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Abstract: Charging of electric vehicles may cause stress on the electricity grid. Grid planners
need clarity regarding likely grid loading when creating extensions. In this paper, we analyse the
simultaneity factor (SF) or peak power of public electric vehicle charging stations with different
recharging strategies. This contribution is the first of its kind in terms of data quantity and, therefore,
representativeness. We found that the choice of charging strategy had a massive impact on the
electricity grid. The current “naive” charging strategy of plugging in at full power and recharging
until the battery is full cause limited stress. Price-optimised recharging strategies, in turn, create
high power peaks. The SFs varied by strategy, particularly when using several connectors at once.
Compared to the SF of a single connector in naive charging, the SF decreased by approximately
50% for groups of 10 connectors. For a set of 1000 connectors, the SF was between 10% and 20%.
Price-optimised strategies showed a much slower decay where, in some cases, groups of 10 connectors
still had an SF of 100%. For sets of 1000 connectors, the SF of price-optimised strategies was twice that
of the naive strategy. Overall, we found that price optimisation did not reduce electricity purchase
costs by much, especially compared to peak-related network expansion costs.

Keywords: electric vehicle; charging station; simultaneity factor; charging strategy; electricity grid;
peak power

1. Introduction

Electric vehicles (EVs) are gaining significant market shares around the world [1]. This
has led to additional electricity consumption and may cause, if not conducted intelligently,
spikes in power consumption. At the same time, this addition of new vehicles is, how-
ever, also an opportunity for flexibility, since EVs spend significantly longer durations
connected to charging stations than they do actually charging [2]. By shifting the electricity
consumption of EVs, several goals may be pursued including [3]:

• Cost efficiency:

Vehicles optimize their charging behaviour to charge during the hours of the day when
electricity is available at the cheapest price;

• Limiting power demand from the grid:

Vehicles reduce their demand for charging power during times of high grid usage in
order to avoid overburdening the electricity grid;

• Usage of intermittent renewable energy:
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Vehicles try to satisfy their energy demand, as much as possible, through the use of
intermittent renewable energies such as PV and wind.

• Increasing the system’s flexibility:

Increase the flexibility of the system, for example, via frequency control, power quality
management, or use of backup power.

The goal of this paper was to estimate the potential benefits for Germany of the
first three goals.

1.1. Literature Review

Since the number of EVs is experiencing exponential growth in many countries around
the world [1], the technology has attracted significant interest within the public sphere. As
Figure 1 shows, the same is true for academic interest on the topic, resulting in an increasing
number of publications.
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as electricity prices [7–10], often coupled with constraints to ensure that battery capacity 
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Figure 1. Number of publications found via Scopus® per year for the search terms shown in the
legend. Note that not all of the publications submitted in 2020 will likely have been accepted yet,
leading to a slightly lower actual value for 2020 [4].

One key topic when discussing EVs is the understanding of how and when their
recharging occurs and how it can best be managed to reduce the negative impacts on the
grid [5–12]. This is often conducted from the perspective of trying to optimise the charging
behaviour of an aggregation of EVs. The methods employed include numerical optimisation
based on known or predicted arrival and departure times [5,6] and data-driven methods
such as reinforcement learning [7,8]. Both variants require an optimisation target, such
as electricity prices [7–10], often coupled with constraints to ensure that battery capacity
limits and charging power limits are respected and that grid assets are not overloaded.
Some studies also focused on how additional devices, such as photovoltaics installations,
could be used for the same purpose [13,14].

1.1.1. Simultaneity Factor (SF)

While there are many different contributions of the aforementioned types, bird’s-eye
view perspectives focussing on distribution and transmission grids are harder to find. Some
examples that calculate an SF are in References [12,15–20] (although [17,18] use mostly
the same data, and [20] is only available with limited access). Field tests have also been
executed in this regard [21], but the small number of vehicles makes the results challenging
to generalise. Here, the SF can be understood as the maximum occurring power divided by
the sum of the installed charging station power as a function of the number of charging
stations under observation. Due to the current lack of real-world data and the novelty of the
technology, most of the results are based on simulations of charging station usage [22–24]
(see also the literature review in these papers) or statistical averaging. In contrast to these
simulations, this paper was based on real-world data.

Figure 2 shows the SFs found in [12,18]. The SF is defined, in this context, in terms
of the sum of electric vehicle charging power as outlined in the equation below. As can
be seen, the estimates varied strongly between the two sources, likely due to the many
assumptions that need to be made.
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SFvehicles =
Pmax

Psum,vehicles
(1)

where SFvehicles is the SF defined in terms of vehicles; Pmax is the instantaneous maximum
power recorded; Psum,vehicles is the sum of the charging power of all observed vehicles.
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Figure 2. SFs reported in the literature by Junge et al. [12] (three scenarios) and by Bründlinger
et al. [18] for electric vehicle charging. An SF of 100% was equivalent to all observed vehicles charging
simultaneously at one moment in time. For a description of the individual scenarios, please refer to
the linked studies.

Figure 3 shows the SFs as reported in [16]. In contrast to the previous vehicle-based
SFs, in this case, the reference power was the sum of the installed connector capacity
(Psum,connectors) as shown in formula below. As can be seen, a wide gap exists between
connectors with and without flexible energy tariffs. Understanding this difference is
a key topic of this paper. Unfortunately, to the authors’ best knowledge, there is no other
publication performing this type of calculation, even though it is crucial for grid planning.

SFconnectors =
Pmax

Psum,connectors
(2)
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Figure 3. SFs reported in the literature [16] for electric vehicle charging stations. An SF of 100% is
equivalent to all observed charging stations having a vehicle charging at full power at one moment
in time.

1.1.2. Impact on Electricity Prices and Emission Intensity

One of the most discussed topics in regard to the recharging strategies of EVs is what
economic benefit can be generated from smart charging [25–28]. These calculations are
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typically performed on a per vehicle and year level and result in 200–500 EUR/a for the
optimistic case of perfect foresight and unidirectional charging on several markets.

For the system’s impact, which is more central to this paper, Reference [3] offers
a comprehensive review of which a short excerpt is shown in Table 1. Particularly scenario
“V1G” is comparable to the calculations made in this paper. A key difference, however,
is that the authors applied a mixed strategy, this paper we analysed the impact of indi-
vidual strategies. In the long term, the authors expect that smart charging will be able to
significantly reduce marginal costs and CO2 emissions, particularly for PV-based systems.

Table 1. Short-term impact of EV charging on the selected key performance indicators.
BAU = Business as usual; V1G = smart unidirectional charging; V2G = bidirectional charging;
MaaS = mobility as a service. Taken from [3].

Curtailment ∆ Peak Load (%) ∆ Marginal Cost (%) ∆ in CO2 Emissions (%)

BAU 2%
V1G 1% −3% −1% −1%
V2G −4% −13% −2%
MaaS 8% −8% 14%

1.1.3. Our Contribution

With this work, we aim to support grid planners and energy utility companies as well
as researchers in academia in the same fields in understanding impact of EVs on grids.
Specifically, we used large-scale real-world charging station occupation data to calculate
a representative sample of SFs under a variety of conditions. The only other publication
to have done so extensively is [16] to the best of our knowledge. The aforementioned
document was published in February 2018, and since the EV market is highly dynamic,
an update as well as a verification are crucial for the integration of electric vehicles into the
public electricity grid. We provide this information using representative data for Germany.

We performed this calculation using various strategies typically suggested in the
literature to offer a view of their impact on grid utilisation. The obtained information is
critical for grid infrastructure expansions, since grid assets, such as cables and transformers,
have very long lifetimes of 40 years or more. It must therefore be prevented that a cable is
replaced earlier than necessary to make full use of the investment. Our contributions in
short are:

1. Calculation of SF using real-world charging station occupation data;
2. Comparison of the grid impacts of various EV recharging strategies;
3. Energy cost comparison when employing these strategies;
4. Comparison of emission intensities when employing these strategies.

The rest of this paper is structured as follows. First, the data used for the ensuing
analysis are presented in Section 2. Next, the methodology is introduced in Section 3, where
first a focus is laid on the algorithms used and then how this can be combined with the data
into strategies. The results of running the strategies are shown in Section 4 with a focus on
the four core contributions given above. In Sections 5 and 6, we discuss these results and
draw conclusions for practitioners and researchers in the fields of electromobility and grids.

2. Data

This paper is based on the data presented in our previous publication [2]. For the
readers’ convenience, the key aspects are repeated here.

The data were collected by regularly accessing the maps of several online charging
station roaming maps. Since these maps cover most of Germany, 26,951 charging station
connectors could be observed between 21 December 2019 and 10 March 2020. The timeframe
was chosen to avoid the impact of the first lockdown due to the coronavirus in 2020. While
it is difficult to estimate how many connectors there are in Germany, it can be assumed that
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the used data are representative of the country, since, at the time, the German federal grid
agency reported 25,434 connectors [29] and ChargeMap reported 61,665 connectors [30].

To keep the calculation time within a reasonable timeframe, a random subsample was
taken from the original data of which the locations are shown in Figure 4. When creating
the subsample, we ensured that all connectors were used at least once in the observed
period and allowed for connectors near the border to be part of the dataset as well. The
resulting dataset contained 1562 connectors with 45,487 charge events (CEs) recorded.
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Concerning usage patterns, it was observed that, especially, AC chargers were occu-
pied much more during the day than during the night. This could be explained partially by
people arriving at work between 6 a.m. and 9 a.m. and leaving their car at the charging
station afterwards. The time spent at a car at a connector was virtually identical for stations
with 11 kW and 22 kW power. This is a clear hint that the time spent at the station is
influence mostly by other factors than the actual charging needs. Given the topic of this
paper, this offers the potential to estimate the flexibility in charging processes. A copy of
the overview of the connector occupation is further given in Figure 5.

The other data sources used in this paper were the day ahead prices for Germany [32]
and the CO2 intensity of the German electricity grid [33]. These two datasets are visualised
in Figure 6. Figure 6a,b show how the two variables behaved over the time observed in this
study and on a weekly average, respectively. Figure 6c displays the correlation between the
two variables. It can be seen that the two were correlated, which was to be expected, since
photovoltaics and wind power are both free of emissions and have marginal costs of 0.
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Figure 5. Share of the charging station connectors that were occupied at each moment in time by
power rating. For each power rating, the number of connectors marked as occupied was divided by
the sum of the connectors for which the status was known: (a) the occupation rate over the entire
observed period; (b) aggregated on a weekly level; (c) aggregated on a daily level. Note that the peak
on 23 January 2020 as well as the small peaks at approximately 2:10 in the morning were reported by
the observed websites but likely represent a fault in the IT system on the remote end. The data and
their description are a direct copy from our previous publication and repeated here for the reader’s
convenience [2] (This article was published in eTransportation, volume 6, Hecht, C.; Das, S.; Bussar, C.;
Sauer, D.U., Representative, empirical, real-world charging station usage characteristics and data in
Germany, 100079, Copyright Elsevier 2020).
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(c), each dot reflects one hour, where the x- and y-axis values are defined by the mentioned prices and
emission factors.

3. Methodology

The goal of this paper was to show how different charging strategies affect peak
power and the simultaneity factor when using public electric vehicle charging stations. To
achieve this, these strategies must be implemented in a computationally efficient manner,
as a relatively large dataset was analysed in this paper. These algorithms need to be able to
use the prices and CO2 intensity of the electricity mix to form strategies for when actual
recharging should happen when a vehicle is connected to a station.

In this chapter, the methodology is explained in a two-step approach. First, the
algorithms developed by the authors are outlined without yet considering the input data
and conditions. In the second step, these algorithms are combined with the input data,
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such as energy requirements per charging process, and power limits, to form strategies that
form the basis for the discussions in the rest of this paper.

3.1. Optimization Algorithms

Three distinct algorithms were developed and used on the 1562 connectors between
21 December 2019 and 10 March 2020 as outlined in Section 2. All calculations were per-
formed on an hourly resolution but could, in principle, be performed on shorter timescales
as well. The reason for choosing an hourly resolution was that it offered a reasonable bal-
ance between calculation time and accuracy and because the price and emission intensity
values are given on an hourly resolution as well. These algorithms can be found in the
following subchapters.

3.1.1. Naive Algorithm

The naive algorithm mirrors the behaviour of vehicles in today’s public charging
infrastructure, where arriving vehicles charge at stations with available power until the
battery is completely full. Since no information regarding the vehicle is available, the
algorithm considers only the power limit posed by the connector.

3.1.2. Price-Optimisation Algorithm

The goal of the price-optimisation algorithm is to schedule the charging of vehicles at
the connectors such that the energy purchase price, as given by the day-ahead prices, is
minimised. This aim can mathematically be formulated as follows:

min
λ

n

∑
i=0

Pi,ki · λkis.t.
Ttot, i

∑
k=j

Pi,ki · T = E · n− e ∀i (3)

where n is the number of recorded charge events; Pi,ki is the charging power in charge event
i at time ki; λki is the cost of recharging at time ki; T is the optimization time step, chosen
to be one hour; Ttot,i is the duration of the charge event i; E is the energy consumption
assumed per charge event; e is an error term that reduces E·n to compensate so that not all
events are long enough to supply planned E.

The objective was achieved by starting with the cheapest time step of the observed
period and scheduling connectors to which a car that was not yet fully charged was
connected in order to charge during that time step. This process was iteratively repeated
for all time steps ordered by price. The process is outlined in the following list and the
pseudo-code of the algorithm is given in Figure A1 (see Appendix A). A sample output is
given in Figure 7.

1. Sort the price time series by price in ascending order;
2. Iterate through the sorted time series, and perform the following steps for each

timestamp, ts:

a. Obtain the charge events (CE) happening at ts;
b. Obtain the energy already charged per CE;
c. Calculate energy that still needs to be charged per CE;
d. Iterate through the list found in (a), and charge each event by the maximum of

the station power limit or the remaining energy found in (c).

Due to the iterative approach, the algorithm always detects the global minimum for
charging costs. The approach can also be parallelized, since the individual events are
independent of each other.
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Figure 7. Example of the price-optimisation algorithm. The prices are illustrative only. Iterations
1 to 3 show the charging power that the algorithm would assign to each hour assuming that the
vehicle was connected for 24 h, required 60 kWh, and was able to recharge at 22 kW. Charging was
first assigned to hour 13, as the price was the lowest. The next-lowest price was at hour 3, and
the algorithm decided to also charge with full power during that hour. Since 44 kWh were already
charged, only 16 remained to be charged at the next-cheapest hour, 24.

3.1.3. CO2-Optimization Algorithm

The CO2-optimization algorithm is almost identical to the price-optimisation algo-
rithm, with the key difference being that instead of price, the hourly CO2 emissions are
used as the target. The time series was consequently sorted by grid CO2 intensity instead
of energy prices, and the least emission-intense hours were used where possible to perform
recharging. Due to the similar approach, a detailed explanation is omitted.

3.1.4. Peak Power Reduction Algorithm

The goal of the peak power reduction algorithm is to take a planned schedule, such
as the output of the naive algorithm or the price-optimisation algorithm, and ensure that
the peak power remains below a given threshold. The goal can be expressed though the
following equation:

min
λ

n

∑
i=0

Pi,ki · λki s.t.
Ttot, i

∑
k=0

Pi,ki · T = E · n− e ∀i∧max

(
1921

∑
k=0

Pk

)
= Pmax (4)

where the equation is almost identical to the one used in Section 3.1.2, with the additional
condition that the sum of the charging station power across all connectors for all 1921 h
observed in this dataset may not exceed a defined peak power, Pmax. The criterion is,
however, a weak condition and may be violated in specific hours if no solution is other-
wise found.

The chosen implementation was to check for the hour with the highest power and
whether any charger could also charge at another point in time. The cheapest alternatives
were selected, and the charging moved. This process was repeated until it was either no
longer possible to improve the time steps or until the highest power demand was at or
below the threshold value. The process is outlined in the following list and the pseudo-code
of this algorithm is given in Figure A2. A sample output is given in Figure 8.

1. Create an empty list listts of timestamps, ts;
2. While the length of listts does not contain all ts do the following:

(a) Find the ts with the highest power flow;
(b) If the power flow is less than the power limit, terminate the algorithm;
(c) Obtain CEs occurring at ts;
(d) For each CE, check if the charging process can also be performed at another

moment in time. If this is possible, shift the charging to the least critical
moment in time, starting with the cheapest option;
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(e) If there is no option to perform the charging at another moment in time or ts
has been attempted n times already, add ts to listts.

In principle, the algorithm above would be able to find a global minimum. The
challenge is that as the number of ts that experience peak power (i.e., the peak becoming
flatter), the incremental improvements per iteration eventually become very small. For this
reason, n was chosen as 100 to balance runtime and accuracy based on sensitivity analyses.
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Figure 8. Example of the peak power reduction algorithm. Legend entries starting with “Sum” show
the sum of the power demand of the three observed connecters for each iteration. Labels starting with
“Availability” show the difference between the sum of the charging power of all connected vehicles
and the already scheduled recharges at that instance.

3.1.5. Comparison to Algorithms in Literature

We designed the outlined algorithms for speed and reproducibility. Speed was neces-
sary, since runtimes would otherwise be excessive given the large dataset. In this subchapter,
we briefly compare our approach to other possibilities as reported in Section 1.1.

A numerical optimiser would have to select the optimal charging moments for over
45,000 CEs, each lasting up to days. If the power to charge during each hour that a vehi-
cle was connected was used as the optimisation variable, this would introduce 100,000 s
of such variables. Such an optimisation would have excessive runtimes and not neces-
sarily converge to a global maximum. The price-optimisation algorithm in this paper
was able to solve the problem in a reasonable runtime while being guaranteed to reach
a global maximum.

A neural network or alike methods were not necessary in this case, since perfect
knowledge over the entire observed period is assumed. Removing this assumption would
require some kind of forecasting methodology which, in turn, creates a level of randomness
and uncertainty with regards to the results presented. Since the objective of this paper was
not to introduce smart recharging techniques but rather to evaluate overall system impact,
this approach did not seem feasible.

3.2. Strategies

In this paper, four strategies are referred to as follows:

• Naive strategy: corresponds to the naive algorithm outlined in Section 3.1.1;
• Price-optimisation strategy: corresponds to price-optimisation algorithm in Section 3.1.2;
• Emission reduction strategy: usage of the price-optimisation algorithm with CO2

intensity instead of day-ahead prices as optimisation target;
• Peak minimisation strategy: combination of price-optimisation algorithm (Section 3.1.2

and peak power reduction algorithm Section 3.1.4).

For the peak power reduction strategy, the maximum peak power was calculated as
follows. The values were chosen based on own preliminary studies, where the upper limit
showed that barely any peak power reduction was necessary (i.e., the peak without peak
limitation was already very close to the upper limit). The lower limit of zero represented
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an extreme and unachievable goal for the algorithm. The optimization will run until it
has attempted each crtical_ts in Figure A2 for 100 times. The latter value was chosen as
a compromise between accuracy and runtime.

Pmax = {x : 704 kW ∗ a∧ a ∈ [0, 1, . . . 10]} (5)

Each strategy was run for an assumed energy demand per vehicle of 8, 20, 40, and
60 kWh. These values were chosen based on the arguments given in [2] and repeated here
for convenience. The 8 kWh corresponded to [34], but since the document reported on the
period 2012–2016, higher values for energy demand were also considered. Most Evs require
15 kWh/100 km and 25 kWh/100 km [35], and cars in Germany are driven, on average,
39 km/day [36]. In addition, 20 kWh was a lower bound that represented two recharges
per week for an efficient vehicle, and 60 kWh resulted in a single recharge per week, even
for an inefficient vehicle. With the current vehicle fleet, this value was unrealistically high
and should therefore be understood as an upper bound, at least for the next few years.

4. Results

In the following, the results of applying the strategies are outlined along four key
dimensions, namely, peak power, electricity costs, CO2 intensity, and SF.

4.1. Power Demand Shape

Figure 9 shows the power demand resulting from using the naive strategy. It can
be seen that the power demands were much more regular over the course of a week as
compared to only the occupation. There were two power peaks, one in the morning and
one in the late afternoon, which likely corresponded to people arriving either to work in
the morning or home in the afternoon. On weekends, these two peaks were not observed,
since few people commute by car to work on weekends. Instead, a single peak can be seen
on Saturday and Sunday, likely a result of people attending leisure activities.

The number of charging processes observed in early January was slightly below other
periods. Unfortunately, it was not 100% clear whether this was a real effect or the result of
data sampling. As a measure of caution, we would recommend that fellow researchers use
the data from February as a representative shape instead. The scaling of the power demand
was highly dependent on the amount of energy recharged per charge event. We advise
researchers to compare these assumptions with their assumed vehicle energy demand.
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Figure 9. Power demand using the naive charging strategy for the 1562 connectors with a total power
of ~34 MW observed in this study: (a) the power flow over the entire simulated timeframe; (b) the
average of (a) over a week; (c) the average of (a) over a day. The plot is structurally very similar to
Figure 5.

4.2. Peak Power Germany

An overview of the peak power demand of charging stations using the different
strategies introduced earlier is shown in Figure 10 with details provided in Figures 11–14.
Some of the key data points are highlighted below:

• The naive charging strategy led to only moderate peak power requirements of 2 MW
for the observed 1562 connectors if 20 kWh were charged per charging process. If this
number is extrapolated to the planned one million public connectors [37] planned for
2030, this would result in approximately 1.28 GW of additional power;

• Depending on the charged amount of energy, the peak power when using the uni-
directional price-optimisation strategy or the CO2 emission reduction strategy rises
by a factor of 3 to 4 compared to the naive charging strategy. This was caused by the
fact that all connectors where a vehicle is connected will charge at the cheapest/least
emission intense timestamp, thereby causing a power peak. This effect was almost
identically strong for both strategies;

• The peak power limitation strategy was able to flatten the power consumption during
most observed hours. The peak power, however, did not change dramatically. Note
that for the peak optimization algorithm, since the price-optimisation was run first, the
peak power was above the peak power of the naive approach. This was the result of the
optimization terminating as outlined in Section 3.1.4. The energy transferred during
the peak hour, however, only represented <0.2% of the total energy transferred in all
cases. It would consequently not cause great damage if a hard cap was introduced for
that critical hour, since only few vehicles would be unserved. Additionally, it must



World Electr. Veh. J. 2022, 13, 129 13 of 26

be noted here that the data collection process from public sources was not free of
faults. It was not unlikely that the peak was a result of a data gap, where for some
time new arriving vehicles were not detected and then were all counted as arriving
at one instance in time. Correcting this would require better data quality, which
unfortunately was not available for this study.
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Figure 10. Summary box plot of the summed power values from Figures 11–14.
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Figure 11. Sorted summed connector power when employing the naive strategy. For example, if
during each charging process 40 kWh is to be charged, during ~800 h of the observed 1921 h, the
chargers consumed 500 kW or less.
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Figure 12. Sorted summed connector power when employing the price optimization strategy. For
example, if during each charging process 40 kWh should be charged, during ~1400 h of the observed
1921 h, the chargers consumed 1000 kW or less.

World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 14 of 27 
 

 

Figure 12. Sorted summed connector power when employing the price optimization strategy. For 
example, if during each charging process 40 kWh should be charged, during ~1400 h of the observed 
1921 h, the chargers consumed 1000 kW or less.  

 
Figure 13. Sorted summed connector power when employing the CO2 optimisation strategy. For 
example, if during each charging process 40 kWh should be charged, during ~200 h of the observed 
1921 h, the chargers feed in power at a rating of 4000 kW or more.  

8 kWh, 3101

20 kWh, 7325.1

40 kWh, 9195.5
60 kWh, 9767.8

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000

0 200 400 600 800 1000 1200 1400 1600 1800

Po
w

er
 in

 k
W

Hour in observed period sorted by power for each line seperately

Charging power of vehicles on 1562 public connectors in Germany using the 
price optimisation strategy

8 kWh 20 kWh 40 kWh 60 kWh

8 kWh, 3098.6

20 kWh, 7278.7

40 kWh, 9087.7
60 kWh, 9652.6

0

2,000

4,000

6,000

8,000

10,000

12,000

0 200 400 600 800 1000 1200 1400 1600 1800

Po
w

er
 in

 k
W

Hour in observed period sorted by power for each line seperately

Charging power of vehicles on 1562 public connectors in Germany using the 
CO2 optimisation strategy

8 kWh 20 kWh 40 kWh 60 kWh

12,000 

10,000 

8000 

6000 

4000 

2000 

0 

10,000 
9000 
8000 
7000 
6000 
5000 
4000 
3000 
2000 
1000 

0 

Figure 13. Sorted summed connector power when employing the CO2 optimisation strategy. For
example, if during each charging process 40 kWh should be charged, during ~200 h of the observed
1921 h, the chargers feed in power at a rating of 4000 kW or more.
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Figure 14. Sorted summed connector power when employing the peak minimization strategy. For
example, if during each charging process 40 kWh should be charged, during ~400 h of the observed
1921 h, the chargers consumed 500 kW or less.

4.3. Cost Comparison

In the following, we analyse the costs incurred when using the different charging
strategies on public charging infrastructure in Germany. The cost calculated as the multipli-
cation of the energy consumption vector created in each optimization and the price vector
divided by the total amount of energy charged.

Cost =
→
E ∗

→
λ ∗ 1

Σ
( →

E
) (6)

→
E =


E1
E2
...

E1921

;
→
λ =


λ1
λ2
...

λ1921

 (7)

where Ex is the energy consumed by all C at hour, h; λh is the wholesale power price taken
for any given hour [32].

For the four main strategies, the costs are shown in Figure 15. Figure 16, in turn,
shows how the average electricity costs changed if the various power limits defined in
Section 3.2 were given to the peak power minimisation algorithm. The left end of the plot
corresponds to the peak power minimisation strategy, since a goal peak power of 0 kW
was given. Going along the x-axis to the right, the maximum allowed peak power steadily
increased, which gave the optimiser more room to optimise for price instead of peak power.
The price-optimised strategy corresponded to an allowed peak power of ∞. In practice, the
right end in Figure 16 was almost identical to the price-optimised strategy already.
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Figure 15. Costs in EURcent per kWh for the charged energy used assuming the energy recharged
per charge event and charging strategies.
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Figure 16. Costs in EURcent per kWh net recharged energy as a function of the global power limit for
the power limits defined in Section 3.2. The left end is the same as “peak minimisation” and the right
end is almost identical to the “price optimised” in Figure 15 as a little peak minimisation is required
with a power limit of over 7040 kW.

Both figures show only the energy purchase cost. For the full customer price, factors
such as grid usage fees, energy retail margin, taxes, levies, profit margins, etc., would have
to be considered. The additional costs, however, are the same for each strategy, since the
overall amount of purchased energy does not change.

Some key observations derived directly from the results shown in the figures are:

• The price differences between the naive strategy and the price-optimised strategy
are smaller than 1 EURcent per kWh for the observed timeframe and all calculated
amounts of energy per charge event;

• The electricity purchase cost per kWh is largely independent of the amount of energy
charged per process. For all strategies, the price difference between the 8 kWh scenario
and the 60 kWh scenario was less than 2%;

• Small price fluctuations exist for low power limits shown in Figure 16, as the op-
timization terminated due to the long runtime. Prices for a power limit of 0 kW
were lower than for 704 kW, because each stricter power limit takes the results of
the previous run as starting point. Since the optimization for 704 kW was eventually
stopped, the new run had room left for improvement. The slight differences of less
than 0.1 EURcent/kWh, however, did not change the overall picture;

• All in all, while the power increased by a factor of 3 between the naive and the
price-optimizes strategy, the considered costs only decreased by 20%.

4.4. CO2 Intensity

The CO2 intensity was calculated in a similar fashion compared as the electricity costs
by replacing hourly electricity costs with grid CO2 intensity taken from [33]. Figure 17
shows how the different strategies perform in terms of CO2 intensity. We do not include
local renewable generation in our calculation which is nowadays already frequently com-
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bined with charging infrastructure [38]. This is due to the fact that the generation would
otherwise be fed into the grid and replace flexible generators such as gas or coal fired power
plants. Some key results that can be concluded from Figure 17 are:

• Price-optimisation already reduced CO2 emissions compared to the naive base case.
This is likely a result of the correlation already shown in Figure 6c. Renewable
generators reduce the wholesale electricity price since their variable costs are often
0 €. Optimising for price consequently means optimising for renewable, CO2-free
electricity in many cases;

• The CO2 intensity was overall much lower than the time-weighted average in Germany
of 324.20 g CO2/kWh and the consumption-weighted average of 326.37 g CO2/kWh;

• The CO2 intensity optimisation was able to reduce the CO2 intensity of charge electric-
ity by ~6.6%.
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Figure 17. CO2 intensity of the electricity charged from the grid using assumed energy recharged per
charge event and charging strategies.

4.5. Simultaneity Factor

The SF was calculated for sets of connectors with the numbers of connectors in the
below set. Since our focus was on connectors, the definition of the SF was the same as in
Figure 3.

S =
{

x : x = a∗10b ∧ a ∈ [1, 2, . . . 10] ∧ b ∈ [0, 1, 2]
}

(8)

For each element n in S, a set Sn with 1000 elements was created by randomly selecting
n connectors each and ensuring that each set is unique.

Sn = {x : xi = F∧ xi /∈ [x1, x2, . . . xi−1] ∧ i ∈ [1, 2, . . . 1000]} (9)

F =
{

y : yj
R← C∧ yj /∈

[
y1, y2, . . . yj−1

]
∧ j ∈ [1, 2, . . . n]

}
(10)

The result for the SFs given the different strategies (naive, price-optimised, bidi-
rectional price-optimised, peak power limitation) and energy demands per CE (8 kWh,
20 kWh, 40 kWh and 60 kWh) are shown in Figures A3–A6 with a summary given in
Figure 18. The key results of these figures are given in the following:

• Already for groups of 10 connectors, the SFs reduce to about 50% compared to the
value for a single connector;

• For individual connectors, the SF is 1 in virtually all cases. All connectors were
consequently used at least once in the observed period;

• The amount of energy required has a large impact on the SF of larger sets of connectors,
particularly for the naive and the peak-power strategy. In these two, larger amounts
of energy required lead to overall longer charging times which in turn increases the
likelihood of overlaps between charging processes;

• In terms of SF, there is little difference between price- and CO2-optimised strategy.
This was to be expected since both optimisation function in a very similar fashion;

• For the price- and CO2-optimised strategy, the SF does not change as strongly between
the different amounts of energy charged. This is because the peak power occurs at the
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time step with the lowest price or lowest CO2-intensity. The optimiser will move as
much charging as possible to this critical hour. This process therefore unaffected by
the length of the individual charging processes;

• Even in the extreme cases of vehicles recharging much energy or the simplified bidi-
rectional charging, large sets of connectors seldom exceed an SF of 40%;

• The difference between the price-optimised and non-price-optimised strategies is
particularly prominent for 8 kWh of recharged energy and for smaller sets of less than
100 connectors;

• For the largest number of connectors considered, the SF varies around 20% for the
naive strategy. This shows, that the EVs are not going to cause dramatic grid overloads
by simultaneity.
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Figure 18. Summary of the simultaneity factors assuming for (a) naive charging; (b) price-optimised
charging; (c) CO2 intensity optimised charging; (d) peak power optimised charging. The plots
summarise the information given in Figures A3–A6. For each combination of number of connectors
per set and energy per charge event, 1000 sets were randomly created, and the results displayed in
the box and whiskers plots in this figure. For example, when applying the CO2-optimisation strategy,
a random selection of 100 connectors lead to a median simultaneity factor of 30% if a 20 kWh per
charge event were assumed with outliers ranging from 20% to 42%.
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5. Discussion

As outlined in the introduction, this paper aims to support policy makers, grid compa-
nies and utilities in designing their policies and regulations regarding recharging strategies
when using (public) charging infrastructure. The results show that different recharging
strategies have a strong influence on peak grid usage and thereby confirm theoretical
findings from literature. By using real-world data, this paper strengthens the validity of
the previously mostly theoretic discussions. The found results are also in line with field
tests using smaller vehicle fleets [21,39]. Netze BW, for instance, reported that for a fleet of
50 vehicles and 34 connectors, the maximum simultaneity factor was 25% [39], which is
in line with our 20 kWh naive charging strategy scenario. Similarly EnBW reported 4 out
of 10 vehicles charging in parallel as maximum [21] which again fits to the 20 kWh naive
charging strategy scenario.

What has to be kept in mind when working with the results is that we excluded con-
nectors that were never used. Especially in certain rural areas, there might be a significant
share of unused assets. We however do not believe that unused connectors should be
completely ignored in planning grid capacities. These unused connectors are consequently
wasting money both by never being used, but also by occupying grid capacity that is used
only seldom.

Limitations

To handle the large amounts of data, the methodology used in this paper made some
simplifications that the reader should be aware of when working with our results. The
main limitations are given below:

• Hourly resolution

All calculations in this paper were performed with an hourly resolution and only for
the average power consumption observed during each hour. Most charging processes
took significantly longer than 1 h [2], and it is therefore acceptable to use this resolution.
For very short processes, an inaccuracy was introduced. This might slightly lower
peak power demand as reported in Section 4.1 and SF for larger sets as reported in
Section 4.5. If two short processes occur in the same hour but do not overlap, they
would appear as overlapping in this study.

• Simplified vehicle charging model

Since no information about the arriving vehicles was present in this study, the assump-
tion was made that the vehicle was able to charge at the power level dictated by the
charging station. Many car models today are not yet able to charge at 22 kW.

6. Conclusions

EVs can be a game-changer in the shift to a renewable energy system, since they
represent highly controllable loads. Grid operators are currently challenged with the
question of how to plan electric grids given that the growth rates and electricity demands of
EVs are hard to predict. This paper supports this discussion by providing insights into how
charging strategies affect demand. Several conclusions from the analysis are given below.

6.1. SFs for Public Charging Infrastructure Were Found

In this paper, SFs for differently sized sets of charging station connectors were cal-
culated. Given the found result that ten connectors had half the mean SF compared to
a single connector, grid operators have a basis for planning grid capacities. The standard
deviations in the calculated cases are also reasonably narrow. This indicates that even if
grid capacities are insufficient in rare cases and the power flow would have to be curtailed,
the loss of comfort for users is likely minimal and such events would happen only rarely.
Our results are slightly below current recommendations for grid planning in Austria [16]
that were shown in Figure 3. The Austrian recommendations also include home-charging
where a higher simultaneity factor could be expected as in the case of public charging;
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6.2. Naive Charging Is Challenging Only on the Distribution Grid Level

On the aggregated German level, naive charging in 2030 would create around 1.28 GW
of additional peak load. Compared to currently ~80 GW peak load, the impact of EVs on
the transmission system is manageable. On the distribution grid level, smaller hotspots
might be created since SFs of 30% to 40% are possible for groups of 100 connectors.

6.3. Price-Optimisation Can Cause Local Hotspots

Price-driven recharging schemes need to be coordinated well with local grid operators
since SFs increase significantly for small groups of connectors that all charge according
to national prices. Possible solutions could be to include a dynamic grid usage fee that
balances the benefits from cheaper electricity purchase costs with requirements of the
local grid. Other options are to pair local generators such as photovoltaics with charging
infrastructure. This would align incentives of grid operator and station operator since
using locally generated energy is most cost-efficient for the operator and simultaneously
reduces grid stress.

6.4. Wholesale Electricity Price Optimisation Did Not Reduce Electricity Purchase Costs
Significantly

The difference between energy costs using the price-optimised strategy and the peak
power reduction strategy was on the order of 0.3 EURcent/kWh and, consequently, in-
significant compared to other cost factors such as grid fees, taxes, or levies. This could be
different, if for instance electricity from onsite PV-generators could be used. Since public
charging stations typically do not have space available to do so, this option is more viable
for private charging infrastructure.

6.5. Local Storage Units Need to Be Used Intelligently

Particularly fast-chargers are often coupled with buffer battery storages that can
provide power to vehicles even if the local grid is overloaded. If these battery storages
are used for arbitrage trading during off-peak hours, care should be taken to not augment
hotspots. If storages and vehicles would both charge based on grid price or CO2 intensity,
their combined effect could be detrimental for grid stability.

6.6. The Introduced Algorithms Are Fast and Efficient

All algorithms are efficient and achieve their goal while keeping the number of lines
of code low and allowing for vectorised operation. A key challenge is the balance between
price optimisation and peak power reduction. Price optimisation creates peaks that then
need to be reduced. This might cause peak powers for the peak power optimisation to
be higher than they would have been if another starting configuration such as the naive
charging algorithm were chosen.
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Nomenclature

Connector, C
A socket or cable at a charging station to which an electric vehicle
can be connected

Charge event, CE
A charge event starts when an electric vehicle is connected to a connector
and ends once it is disconnected again

Power limit The power limit is the power available globally for all connectors
Power capacity The rated power of a connector
EV Electric vehicle
SF Simultaneity factor

Appendix A. Pseudo Code

The following two figures show the pseudo-code of the two algorithms used in this
paper. The syntax is similar to Python.
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3 sorted_index = timesteps.sortby(price,asc) 
4 for ts in sorted_index: 
5 events = all charging events active at ts 
6 chrg = [energy already charged per event] 
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8 for each event: 
9  if remain[event] > power_limit_sttn: 
10   Charge at full power 
11  else: 
12   Charge remain[event] 

1 no_improv = [] 
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4 if power[crit_dt] <= power_limit: 
5  break 
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8  no_improv.append(critical hour) 

Figure A1. Price-optimisation pseudo code.
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ends once it is disconnected again 

Power limit The power limit is the power available globally for all connectors 
Power capacity The rated power of a connector 
EV Electric vehicle 
SF Simultaneity factor 

Appendix A. Pseudo Code 
The following two figures show the pseudo-code of the two algorithms used in this 

paper. The syntax is similar to Python. 

 

Figure A1. Price-optimisation pseudo code 

 

Figure A2. Peak power reduction pseudo code. 

1 demand = [energy required per charge event] 
2 power = [power capacity per connector] 
3 sorted_index = timesteps.sortby(price,asc) 
4 for ts in sorted_index: 
5 events = all charging events active at ts 
6 chrg = [energy already charged per event] 
7 remain = demand[events] – chrg 
8 for each event: 
9  if remain[event] > power_limit_sttn: 
10   Charge at full power 
11  else: 
12   Charge remain[event] 

1 no_improv = [] 
2 while len(no_improv) < len(sorted_index): 
3 crit_ts = maxidx(power) not in no_impro 
4 if power[crit_dt] <= power_limit: 
5  break 
6 distribute power away from crit_ts to cheapest alternative 
7 if no option to distribute away: 
8  no_improv.append(critical hour) 

Figure A2. Peak power reduction pseudo code.
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Appendix B. Simultaneity Factor for the Different Scenarios and Strategies

The following figures show the simultaneity factor for the different strategies and
scenarios as discussed for instance in the results Section 4.5.
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charging; (c) CO2 intensity optimised charging; (d) peak power optimised charging. Note that peak 
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Figure A3. Coincidence factor assuming 8 kWh per CE for (a) naive charging; (b) price-optimised
charging; (c) CO2 intensity optimised charging; (d) peak power optimised charging. Note that peak
power was optimised for all C simultaneously. Optimizing for each set in (d) for a low simultaneity
factor likely results in significantly lower values. For the larger sets, the difference is minor. The blue
line shows the mean across the randomly selected sets, and the orange and green lines the upper and
lower boundaries of the standard deviation. Each randomly selected set was of the size shown on
the x-axis.
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Figure A4. Coincidence factor assuming 20 kWh per CE for (a) naive charging; (b) price-optimised
charging; (c) CO2 intensity optimised charging; (d) peak power optimised charging. Note that peak
power was optimised for all C simultaneously. Optimizing for each set in (d) for a low simultaneity
factor likely results in significantly lower values. For the larger sets, the difference is minor. The blue
line shows the mean across the randomly selected sets, and the orange and green lines the upper and
lower boundaries of the standard deviation. Each randomly selected set was of the size shown on
the x-axis.
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Figure A5. Cont.
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Figure A5. Coincidence factor assuming 40 kWh per CE for (a) naive charging; (b) price-optimised
charging; (c) CO2 intensity optimised charging; (d) peak power optimised charging. Note that peak
power was optimised for all C simultaneously. Optimizing for each set in (d) for a low simultaneity
factor likely results in significantly lower values. For the larger sets, the difference is minor. The blue
line shows the mean across the randomly selected sets, and the orange and green lines the upper and
lower boundaries of the standard deviation. Each randomly selected set was of the size shown on
the x-axis.
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blue line shows the mean across the randomly selected sets, and the orange and green lines the 
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