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Abstract: The resistance of the internal short-circuit (ISC) has a potential evolution trend accompanied
by an increasing safety risk. Thus, an accurate online resistance estimation for the ISC is crucial
for evaluating its safety risk and taking staged handling measures. Since the ISC battery mainly
presents abnormal stage of charge (SOC) depletion behaviors, the SOC estimation processes based
on state observers and battery models will act an important basis of the ISC resistance estimation
problem. However, as it will be exhibited in this paper, when directly using the measured voltage
of the ISC battery as the output variable of the state observer, the battery model error will limit
the SOC estimation accuracy and further lead to very inaccurate or even divergent ISC resistance
estimation results for large-format batteries, which present quite slight SOC depletion behaviors
at the ISC state. To this end, this paper proposes a novel SOC and ISC resistance co-estimation
method which combines a reconstruction method of the model-predicted voltage of the ISC battery.
Experimental validations are carried out with a 37 Ah battery, results show that the proposed method
which uses the reconstructed model-predicted voltage (RMPV) as the output variable of the state
observer only present maximum estimation errors of 39.96 Ω and 2.00 Ω for the ISC resistances of
100 Ω and 10 Ω, respectively.

Keywords: lithium-ion battery; internal short-circuit; state estimation

1. Introduction

Lithium-ion batteries have been widely used in electric vehicles (EVs) thanks to their
excellent performance on energy density and cycling life [1,2]. However, battery thermal-
runaway (TR) accidents have occurred frequently in recent years and thus severely restrict
the further popularization of EVs [3–5]. The ISC has been proved one of the major causes
of battery TR; consequently, an enormous number of ISC detection methods have been
developed to guarantee battery operation safety [6,7]. Moreover, it has been revealed that
the ISC presents a potential resistance evolution trend from large to small accompanied by
an increasing safety risk [8,9]. Thus, accurately tracking the resistance evolution process
after the ISC is detected will be crucial for maximizing the economy of the safe operation of
batteries, avoiding any unnecessary introduction of costly intervention measures.

To the best of the authors’ knowledge, research on the ISC resistance estimation
methods is still in its infancy, only limited literature have been published up to now. Most
of the existing methods boil down to the SOC and ISC resistance co-estimation process
based on battery models and state observers. Seo et al. [10] utilized the equivalent circuit
model (ECM) and Extended Kalman filter (EKF) to realize the online identification of
battery open circuit voltage (OCV), so as to obtain the state of charge (SOC) of the ISC
battery according to the OCV–SOC mapping relationship and thus the ISC resistance. This
method was proved accurate for ISC resistances below 30 Ω. Zheng et al. [11] established a
mean-difference model (MDM) for battery packs based on the ECM, then quantitatively
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evaluated SOC inconsistency within a battery pack that was based the MDM and EKF, and
on this basis a ISC resistance of 13 Ω was accurately estimated. Hu et al. [12] proposed
a multi-state fusion ISC resistance estimation method, where the ISC current was firstly
estimated through the ECM and EKF based SOC estimation process, then the ISC resistance
was estimated by the regression of a ISC current-resistance model. Verification results
with a 18,650 battery showed this method could achieve a satisfying accuracy for ISC
resistances up to 100 Ω. Moreover, several ISC resistance estimation methods based on
special technologies have also been reported, typically including the incremental capacity
(IC) curve based method proposed by Qiao et al. [13], as well as the method based on the
transformation of voltage curves during charging proposed by Kong et al. [14]. However,
these special operation condition-dependent methods can hardly be applied to the online
estimation processes.

With regard to the above existing ISC resistance estimation methods, the special tech-
nologies based ones as reported in [13,14] rely on the special battery operation conditions;
by contrast, the battery models and state observer-based methods will be more applicable
to the online estimation processes. However, it should be noted that for the existing battery
models and state observer-based methods as introduced above, only ISC resistances below
30 Ω can be accurately estimated in [10,11]; moreover, although the ISC resistance of 100 Ω
is accurately estimated in [12], the tested 18650 battery has a fairly small capacity. This
is because of the fact that battery models and state observer-based methods achieve the
ISC resistance estimation essentially through the joint estimation of battery SOC, so that
the ISC-caused abnormal SOC depletion can be quantitatively assessed and thus the ISC
resistance can be obtained. In this case, since the SOC estimation accuracy will be limited
by the inherent error of battery models, the existing methods can only work for the ap-
plications where batteries are with small capacities or the ISC resistances are low. When
it comes to the ISC resistance estimation problem for the large-format batteries, the SOC
depletion behavior of the ISC will be quite slight, especially when the ISC resistance is
high; consequently, it will be buried in the SOC estimation errors causing the failure of the
existing methods.

Given the fact that the model error, which restricts the effectiveness of the SOC and
ISC resistance co-estimation for large-format batteries with high ISC resistances, lies in the
deviation between the model predicted battery voltage and the measured battery voltage,
this paper proposed a novel online ISC resistance estimation method which combines
the conventional SOC estimation methods with a reconstruction method of the model-
predicted voltage of the ISC battery. In the proposed method, the RMPV is obtained on
the basis of the model error consistency between the normal battery models and the ISC
battery models. By using the RMPV as the output variable of the state observers instead of
the measured battery voltage, which is adopted in the existing methods, the limitation of
the model error on the SOC and ISC resistance co-estimation accuracy will be significantly
mitigated, so that the ISC resistance estimation for large-format batteries can be achieved.
The remainder of this paper is organized as follows:

Section 2 introduces related works which discuss modeling methods for normal
batteries and ISC batteries, as well as foundation of the SOC estimation based ISC resistance
estimation problem. Section 3 introduces the adopted SOC estimation method, the proposed
reconstruction method of the model-predicted voltage of the ISC battery, and also the
overall ISC resistance estimation method. Section 4 introduces the experiment details and
analyses corresponding data acquisition results. Section 5 exhibits the validation results of
the proposed method. Section 6 provides a conclusion.

2. Related Works
2.1. Modeling of Normal and ISC Batteries

ECMs are capable of accurately depicting battery voltage responses under specific
states with outstanding simplicity [15] and thus underlie the ISC resistance estimation
methods. The first-order RC model shown in Figure 1a, which is one of the most used
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ECMs for normal batteries, consisting of a controlled voltage source Uoc to characterize
the relationship between OCV and SOC, a resistor in series R0 to reflect the lumped ohmic
resistance of batteries, and a RC parallel network, including R1 and C1 to describe the
battery polarization characteristics. When applied to the online ISC resistance estimation
scenario, the involved parameters in the first-order RC model should be calibrated in the
offline environment first. In this paper, parameters are calibrated utilizing the method
in [16]. Based on the first-order RC model, the dynamics of a normal battery can be
predicted by 

Ut,n(t) = Uoc(t) + I(t)R0(t) + U1(t)

R1(t)C1(t)
dU1(t)

dt = I(t)R1(t)−U1(t)
dzn(t)

dt = I(t)
Qmax

(1)

where t is time, I is load current, Ut is battery voltage, U1 is voltage of the RC parallel
network, z is battery SOC, Qmax is the maximum useful capacity of the battery, and subscript
n represents parameters for normal batteries. Note that all the model parameters, including
Uoc, R0, R1, and C1, are essentially functions of battery SOC.
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On the basis of the first-order RC model, the ISC battery is often electrically modeled,
as shown in Figure 1b, where a current bypass with a ISC resistor RISC is added [17,18].
Similarly, the dynamics of the ISC battery can be predicted by

Ut, f (t) =
RISC(t)

R0(t)+RISC(t)
[Uoc(t) + I(t)R0(t) + U1(t)]

R1(t)C1(t)
dU1(t)

dt = I(t)R1(t)−U1(t)− R1(t)
RISC(t)

Ut, f (t)

dz f (t)
dt = I(t)

Qmax
− Ut, f (t)

RISC(t)Qmax

(2)

where subscript f represents parameters for the ISC batteries.

2.2. Fundamental of Online ISC Resistance Estimation

In order to construct an online ISC resistance estimation problem, according to Equa-
tions (1) and (2) in the continuous domain, one can further obtain Equation (3) in the
discrete domain. 

RISC(k) =
Ut, f (k)

Qmax∆ε(k)

∆ε(k) = ε(k)− ε(k− 1)

ε(k) = zn(k)− z f (k)

(3)

where k is sampling instant, ε is SOC depletion state of the ISC (namely the deviation
between battery SOC at the normal state and the ISC state), and ∆ε is the SOC depletion
rate (namely increment of ε in one sampling interval).
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Note in Equation (3), zn, Qmax and Ut, f are all observable variables during battery
operation, whereas with the charge depletion by an unknown RISC, z f cannot be obtained
directly. In other words, once z f can be estimated at every sampling point, the ISC resistance
RISC can be easily calculated using Equation (3). Hence, the ISC resistance estimation can
be achieved on basis of the accurate SOC estimation for the ISC battery.

3. Proposed Online ISC Resistance Estimation Method

It should be noted that the model error actually reflects the deviation between the
model-predicted battery voltage and the measured battery voltage caused by the model
inaccuracy. Meanwhile, the working mechanism of the battery models and state observer-
based SOC and ISC resistance co-estimation methods is where the state observer recursively
adjusts the SOC estimation result according to the deviation between the model predicted
battery voltage and its output variable (the measured battery voltage for conventional
methods); therefore, theoretically, this deviation should be caused by the SOC variation
relative to the previous time instant. However, when using the measured battery voltage as
the system output variable of the state observer, obviously the aforementioned model error
will be introduced in this deviation, leading to an inaccurate adjusting of the SOC estimation
result. On this basis, it can be inferred that if there is an alternative output variable which is
closer to the model-predicted battery voltage compared with the measured battery voltage,
the effect of the model error will be mitigated so that the SOC, as well as the ISC resistance
estimation performance, can be improved.

To this end, this section will first introduce a conventional particle filter based SOC
estimation method. Then a reconstruction method of the model-predicted voltage of the ISC
battery will be proposed based on the model error consistency between the normal battery
model and the ISC battery model. The RMPV obtained from the proposed reconstruction
method will be verified to be much closer to the model-predicted voltage of the ISC battery
in Section 5.1. Finally, on the basis of the above two efforts, an online SOC and ISC resistance
co-estimation method will be introduced.

3.1. SOC Estimation Method for the ISC Battery

ECMs and state observer-based SOC estimation methods have been widely studied
in existing research. In this paper, SOC of the ISC battery is estimated on the basis of the
ISC battery model shown in Figure 1b, together with the particle filter (PF), which has
been proved a typical state observer, which is superior in SOC estimation accuracy and
robustness [19].

With regard to the ISC battery model, in order to implement the SOC estimation, one
can make x(k) =

[
U1(k) z f (k)

]T,u(k) =
[
I(k) Ut, f (k)

]T, and y(k) = Ut, f (k), where x, u,
and y denote the state variable matrix, input variable matrix, and output variable matrix,
respectively. On this basis, combining the model description given in Equation (2), the
discrete state-space function of the ISC battery model can be constructed as{

xk = Ak−1xk−1 + Bk−1uk−1

yk = Ckxk + Dkuk + Ek
(4)

where

Ak−1 =

[
e
− ∆t

τk−1 0
0 1

]
, Bk−1 =

 R1,k−1

(
1− e

− ∆t
τk−1

)
R1,k−1

RISC,k−1

(
e
− ∆t

τk−1 − 1
)

∆t
Qmax

− ∆t
RISC,k−1Qmax


Ck =

[
RISC,k

R0,k+RISC,k

ak RISC,k
R0,k+RISC,k

]
, Dk =

[
R0,k RISC,k

R0,k+RISC,k

]
, Ek =

[
bk RISC,k

R0,k+RISC,k

]
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where τ = R1C1, ∆t is sampling interval, a and b denotes the local linearization coefficients
of the OCV-SOC curve making Uoc

(
z f

)
= az f + b, and the time-dependence of variables

are described by subscript k for convenience.
With the state-space function in Equation (4), SOC of the ISC battery can be estimated

using PF with following procedures:

• Initialization: Set the process noise variance Rw, measurement noise variance Rv,
particle population size N; randomly generate N as initial particles x̂l

0 (l = 1, 2, . . . , N)
and set their initial weights wl

k = 1/N.
• Recursively update weights of particles according to Equations (5)–(8).

x̂l
k = Al

k−1x̂l
k−1 + Bl

k−1ul
k−1 + wl

k−1 (5)

el
k = yk −

(
Cl

kx̂l
k + Dl

kuk + El
k

)
(6)

wl
k =

wl
k−1√

2πRv
exp

−el
k

[
el

k

]T

2Rv

 (7)

wl
k = wl

k/
N

∑
l=1

wl
k (8)

where w =
[
0 N(0, Rw)

]T; N(0, Rw) is the randomly sampling result from a normal
distribution with a zero mean and Rw variance; el represents the system innovation matrix;
and w represents the normalized weights of particles.

• Resampling of particles: particle degradation is a common phenomenon of the PF, re-
sulting in a decrease in the number of effective particles. It can be evaluated according
to the following indicator:

we f f
k = 1/

N

∑
l=1

(
wl

k

)2

(9)

Once the indicator we f f
k is lower than the given threshold wth at a certain instant k, the

particles need a resampling process to keep their effectiveness. The System Resampling
Method is adopted in this paper, referring to [20], and weights of particles after resampling
need to be re-assigned according to

wl
k = 1/N (10)

• Recursively update system state estimation result: update the system state estimation
result according to the Monte Carlo integration, written as

x̂k =
N

∑
l=1

wl
kx̂l

k (11)

By extracting ẑ f ,k from the estimated system state variable matrix x̂k at each iteration,
the SOC of the ISC battery can be obtained.

3.2. Reconstruction Method of the Model-Predicted Voltage of the ISC Battery

ISC resistance estimation relies on an accurate SOC estimation for the ISC battery.
However, the inherent deviation between the model predicted and the measured voltage
of the ISC battery (i.e., model inaccuracy) will induce a significant error into the SOC
estimation process through Equation (6). From another point of view, if it is possible to use
the model-predicted voltage Ût, f instead of the measured voltage Ut, f as the system output,
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the effect of the model inaccuracy will be eliminated and the SOC estimation accuracy will
be 100% in theory.

Whereas the ISC battery model cannot be used to predict the voltage responses of
the ISC battery practically since RISC is the variable needing to be estimated, the lack
of the ISC depiction capability of the normal battery model will cause a distortion in its
predicted voltage. However, note that the normal battery model and the ISC battery model
has an identical kernel and their only difference lies in the introduction of RISC. This
reveals the fact that if RISC is known, the ISC battery model and the normal battery model
should have quite consistent model error characteristics when applied to depict the voltage
responses of the ISC battery and the normal battery, respectively. On this basis, we propose
a reconstruction method of the model-predicted voltage for the ISC battery to help improve
the SOC and thus the ISC resistance estimation accuracy, described as follows.

For a battery pack consisting of n batteries in series where battery j is the ISC battery,
use the normal battery model to predict voltage responses of all the normal batteries.
Supposing RISC is known and the model-predicted voltage Û j

t of cell j is obtained from
the ISC battery model (where both RISC and Û j

t are unknown), then based on the above
analysis of model error consistency, we can further make an assumption that model error
of the ISC battery equals the mean value of model errors of all the batteries, namely

Ej
t(k) =

n

∑
i=1

Ei
t(k)/n (12)

where the model error of each battery is defined by Ei
t = Ûi

t −Ui
t.

Note that the measured voltages Ui
t of each battery and model predicted voltages

Ûi
t(i 6= j) of normal batteries are accessible during battery operation, thus the model-

predicted voltage of the ISC battery can be reconstructed by the further transformation of
Equation (12), yielding

Û j
t,rct(k) = U j

t(k) +
n

∑
i=1,i 6=j

Ei
t(k)/(n− 1) (13)

where Û j
t,rct is the reconstruction result of the model-predicted voltage, namely the RMPV.

3.3. Online SOC and ISC Resistance Co-estimation Method

Based on the above analysis, an online ISC resistance estimation method is proposed
with its overall scheme is shown in Figure 2. Its workflow can be described as follows:
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• Initialization: Set the value of R̂ISC(0) and initialize PF, as introduced in Section 3.1.
• Recursively update the operation data of the battery pack, including the measured load

current I(k) and voltage of each battery Ui
t(k). Meanwhile, input I(k) into the normal

battery model to obtain the model-predicted voltage of normal batteries Ûi
t(k)(i 6= j).

• Update the RMPV of the ISC battery Û j
t,rct(k) according to Equation (13).

• Update ẑ f (k) through the PF-based SOC estimation process for the ISC battery as
introduced in Section 3.1. Importantly, in this step, the measured voltage of the
ISC battery U j

t(k) is replaced with the RMPV Û j
t,rct(k) as the system output variable,

namely making y(k) = Û j
t,rct(k).

• Update ε̂(k) and ∆ε̂(k) in turn according to Equation (3), respectively.
• Although noises will be eliminated by the PF to a great certain, the residual noises

induced in ∆ε̂(k) whose calculation process contains a backward differential for ẑ f (k)
will become significant relative to the slight true value. Thus, ∆ε̂(k) needs to be further
filtered to obtain the final ISC resistance estimation result. The Kalman filter (KF) is
adopted in this paper, which has an excellent filtering ability for white noise [21]. The
KF based filtering process for ∆ε̂(k) can be achieved according to Equations (14)–(18).

∆̃ε̂
(
k−
)
= ∆̃ε̂(k− 1) + ∆ε̂(k) (14)

P
(
k−
)
= P(k− 1) + Q (15)

K(k) = P
(
k−
)[

P
(
k−
)
+ R

]−1 (16)

∆̃ε̂(k) = ∆̃ε̂
(
k−
)
+ K(k)

[
∆ε(k)− ∆̃ε̂

(
k−
)]

(17)

P(k) = P
(
k−
)
− K(k)P

(
k−
)

(18)

where ∆̃ε̂ is the filtered result of ∆ε̂, P is the state variance of the filter, and Q and R denote
the variances of the process noises and measurement noises, respectively.

• Update the ISC resistance estimation result R̂ISC(k) by substituting ∆̃ε̂(k) and Û j
t,rct(k)

into Equation (3).

4. Data Acquisition
4.1. Experiment Details

Experiments are implemented with a battery module consisting of seven NMC batter-
ies with rated capacity of 37 Ah. The tested battery module is enclosed in a SPX-150BIII
thermal chamber to acquire the desired test temperature of 25 °C. The current profile
shown in Figure 3, which comprehensively covers the typical battery operating conditions
including FUDS cycles, rest stages, and multi-step charging stages, is applied to the battery
module via a Arbin BT2000 battery tester. The voltage of each battery and load current
of the battery module during test are also sampled by the tester with errors of less than
0.1%. The commonly used equivalent resistor (ER) approach is adopted to implement the
equivalent ISC tests [22–24], where an equivalent short circuit resistor and a switch and are
connected externally with battery 4 to simulate its ISC behavior, as shown in Figure 4. It
has been pointed out that the ISC resistance lies in the 100 Ω magnitude at the early ISC
stage, and battery safety risk is significant when it falls below 10 Ω [25,26]. This indicates
that it is crucial for estimation methods to have the capability of accurately estimating ISC
resistances between 100 Ω~10 Ω. Thus, a 100 Ω-ER and a 10 Ω-ER are adopted in this
paper to verify the performance of the proposed estimation method.
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Figure 4. Scheme of the ER approach for the equivalent ISC test.

4.2. Results Discussion

Figure 5 exhibits the voltage data of the tested battery module acquired from the
100 Ω-ER test and the 10 Ω-ER test, where those solid lines are voltage curves measured
by the tester and those dotted lines are voltage curves predicted by the normal battery
model. As can be seen in Figure 5a, the measured voltage curves and normal battery model
predicted voltage curves coincide well. In particular, abnormalities in the measured voltage
curve of battery 4 can hardly be observed, since the ISC current is slight with a 100 Ω-ER,
so that only a very limited SOC depletion and consequent voltage abnormality is caused
during the whole test process. The results of the 10 Ω-ER test is more intuitive, as exhibited
in Figure 5b. The measured voltage curve of battery 4 gradually decreases out of the group
as the test goes on, whereas the voltage curves of the other batteries in the module as well as
the normal model predicted voltage curve of battery 4 still show a high consistency during
the test process. Data involved in Figure 5 were used for the validation of the proposed ISC
resistance estimation method.

Figure 6 further exhibits the model error distributions of each battery according to
the measured and normal model predicted voltage data in Figure 5. Apart from battery
4, the model errors of the other batteries during both the 100 Ω-ER test and the 10 Ω-ER
test distribute in the range of −0.017 V~0.011 V with a significant consistence, whereas
the model errors of battery 4 gradually deviate from the group as the test goes on, since
the normal battery model lacks the ability to depict the ISC behavior. Figure 6 exhibits the
distortion phenomenon of the predicted voltage of the normal battery model when the ISC
occurs; this is the reason why a reconstruction method is needed to help improve the SOC
and ISC resistance estimation accuracy. Additionally, the significant consistency among the
model errors of normal batteries helps the understanding of the rationality of the proposed
reconstruction method.
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5. Method Validation

In this section, the measured voltage is referred to as MV for convenience.

5.1. Validation of RMPV

Figure 7 demonstrates the performance of the proposed reconstruction method of
the model-predicted voltage of the ISC battery. Note that the resistances of the adopted
ERs are known, thus the reference values in Figure 7 are obtained from the ISC battery
model with given ISC resistances. Figure 7a,c exhibits the reconstruction results during
the 100 Ω-ER test and 10 Ω-ER test, respectively. Since battery voltage varies within a
wide range, it is hard to visualize the reconstruction performance. Therefore, Figure 7b,d
further exhibits the voltage errors of the RMPV and MV relative to the reference values
during the 100 Ω-ER test and 10 Ω-ER test, respectively. During the 100 Ω-ER test, the MV
presents voltage errors range from −0.014 V to 0.007 V, by comparison, the RMPV only
presents voltage errors within the range of −0.003 V~0 V, whereas during the 10 Ω-ER
test, the voltage errors of the MV lies in the range of −0.014 V~0.006 V, while that of the
RMPV are distributed in the range of −0.006 V~0.002 V. The consistent voltage errors of
the MV of the ISC battery during 100 Ω-ER test and 10 Ω-ER test along with the model
errors of normal batteries, as introduced in Section 4.2, support the above statement that
when the ISC resistance is given, the ISC battery model and the normal battery model
should have quite consistent model error characteristics. Moreover, reconstruction results
exhibited in Figure 7 demonstrate that the RMPV is much closer to that predicted by the ISC
battery model compared with the MV; this will help to improve the SOC and ISC resistance
estimation accuracy when using the RMPV as the output variable of the state observer.
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the ISC battery: (a) reconstruction result during the 100 Ω-ER test; (b) voltage error relative to the
reference value during the 100 Ω-ER test; (c) reconstruction result during the 10 Ω-ER test; (d) voltage
error relative to the reference value during the 10 Ω-ER test.
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5.2. Validation of SOC and ISC resistance Estimation Accuracy

Figure 8 exhibits the overall estimation results during the 100 Ω-ER test. As can be
seen in Figure 8a, the SOC estimation results of the ISC battery with both the proposed
RMPV-based method and the conventional MV-based method converge around the true
value, whereas that of the RMPV-based method shows a better consistency with the true
value. Figure 8b exhibits the estimation results of ε based on the SOC estimation results;
here it can be seen that estimation result of ε with the RMPV-based method achieves a
much higher accuracy, whereas that with the MV-based method deviates remarkably from
the reference curve. Note that the estimation inaccuracy of the MV-based method is actually
only within 0.03%, only the true value is much more slight. Figure 8c further exhibits the
estimation results of ∆ε, where significant noises can be seen both with the RMPV-based
method and the MV-based method. The cause of this phenomenon has been stated in
Section 3.3. Moreover, although the filtering results of two methods overlap to a great
degree visually due to the axis range, it can still be observed that the RMPV-based result has
a higher consistency with the true value. Figure 8d gives the final ISC resistance estimation
results, where the RMPV-based method presents estimation results from 60 Ω to 129 Ω;
however, the MV-based method presents a much more inaccurate result and diverges in
the time quantum of 8 h~12 h, during which the inaccurate estimation result of ε presents a
downward trend.
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Figure 8. Estimation results during the 100 Ω-ER test: (a) SOC estimation result; (b) estimation result
of ε; (c) estimation result of ∆ε; (d) RISC estimation result.

Further, Figure 9 exhibits the overall estimation results during the 10 Ω-ER test. The
estimation results of SOC and ∆ε are visually similar to those seen in the 100 Ω-ER test; thus,
corresponding descriptions will not be repeated here. However, as shown in Figure 9b, the
MV-based estimation result of ε presents higher consistency with the true value compared
with that of the 100 Ω-ER test. Note that the absolute inaccuracy of the MV-based method
does not decrease; the true value simply increases under 10 Ω-ER, causing the error ratio
to become smaller. Figure 9d exhibits the ISC resistance estimation results during the
10 Ω-ER test, where the RMPV-based result is distributed in the range of 8 Ω~11 Ω, and
although the MV-based result does not go into divergence, it lies within a much wider
range of 6 Ω~92 Ω.
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Finally, as the key process of the ISC resistance estimation, the SOC estimation per-
formances of the two methods during the 100 Ω-ER test and the 10 Ω-ER test are listed
in Table 1 in terms of mean absolute error (MAE) and maximum absolute error (MAAE),
respectively. Similarly, Table 2 lists MAE and MAAE of the final ISC resistance estimation
result of two methods. Note that considering the MV-based ISC resistance result diverges
in a part of time during the 100 Ω-ER test, corresponding data are thus not considered in
the statistic processes.

Table 1. Statics of SOC estimation errors.

Statistics
100 Ω-ER Test 10 Ω-ER Test

RMPV-Based MV-Based RMPV-Based MV-Based

MAE (%) 0.20 1.01 0.21 1.00
MAAE (%) 0.37 2.86 0.69 2.12

Table 2. Statics of ISC resistance estimation errors.

Statistics
100 Ω-ER Test 10 Ω-ER Test

RMPV-Based MV-Based RMPV-Based MV-Based

MAE (Ω) 18.47 80.94 0.65 7.74
MAAE (Ω) 39.96 84.92 2.00 82.28

5.3. Validation of Tracking Capability to ISC Resistance Variation

Apart from the estimation accuracy with regard to a constant ISC resistance, the
tracking capability in regard to ISC resistance variation is also a key indicator for an
estimation method. Figure 10 exhibits the tracking capability of the proposed RMPV-based
estimation method during a sudden-changing ER test where a 100 Ω-ER test is implemented
first and the ER is changed to 10 Ω about 9.5 h later. As it can be seen in Figure 10a,b, the
estimation results of the SOC and ε follow their true values well during the test. However,
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in Figure 10c, the filtered estimation result of ∆ε does not response immediately when its
true value suddenly changes along with the changing of ER. This is because the existence
of KF, which is adopted to eliminate the noises included in the estimation result of ∆ε,
makes the estimation method insensitive to the sudden change of ∆ε at the same time.
Consequently, as shown in Figure 10d, the proposed method presents an adjustment time
of about 2.5 h. It should be noted that the situation discussed above is an extreme one,
whereas the evolution of the ISC resistance will occur as a gradual process and can last for
hundreds of hours in practice [27], thus it can be inferred that the adjustment time of the
proposed method will not cause any limitation on its effectiveness. Moreover, in terms of
the tracking capability which has been pointed out to be only decided through the filtering
process of ∆ε, the conventional MV-based method will have the same performance as the
proposed RMPV-based method and therefore is not discussed here.
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6. Conclusions

This paper proposed a RMPV-based online ISC resistance estimation method for large-
format lithium-ion batteries. A PF-based SOC estimation method for the ISC battery is first
introduced as the basis of the proposed method. However, it is well known that the SOC
estimation is limited by the inherent model inaccuracy, since the state observer (PF in this
paper) is with a kernel of the state-space function of the ISC battery model. This will cause
the slight SOC depletion behavior of a large-format ISC battery to be buried in the SOC
estimation error and thus lead to a failure of the ISC resistance estimation.

With regard to this difficulty, a model error consistency based reconstruction method
is proposed, which utilizes the normal model predicted voltage of the normal batteries
inside the battery pack along with the MV of all the batteries to reconstruct the model-
predicted voltage of the ISC battery, which is supposed to be given by the ISC battery model
when the ISC resistance is known. On this basis, the above model inaccuracy effect can
be significantly mitigated by using the RMPV as the output variable of the state observer
instead of the MV.
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Experimental validation results show that the proposed RMPV-based method can
achieve a significant improvement of the ISC resistance estimation accuracy compared with
the conventional MV-based method. Specifically, the MAE and MAAE of the proposed
method are 18.47 Ω and 39.96 Ω, respectively, with regard to a ISC resistance of 100 Ω. By
comparison, the conventional method goes diverges during part of the estimation process,
where the estimated SOC depletion state of the ISC battery presents a downward trend
caused by the SOC estimation inaccuracy. Consequently, the MAE and MAAE of the
estimation result of the conventional method increase to 80.94 Ω and 84.92 Ω, respectively
(data in the divergent area not concluded). With regard to a ISC resistance of 10 Ω, the
proposed method achieves an MAE and MAAE of 0.65 Ω and 2 Ω, respectively, whereas
those of the conventional method are 7.74 Ω and 82.28 Ω, respectively. The tracking
capability of the proposed method to the ISC resistance variation is also experimentally
validated, and results show when the ISC resistance suddenly changes from 100 Ω to 10 Ω,
the proposed method only presents an adjustment time of about 2.5 h. This is insignificant
relative to the gradual evolution process, which can last for hundreds of hours in practice.
In conclusion, the proposed method will provide an effective option for the ISC resistance
estimation problem in large-format battery applications.
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