te =
3
2

P
[
ψmiq +

(
Ld − Lq

)
iqid
]

(3)

This equation shows that the id current must be a negative value to achieve positive
reluctance torque since the direct inductance (Ld) is larger than the quadrature inductance
(Lq). The parameters used in these equations include ψm which is the magnetic flux linkage,
ψq = Lqiq, ψd = ψm + Ldid are the q- and d-axis inductances, respectively, vq, vd and
iq, id are the q and d reference frame voltages and current while rs is the stator resistance,
ωr is the angular speed of the rotor (electrical angular speed), and P is the IPMSM number
of magnet poles.

Newton’s second law was later applied to Equation (3) to obtain the equation of
motion for the generic IPMSM as follows:

Te − TL = J
dωm

dt
(4)

where TL is the load torque, J is the IPMSM rotor inertia, and ωm is the mechanical angular
speed of the IPMSM rotor which is equal to ωr

P . The representation of iq and id as a vector in
d;q rotating current reference frame can be presented in Figure 3. In the figure, θ is defined
as the rotor position angle or in this case as the current phase angle between id and iq in its
d-axis reference.
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The substitution of iq = is sin θ and id = is cos θ in Equation (3) generated the torque
for the IPMSM with respect to its rotating reference frame d;q as follows.

Te =
3
2

P
[

ψmis sin θ +
1
2
(

Ld − Lq
)
i2s sin 2θ

]
(5)

where is is the total current vector (current commanded in IPMSM controller). Figure 3
shows that

iq
2 + id

2 = is2 (6)

and its voltage in q and d rotating reference frame can be derived as:

vq
2 + vd

2 = vs
2 (7)

From the practical perspective or real-life application, is and vs have their maximum
values, which are denoted as isMax and vsMax respectively in this case. The substitution of
these values in Equations (6) and (7) leads to the following equations.

iq
2 + id

2 ≤ isMax
2 (8)

vq
2 + vd

2 ≤ vsMax
2 (9)

Therefore, Equations (8) and (9) are the current and voltage limit of the IPMSM under
investigation. The substitution of Equations (1) and (2) in Equation (9) makes the IPMSM
voltage limit become,(

rsiq + ωr(Ldid + ψm)
)2

+
(
rsid −ωrLqiq

)2 ≤ vsMax
2 (10)

One of the advantages of the IPMSM is its suitability for electric vehicle application
due to its mechanically robust rotor structure with a low effective air gap considered to
be effective in flux weakening operation. Therefore, it makes the IPMSM applicable in
the higher RPM region, not only in the constant torque region. Therefore, the typical
torque-rotational characteristics of the IPMSM are presented in the following Figure 4.
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Figure 4 shows the two regions of the IPMSM operation range. The first is the constant
torque region which allows it to generate constant torque up to the period the maximum
value of any rotational speed is less than its base or rated speed. The second is the flux
weakening region when the rotational speed is higher than the rated speed, thereby granting
the IPMSM the ability to generate constant power with reduced torque until its no-load
rotational speed. Therefore, the mathematical models and equations for these regions were
derived in the next subsection.

2.2. Proposed Control Algorithm for the IPMSM

As explained in the previous section, there is a need to develop a control algorithm
to improve the PMSM controller performance. It can be realized by employing a mixed
feedforward and feedback algorithm, as depicted in Figure 5. As shown in Figure 5, the
proposed control algorithm uses a lookup table derived from current, torque and efficiency
maps obtained from an IPMSM motor design modelling and simulation. The proposed
control algorithm uses the values from the current and efficiency maps of the motor as the
feedforward inputs for the FOC controller. By doing so, it is expected the motor can be
operated at maximum capacity and efficiency. Moreover, the feedforward mechanism can
also make the motor change its output, based on the changing conditions in real-time.
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The model was subsequently integrated into a current field-oriented control and space
vector machine to control the IPMSM in all operating conditions. The number of 1 to 6
in SVPWM represents sector number. Each sector is staged at 60 degrees. The sector is
used to determine the switching sequence, i.e., from sector 1, 2, 3, 4, 5 and 6 respectively.
It was then followed by a MATLAB or Simulink model to simulate the performance. The
attainment of a satisfying result in modelling and simulation for both transient and steady-
state conditions led to the deployment of the proposed framework in a real controller. It
was tested with a dynamometer to investigate its performance in real-life conditions. It
was also installed in a utility vehicle and made to perform certain tasks such as climbing a
certain degree of inclination to evaluate the low RPM–high torque requirements and other
generic tasks conducted daily by an electric vehicle.

One of the most important aspects of designing and developing an IPMSM or electric
motor is the current and efficiency maps. However, it was discovered that only a small
portion of the maps have been incorporated into the development of motor controllers. The
focus has only been on the maximum values of DC-link voltage, current to be handled,
and sustainable speed for a motor, while the point-to-point operating values are rarely
considered. Subsequently, it led to several problems faced by the motor in its application,
such as the instability at a certain point of operation, inefficiency, and the inability of the
motor and controller to deal with the nonlinearity of real-life conditions.

The current and efficiency maps of the IPMSM under investigation were obtained in
the design phase by modelling and simulating the PMSM using the finite element method
and complex mathematical formula, as shown in Figure 6.
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Figure 6a shows the current requirements at a specific speed (RPM) to produce torque
(Nm), while Figure 6b indicates the IPMSM efficiency at any point or any given speed
(RPM) and torque (Nm). The combination of the two maps, at any given speed and torque,
made it possible to extract the values of the current and efficiency, which were subsequently
used as inputs for the field-oriented control to eliminate the difficulties associated with
estimating the current input. These difficulties have been previously identified by [17].
Moreover, Equation (14) shows the generated electromagnetic torque in an IPMSM is a
function of iq and id and the torque to be generated by the IPMSM in a real-life control
application denoted as Te

∗ is called a torque demand. This Te
∗ can subsequently be used to

calculate the value of iq and id reference denoted as iq
∗ and id

∗. Meanwhile, Equation (14)
shows the calculation of iq∗ and id

∗ is time-consuming and requires a lot of computer effort,
thereby leading to a delay in the controller’s performance. Therefore, both iq

∗ and id
∗ were

calculated offline in this research using the proposed lookup table for all the operating
speed ranges, including the constant torque and field weakening.
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2.3. Constant Torque Region

The IPMSM is operated at maximum torque per ampere (MTPA) in the constant torque
region [28]. Therefore, Equation (5) was recalled, and the relationship between phase angle
and the unit current electromagnetic torque was established as follows:

f (θ) =
Te

is
=

3
2

P
[

ψm sin θ +
1
2
(

Ld − Lq
)
is sin 2θ

]
(11)

Moreover, is was considered constant, and the following conditions were met to obtain
the maximum torque per unit ampere.

∂ f (θ)
∂θ = 0, and hence from Equation (11) becomes:(

Ld − Lq
)
is cos 2θ + ψm cos θ = 0(

Ld − Lq
)
is

(
2 cos2 θ − 1

)
+ ψm cos θ = 0

Solving the above equation:

cos θ =
−ψm +

√
ψm2 + 8

(
Ld − Lq

)2is2

4
(

Ld − Lq
)
is

(12)

iq and id were also considered a function of phase angle (θ) as indicated in Figure 3,
and this led to the establishment of a relationship as follows

id =
−ψm +

√
ψm2 + 4

(
Ld − Lq

)2iq2

2
(

Ld − Lq
) (13)

Substituting Equation (13) to obtain maximum generated electromagnetic torque as in
Equation (5) will be:

Te =
3
4

Piq

[
ψm +

√
ψm2 + 4

(
Ld − Lq

)2iq2
]

(14)

For the three-phase IPMSM, it can be deduced that ψm =
√

3ψm, ψm = E0/ωm, where
E0 is the RMS of no-load back-EMF.

Equation (14) shows the governing equation for torque generated is only a function
of iq and this has to be maximum to maximize the torque. According to the phase angle
representation of the current iq and id , it is safe to set id∗ = 0, while iq

∗ was obtained from
the lookup table as previously explained.

2.4. Constant Power/Flux Weakening Region

The rotational speed of the IPMSM is over the base speed in the constant power/flux
weakening region. The d-axis and the q-axis output voltage are limited by the maximum
voltage on its DC-link bus voltage. Therefore, Equations (8)–(10) were applied to limit
both the current and voltage of the IPMSM. These conditions led to the representation of
Equation (10) as follows:(

rsiq
ωr

+ Ldid + ψm

)2

+

(
rsid
ωr
− Lqiq

)2
≤ vsMax

2

ωr2 (15)

Equation (15) stated that the IPMSM rotational speed is proportional to its stator
voltage beyond its rated rotational speed. It means the values of iq and id need to be
adjusted to increase the rotational speed of the IPMSM while maintaining constant voltage
in the stator. This process is called the IPMSM flux-weakening mechanism, which is possible
by increasing the direct-axis demagnetization current. Flux-weakening control is a subject
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of interest to several researchers [17,28–32], and their findings all agree the concept presents
a serious challenge due to the involvement of the nonlinearity phenomenon. However,
no exact solutions were found to deal with this problem, but they all agreed that it could
be controlled by identifying id

∗ and one technique commonly used in achieving this is
the lookup table. This is due to the fact that it is difficult to accurately calculate several
variables and parameters in the IPMSM in these nonlinear conditions.

This research used a one-dimensional lookup table based on speed feedback from the
IPMSM to adjust the id

∗ value. This is evident in the reduction of the torque generated
in Equations (3)–(5) when the id∗ was set using negative values. Therefore, optimization
is needed to limit the torque reduction, and an advanced angle θ was proposed by [29]
as the optimization parameter. Meanwhile, Ref. [16] further elaborated that the phase
angle should never exceed 450 or π

4 while [33,34] defined the id∗ in the flux-weakening
region as follows.

id∗ =

(
vq
ωr
− ψm

)
Ld

(16)

or
id∗ =

−ψm

Ld
(17)

The value of the iq∗ in the field-weakening region was derived by inserting Equation (16)
into Equation (8). Therefore,

iq∗ =
√

isMax
2 − id

2 (18)

2.5. Lookup Table Development

Previous explanations and Figure 5 show the proposed torque lookup table consisting
of accelerator percentage (0–100%) and the IPMSM rotational speed (ωr) used as inputs.
It was intuitively designed based on the knowledge of how an IPMSM is expected to be
operated throughout its range. It is important to note that the IPMSM was designed to be
used for the electric vehicle traction motor. The fundamental requirement is that it should
be able to provide the required torque and operating speed for the electric vehicle. As a
consequence, it led to the explanation of the operating region for the IPMSM as follows.

Figure 7 shows the load on the electric vehicle is divided into at least three areas,
including heavy, medium, and light load areas. The heavy load area is characterized
by a large torque requirement represented by a high opening accelerator percentage at
a very low RPM of the motor. The medium area has medium torque requirements with
low to high RPM of the motor and the light load has a torque requirement with a low to
high RPM of the motor. The other features presented in Figure 6 include the dynamic
movements of driver request, which focus on how fast the torque was delivered. This
phenomenon is represented using the acceleration or dotted line such that a steeper line
indicates higher acceleration demanded by the driver. It is, however, important to note
that there is practically an unlimited number of acceleration lines and a combination of
torques and rotation speeds available to be selected by drivers in real life, and all of them
occur nonlinearly. This is why controlling of such a nonlinear phenomenon is an interesting
subject to explore.

Meanwhile, conventional vehicles already have advanced technology for such nonlin-
ear demands, as indicated by the advanced control system in the engine control unit (ECU).
However, an electric vehicle is a new technology without any current, mature, robust
control algorithms for such nonlinearities, leading to the many approaches proposed as
reported in previous studies. It is also important to note that the ECU technology used
what is called engine mapping to define the parameters to be used in their controller and
also used it to create a lookup table to define the relationship between engine loads and
engine RPM. Subsequently, the torque and RPM values obtained were fed forward to the
proportional controller to make the engine handle nonlinearities. This algorithm has been
proven in conventional vehicle control technology and is used in this research.
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The lookup table for the IPMSM was also developed as observed in the ECU to provide
torque generated by the IPMSM based on EV driver requests and the associated rotation
speed. The proposed block diagram for the developed IPMSM controller is presented in
Figure 8.
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Figure 8 shows the complete proposed IPMSM controller, which combines the lookup
table to provide quadrature axis current denoted as iq∗ and a setpoint function to provide
direct axis current denoted as id

∗. Both the lookup table and setpoint function were
observed to have used the IPMSM rotational speed ωr as their feedback input. The first
lookup table to provide iq

∗ was designed, based on the explanation in Figures 6 and 7.
Then it was used to create a 3D lookup table, as depicted in Figure 9.
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Figure 9 consists of three axes, including the Acc_Throttle, Motor_Ref, and Ref_Torque.
The Acc_Throttle is the value from the accelerator movement of the electric vehicle, Mo-
tor_Rev is the IPMSM rotational speed, and Ref_Torque is the output of the lookup table,
which was later converted into iq

∗. They were designed based on the three characteristics
of the IPMSM load presented in Figure 7. It means the lookup table consists of a high load
area defined as the MPTA in terms of the IPMSM torque generation, while the medium
and light load areas were designed below the MPTA region. Meanwhile, light and medium
loads with higher RPM requests or high-speed operation, flux-weakening area, and control
were also considered.

The previous explanation shows that the lookup table was designed based on driver
torque request. It was represented by how much the accelerator moved. This movement
was subsequently fed to the lookup table consisting of the IPMSM mapping determined
using FEM or dynamometer test. Moreover, the IPMSM MTPA dynamic equations ex-
plained were used to obtain the iq

∗ value which was eventually used as a function of
rotational speed (ωr, measured from the IPMSM) and inputted to the FOC-SVPWM control
algorithm [35]. Another value set is the reference of direct axis current (id

∗) which was
defined to satisfy the constraint in Equation (15) and calculated in the field-weakening area
where the target rotational speed is higher than the IPMSM rated or base speed according
to the phase angle of 450 ( π

4 rad) using Equations (16)–(18).
Then, the two reference values of iq

∗ and id
∗ were fed forward to the FOC control

algorithm using the space vector pulse width modulation. However, the FOC control
algorithm is not comprehensively explained in this research, but further information is
available in [36]. As is shown in Figure 8, the of iq

∗ and id
∗ values are used as the setpoint

or the PI controller before being fed into the FOC algorithm. It is important also to note
that PI values both for of iq∗ and id∗ inputs need to be defined.

The value of Kp (proportional gain) and Ki (integral gain) for the PI controller is
tabulated in Table 2. These gains were suggested by the original Matlab/Simulink model
from the Mathworks website [37].

Table 2. The value of Kp and Ki in PI controller.

Kp Ki

iq∗ 1.0744 1061.5
id∗ 0.8779 710.3004
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Subsequently, a complete model of the MATLAB/Simulink was developed to in-
vestigate the performance of the proposed lookup table algorithm integrated into the
FOC-SVPWM, as indicated in Figure 8. The focus was on its ability to handle torque and
speed requirements in normal operation, which is below MTPA, area of MTPA, and area of
field weakening. The inputs used are presented in Figure 10, and these include accelerator
movement (0–100%) and rotational speed of the IPMSM.
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The IPMSM is believed to be in normal operating conditions (from low torque to high
torque, as indicated in Figure 9) when the rotational speed is less than 2000 RPM. Moreover,
the motor is required to produce maximum torque when the accelerator reaches 100%,
identified as the MTPA region. Meanwhile, the motor is expected to be operated in the
field-weakening area when the rotational speed exceeds 2000 RPM. It is important to note
that the torque generated in the field-weakening area is governed by the estimated torque
set up in the lookup table. Therefore, the simulation results conform with the hypothesis as
indicated in Figures 11–13.

World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 14 of 22 
 

 
Figure 11. Torque output of the IPMSM using the proposed lookup table-based controller. 

 
Figure 12. 𝑖 of the proposed controller. 

 
(a) 

Figure 11. Torque output of the IPMSM using the proposed lookup table-based controller.



World Electr. Veh. J. 2022, 13, 107 14 of 21

World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 14 of 22 
 

 
Figure 11. Torque output of the IPMSM using the proposed lookup table-based controller. 

 
Figure 12. 𝑖 of the proposed controller. 

 
(a) 

Figure 12. iabc of the proposed controller.

World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 14 of 22 
 

 
Figure 11. Torque output of the IPMSM using the proposed lookup table-based controller. 

 
Figure 12. 𝑖 of the proposed controller. 

 
(a) 

World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 15 of 22 
 

 
(b) 

Figure 13. 𝑖 (a) and 𝑖ௗ (b) current response from the simulation. 

The torque output of the IPMSM controlled by the proposed lookup table controller 
is presented in Figure 11. The torque generated was observed to successfully match with 
the input requests in the whole operating torque and rotational speed range.  

The controller was able to govern the IPMSM torque and rotational speed in the nor-
mal-operating, MTPA, and field-weakening regions. It was observed in the 60 Nm torque 
provided in the normal-operating region based on the request by 70% of the accelerator 
at a rotational speed below 2000 RPM. Maximum torque of 82 Nm, as specified in the 
specification in Table 1, was generated in the MTPA region with the accelerator depressed 
to 100% and the rotational speed recorded to be 2000 RPM. Meanwhile, in the field-weak-
ening region where the rotational speed was more than 2000 RPM, the torque generated 
was reduced to 45 Nm, and this value was constant up to 4000 RPM, after which it reduced 
further to 40 Nm. The last part of Figure 11 shows the rotational speed was reduced below 
4000 RPM. The torque generated is expected to be increased to reflect the constant power 
phenomenon according to the equation in the field-weakening region. It is what the con-
troller and the IPMSM precisely did, as indicated in Figures 12 and 13. 

Figure 12 shows the 𝑖 current profile of the controller. A distinct feature was ob-
served in terms of the frequency and amplitude of the 𝑖 current sent to the IPMSM. 
The highest values for these parameters were observed in the MTPA region. At this re-
gion, the torque generated reached its maximum value. In the normal operation region, 
the torque generated is lower compared to torque in the MTPA region. In the field-weak-
ening region, the torque value is the at its lowest value. It is reflecting the reduced torque 
due to field-weakening effects. 

The phenomenon of the 𝑖 current was confirmed by the 𝑖 and 𝑖ௗ evolution as 
indicated in Figure 13a,b, respectively. Equations (13) and (18) show the IPMSM can be 
operated in the MTPA region where its rotational speed is less than its base speed and the 𝑖 value was observed to range from zero up to a maximum of 145 A, while the 𝑖ௗ was 
from zero up to a minimum of −20 A in the region. Meanwhile, the values of these param-
eters were set according to the constant power equation in the field-weakening area. The 𝑖 was observed to reduce when the rotational speed increased while the 𝑖ௗ showed a 
contrasting result. 

The simulation results showed the controller effectively handled all the requests for 
torque delivery at each operating and rotational speed range, including the field-weaken-
ing area. Therefore, the next step was to develop the controller to control the IPMSM mo-
tor in real life with a dynamometer used to evaluate its performance in this condition. 

3. Experimental Set-Up of the Proposed PMSM Controller 

Figure 13. iq (a) and id (b) current response from the simulation.



World Electr. Veh. J. 2022, 13, 107 15 of 21

The torque output of the IPMSM controlled by the proposed lookup table controller is
presented in Figure 11. The torque generated was observed to successfully match with the
input requests in the whole operating torque and rotational speed range.

The controller was able to govern the IPMSM torque and rotational speed in the
normal-operating, MTPA, and field-weakening regions. It was observed in the 60 Nm
torque provided in the normal-operating region based on the request by 70% of the ac-
celerator at a rotational speed below 2000 RPM. Maximum torque of 82 Nm, as specified
in the specification in Table 1, was generated in the MTPA region with the accelerator
depressed to 100% and the rotational speed recorded to be 2000 RPM. Meanwhile, in the
field-weakening region where the rotational speed was more than 2000 RPM, the torque
generated was reduced to 45 Nm, and this value was constant up to 4000 RPM, after which
it reduced further to 40 Nm. The last part of Figure 11 shows the rotational speed was
reduced below 4000 RPM. The torque generated is expected to be increased to reflect the
constant power phenomenon according to the equation in the field-weakening region. It is
what the controller and the IPMSM precisely did, as indicated in Figures 12 and 13.

Figure 12 shows the iabc current profile of the controller. A distinct feature was
observed in terms of the frequency and amplitude of the iabc current sent to the IPMSM.
The highest values for these parameters were observed in the MTPA region. At this region,
the torque generated reached its maximum value. In the normal operation region, the
torque generated is lower compared to torque in the MTPA region. In the field-weakening
region, the torque value is the at its lowest value. It is reflecting the reduced torque due to
field-weakening effects.

The phenomenon of the iabc current was confirmed by the iq and id evolution as
indicated in Figure 13a,b, respectively. Equations (13) and (18) show the IPMSM can be
operated in the MTPA region where its rotational speed is less than its base speed and
the iq value was observed to range from zero up to a maximum of 145 A, while the id
was from zero up to a minimum of −20 A in the region. Meanwhile, the values of these
parameters were set according to the constant power equation in the field-weakening area.
The iq was observed to reduce when the rotational speed increased while the id showed a
contrasting result.

The simulation results showed the controller effectively handled all the requests for
torque delivery at each operating and rotational speed range, including the field-weakening
area. Therefore, the next step was to develop the controller to control the IPMSM motor in
real life with a dynamometer used to evaluate its performance in this condition.

3. Experimental Set-Up of the Proposed PMSM Controller

The controller was developed based on the modeling and simulation results previously
explained with the modular concept built to have three separate modules: the main
controller, the controller driver, and the MOSFET circuit. It was produced to have the
ability to handle 15 kW rated power with a peak of 30 kW. The DC-link bus was designed to
be 125 V with a nominal voltage of 100 V. This means the controller is capable of handling
phase current up to 300 A. The snapshots of the designed and developed controller are,
therefore, presented in Figure 14.
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The controller software was also developed to incorporate the proposed lookup table
into the field-oriented control and space vector machine algorithm with the interface
indicated in Figure 15. Figure 15 shows that the lookup table consists of three axes: the TPS
(torque position sensor—which measures the percentage movement of the accelerator), the
rotational speed of the motor/RPM, and torque setting. The user interface can, therefore,
be easily used by a user to program the value of each torque as a function of % TPS and
RPM.
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Some experimental activities were also conducted to investigate the newly designed
controller and the IPMSM in real-life conditions using a dynamometer. The set-up of the
experiment is indicated in the following Figure 16. The snapshot of the testing process is
also presented in Figure 17. Figure 16 shows the possibility of preprogramming the load of
the eddy current dynamometer used in the experiment using computer control.
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The dynamometer software recorded all the necessary graphs, including the torque
vs. speed and power vs. speed. The results presented in Figure 18 showed the con-
troller controlled the IPMSM throughout its whole operating condition, including the
MTPA and the field-weakening regions. Meanwhile, the MPTA region was determined
by the constant torque with the IPMSM discovered to have produced 77 Nm from zero to
1500 RPM and the value reduced to 10 Nm beyond 1500 RPM and up to 5500 RPM was the
field-weakening region.
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4. Discussions and Analysis

Experimental tests were conducted to determine the performance of the proposed
lookup table-based controller in real-life conditions, and the results are presented in the
form of a torque versus RPM graph in Figure 18. This graph was also compared with the
graphs generated to show its design phase performance from the simulation conducted
using FEM, as indicated in Figure 19.
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Figure 19 shows the proposed lookup table-based controller successfully controlled
the IPMSM in real-life operating conditions. It was indicated by the better torque generated
at the MTPA region than in the simulation design due to the absence of the effect of the
mechanical dynamics at the initial starting speed of the IPMSM. Moreover, the maximum
torque generated in the test was 80 Nm, while only 75 Nm was produced in the simulation,
indicating a 7% increase.

The base speed of the IPMSM in the experimental test was found to be 25% lower
before the torque decreased, as indicated by the 2000 RPM in simulation and only 1500 RPM
during the experiment. This phenomenon was associated with the effect of the mechanical
dynamics on IPMSM performance at higher RPM. For example, friction is a function of
rotational speed such that a higher rotation causes more friction. This effect was evident in
the field-weakening or constant power region, with the power and maximum speed found
to be lower during the experimental test than the simulation. The real power was recorded
to be only 19 kW in the experimental result compared to 20 kW in simulation, which is only
a 5% reduction, while maximum speed was 5500 RPM and 6000 RPM, respectively. This
indicates an 8% reduction. Therefore, the full results of the comparison are presented in the
following Table 3.

Table 3. Performance comparison of the IPMSM and its proposed lookup table-based controller.

Constant Torque Region Field-Weakening Region

Torque (Nm) Base Speed (RPM) Power (kW) Max. Speed (RPM)

Simulation 75 2000 20 6000
Experimental 80 1500 19 5500

Difference 7% −25% −5% −8%

Further analysis in the field-weakening region showed that the experimental torque
generated was smaller than in simulation. The result is as expected. The higher the speed
of the motor, the smaller the torque generated. In terms of power generated, in the high
speed region, the power was also reduced. This is due to the friction occurring in the
IPMSM. With the increasing rotational speed, the friction became greater. The phenomena
occurring in the high rotational speed is not a problem. In the region, the vehicle tends to
need more rotational speed instead of torque and power. It reflects the load requirements
as presented in Figure 7. In the region, the load requirements are low, hence low torque
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and power are required. In terms of practical implementation, constant power at high
rotational speed is not required. Usually at this point, the vehicle will only need smaller
torque to maintain/increase speed. However, if it should require larger torque then the
proper design of a gearbox ratio is required.

The proposed controller in this paper was implemented in an off-road vehicle [21].
It has a two speed gearbox with ratios of 1:32 and 1:16. It is depicted in Figure 20 as
the following.
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Regarding performance comparisons with other known models of controller algo-
rithms as described in [19,20], the proposed controller reported in this paper was similar
in performance. The proposed controller successfully met its intended target, which was
regulating the IPMSM performance in the MTPA and the field-weakening region. It was
also the case with [19,20].

5. Conclusions

The comparison of the real-life conditions and simulation performance shows the
proposed 3D lookup table-based controller worked effectively in all the operating ranges. It
can efficiently control the IPMSM at a constant torque or the maximum torque per ampere
region to produce a slightly higher maximum torque than during the simulation phase.
Meanwhile, it had lower performance in the constant power region than the simulation
due to the contribution of the mechanical dynamics of friction and other losses. The effect
of the friction, which is a nonlinear phenomenon, was observed to be more obvious in the
higher RPM region due to the increase in the RPM, thereby reducing the motor power of the
experimental test compared to the simulation. It is important to note that it is impossible to
model this nonlinear phenomenon properly in the MATLAB/Simulink model.

This analysis showed that the proposed controller was effective and efficient, as
indicated by its ability to control the motor to produce torque higher than 7% in the
constant torque region and reach a rotational speed of 5500 RPM compared to the simu-
lated 6500 RPM in the field-weakening region. It will, therefore, be interesting to assess
its ability to handle daily requirements when installed in an electric vehicle, and this is
recommended for further study. Another proposed further study was to reduce the chat-
tering phenomenon observed in Figure 13. One proposed solution is to employ a fuzzy
logic engine in the controller algorithm. It will be interesting to see the performance of
such an intelligent controller to cope with the nonlinearity phenomenon that occurred in
the IPMSM.
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