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Abstract: The vehicle longitudinal control algorithm is the core function of the adaptive cruise control
system, whose main task is to convert vehicle acceleration and deceleration requirements into vehicle
driving and braking commands so that the vehicle can quickly and accurately track the desired
acceleration. Traditional longitudinal control algorithms rely on accurate vehicle dynamic modeling
or complex controller parameter calibrations. To overcome those difficulties, a longitudinal control
algorithm based on RBF-PID is proposed in this paper. The algorithm uses the RBFNN (radial basis
function neural network), which can simply and quickly approximate any complex nonlinear system,
to identify the Jacobian information of the vehicle and perform parameter tuning for PID control
and achieve vehicle longitudinal control with self-tuning capability. Finally, the algorithm of this
paper is verified by the joint simulation of Matlab/Simulink and Carsim. The results show that this
algorithm has a better response rate and anti-jamming capability than the traditional PID control and
can achieve accurate and rapid tracking of the desired acceleration.

Keywords: adaptive cruise control; RBFNN; vehicle longitudinal control

1. Introduction

With the rapid growth of production and ownership of automobiles, problems such
as environmental pollution, resource shortage [1], and traffic congestion that constrain
economic development are becoming more and more serious [2]. A large amount of green-
house gas emissions from automobiles is one of the major contributors to global climate
change and is considered one of the most serious challenges facing sustainable develop-
ment [3]. Meanwhile, advanced driver assistance systems (ADAS) are treated as an effective
way to solve the above problems ADAS can better protect us from some of the human
factors, and human error is the cause of most traffic accidents [4]. ADAS develops to under-
stand human behavior as well as to monitor health status [5] and potentially improve fuel
consumption and safety along with awareness of external driving conditions [6]. Besides,
ADAS can also be applied to pure electric vehicles to optimize the driving experience [7].

Adaptive cruise control (ACC), one of the core functions of ADAS equipment, can
monitor road conditions in real-time and control vehicle speed and acceleration on its
own, which helps to save resources and ensure vehicle safety [8,9]. ACC systems are often
designed to be hierarchical, including three layers of perception, decision, and execution.
The decision algorithm uses environmental information obtained from the perception layer
and the state information of the vehicle itself to calculate the target acceleration. The vehicle
longitudinal control algorithm is in the execution layer and is responsible for converting
the target acceleration into demand driving and braking torque [10]. Due to the strong
coupling and nonlinear characteristics of the vehicle longitudinal dynamic systems, how to
quickly and accurately obtain the mapping relationship is a critical and technical difficulty
that needs to be solved for the vehicle longitudinal control algorithm. Current researchers’
analysis of the mapping relationship is divided into the following two main categories:
model control and non-model control.
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In model-based control, some scholars built vehicle models to perform dynamics
control. Fritz used state-space equations to model the vehicle system and used a nonlinear
controller to control the vehicle model [11,12]. The 14 degrees of freedom (DOF) longi-
tudinal dynamics model of the Toyota Rav4EV 2012 was developed in the MapleSim by
Batra. M et al. software using the estimated parameters. The accuracy of the identified
parameters and the model was validated by comparing the model output against the
experimental data [13]. While in terms of non-model control, the main algorithms include
classical PID control, data look-up table, intelligent control, etc. Some scholars use PID
control methods. P. Shakouri et al. linearized the nonlinear dynamic models of the vehicle
at the selected operating point and used a PI controller to complete the control of the
throttle position [14]. Considering the nonlinear characteristics of the electronic throttle,
Feng Daoning et al. used various PID algorithms such as incremental, integral separation,
deadband, and feedforward compensation to improve the system response speed while
reducing the static difference. Those algorithms have been verified through experimental
bench and practical vehicle tests [15]. Some scholars use data lookup tables to follow the
desired acceleration while avoiding the recognition accuracy of vehicle dynamic parameters
affecting the control effect. Pei et al. established a three-dimensional look-up diagram of
throttle opening-vehicle speed-acceleration in the driving process and cooperating with
the control structure of feedforward plus proportional feedback to realize the control of
the acceleration process. Then they established a three-dimensional look-up diagram of
brake pressure-vehicle speed-deceleration in the braking process, cooperated with the
control structure of feedforward plus integral feedback to realize the control of the braking
process [16]. For intelligent control, Abdelkader El Kamel et al. used graded processing for
longitudinal control and fuzzy control for throttle/brake control. Acceleration error and
speed error as control inputs, while throttle opening variation and brake torque variation
as control outputs. Finally, the speed/vehicle distance following effect and the robustness
under the external environmental disturbance were verified for the control method [17].
A fuzzy longitudinal control system was proposed by Ching-Chih Tsai et al. The input
of the fuzzy longitudinal controller included the safety distance, actual vehicle distance,
and relative vehicle speed, and the output PWM signal controlled the output force of the
vacuum booster. The control algorithm has been tested in the Simulink simulation platform
at low-speed and high-speed conditions [18]. A robust control strategy based on nonlinear
model predictive control and Takagi-Sugeno (TS) fuzzy model was proposed by Khooban
et al., which was evaluated for various operating conditions of electric vehicles [19]. To per-
form adaptive speed control for highly nonlinear hybrid electric vehicles (HEVs) equipped
with the electronic throttle control system, Kumar et al. proposed fractional-order fuzzy
PD (FOFPD) controller and fractional-order fuzzy PI (FOFPI) controller as the primary and
secondary controllers of the cascade control loop, respectively [20].

It should be noted that the above control algorithms have limitations in their ap-
plication. Although the algorithm based on model control can reduce the number of
comparisons, it requires high modeling accuracy and accuracy of model parameters. In
terms of non-model control, the algorithm of classical PID control is stable, easy to adjust,
and does not depend on an accurate vehicle model. However, for nonlinear time-varying
systems, conventional PID control with three fixed parameters is difficult to meet the
requirements [21]. The look-up tables require extensive calibration experiments and long
development cycles, with bad portability. Intelligent control algorithms are complex and
have a great deal of calculation, so they are currently seldom used in practical applications.
Most of the longitudinal dynamics control methods are based on the vehicle body charac-
teristics to adjust the PID parameters or other control rules. If the external environment
(slope, wind speed, etc.) changes, it will have a great impact on the vehicle acceleration
control accuracy. At present, the longitudinal dynamics control algorithm for conventional
engine vehicles with adaptive cruise has been studied more. The longitudinal dynamics
control algorithm for pure electric vehicles is less researched. For the pure electric vehicle
adaptive cruise control system, the drive control mechanism is a motor. If considering the
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braking energy recovery characteristics, the pure electric vehicle braking control mech-
anism includes the motor and hydraulic braking system. Compared with conventional
vehicles, braking control is more complex [22]. Because the vehicle traction and brake
system are very complex, with strong nonlinearity and coupling, it is difficult to establish a
mathematical model to describe them accurately [23]. The current longitudinal dynamic
systems control is developing toward model-free and self-learning [24]. Neural network
(NN), as an intelligent algorithm with strong self-learning, self-adaptive and self-organizing
capabilities, is outstanding in the control of nonlinear systems [25]. The prediction model
built by RBFNN can approximate any nonlinear function with arbitrary accuracy and has
the advantages of simple structure and fast convergence [26]. It provides a new idea for
vehicle longitudinal control.

A longitudinal control algorithm applied to the ACC system for the pure electric
vehicle is proposed in this paper. The control method in this paper is a control algorithm
with adaptive capability. It optimizes the current control input based on past inputs and
the effect of the error following. The control method does not require an exact model of the
system itself and is highly adaptable to nonlinear and time-varying systems. The outputs of
the algorithm are the motor torque and total brake torque demands for driving and braking,
which are sent to the vehicle model so that the host vehicle can accurately track the desired
acceleration. If considering the braking energy recovery characteristics, the pure electric
vehicle braking control mechanism includes the motor and hydraulic braking system. The
total braking force demanded by the algorithm output can be used for regenerative braking
system design for the next step of braking force distribution, including front and rear axle
braking force distribution and hydraulic braking force, and motor regenerative braking
force distribution. It expands the application range of adaptive cruise control systems and
improves the performance index of the adaptive cruise control system. Compared with the
current work, the main contributions of this paper are as follows. The RBFNN is introduced
into the traditional PID control to realize the longitudinal control with self-adjustment
capability. The learning ability of RBFNN is applied to identify the vehicle longitudinal
dynamic systems and fine-tune the PID control parameters according to the control effect.
The control method in this paper can accurately and quickly convert the target acceleration
into the demand driving and braking torque, achieving accurate tracking of the target
acceleration with high robustness and portability. The rest of this paper is organized as
follows. Section 2 describes the vehicle platform and the control framework and explains
the longitudinal control algorithm based on RBFNN tuning PID control. Simulation results
and discussion are discussed in Section 3. Lastly, conclusions are drawn in Section 4.

2. Materials and Methods
2.1. Vehicle Platform and Control Framework
2.1.1. Vehicle Platform

As shown in Figure 1, the adaptive cruise longitudinal control algorithm proposed in
this paper is deployed on a front-wheel-drive electric vehicle. In addition to being equipped
with radars to detect the moving obstacles ahead, the vehicle’s traction system contains
a permanent magnet synchronous motor with a motor control unit (MCU), transmission,
and differential. The vehicle is also equipped with a high-voltage battery pack and battery
management system (BMS) to provide energy for the motor. The traction system model,
which accepts the desired motor torque and outputs the actual motor torque, is established
by Matlab/Simulink. The hydraulic brake system is established by Matlab/Simulink,
which contains the master cylinder, hydraulic regulation unit, disc brakes equipped on each
wheel, and brake control unit (BCU). BCU controls the solenoid valves in the hydraulic
regulation unit according to the desired pressure and outputs the hydraulic braking torque.
The vehicle dynamic model established by Carsim contains the wheel, suspension, and
spring-loaded mass models, which accept the actual motor torque and hydraulic braking
torque. At the same time, the vehicle dynamic model feeds the vehicle status back to the
ACC controller. When the ACC system works, the ACC controller continuously calculates
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the vehicle’s accelerating and braking demands based on the environmental information
from the radars. The MCU and BCU receive the corresponding commands from the ACC
system and control the actuators to execute. The specific vehicle model development
process will not be discussed here.
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2.1.2. Control Framework

The fundamental function of the ACC system is to automatically regulate the host
vehicle’s speed to maintain safe vehicle spacing from the lead vehicle. As shown in
Figure 2, the control framework of the pure electric vehicle ACC system is designed to
be hierarchical. In the control framework, the perception layer algorithm analyzes the
relative state of the host vehicle to the lead vehicle based on the radar signal and the vehicle
signal; the decision algorithm identifies the sliding acceleration and calculates the target
acceleration to determine whether the car is in driving or braking state according to the
mode switching logic [27]. The above algorithms are not introduced in this paper. The
inputs of the pure electric vehicle adaptive cruise longitudinal control algorithm designed
in this paper are the target acceleration atarget and the actual acceleration of the vehicle aveh.
Then, RBFNN is used to identify the vehicle system and calculate the adjustment quantity
of the PID parameters to obtain the PID parameters that are continuously optimized.
The outputs of the algorithm are the motor torque Tmotor_drive_req and total brake torque
Tbrake_all_req demands for driving and braking, which are sent to the vehicle model so that
the host vehicle can accurately track the desired acceleration. The vehicle platform has
been described in detail in Section 2.1.1.
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2.2. RBFNN-PID-Based Longitudinal Control Algorithm

Along with the problem of difficulty in building accurate mathematical models, it
is difficult to achieve accurate control of nonlinear time-varying systems. Classical PID
control usually fails to implement the ideal control effect.

In the parameter self-tuning method of PID, the early rule-based and model-based
PID parameter self-tuning has gradually become unsuitable for complex control condi-
tions. With the development of intelligent control technology and advanced algorithm
research, intelligent PID controller has attracted a lot of attention [28]. Among them, the
expert adjusts the PID parameters by storing the real-time acquired measurement data and
historical experience data in the database, and then selects the optimal parameters based on
the heuristic reasoning mechanism [29]. The shortcomings of expert PID control are a large
amount of calculation and the difficulty of obtaining empirical data. The fuzzy PID control
method also relies on the adjustment experience and technical knowledge of the operator
or expert and summarizes them into a fuzzy rule model. Self-adjustment of PID parameters
is realized by using fuzzy reasoning [30]. The use of genetic algorithm can optimize the
PID control parameters according to the output of the controlled object without knowing
all the information of the controlled object, and the global optimal solution can be found
by using the population optimization mechanism, but there is a disadvantage of slow
convergence [31]. In the control method based on neural network tuning PID, the widely
used ones are mainly BP neural network and RBF neural network. Both BP and RBF are
structurally divided into input, output, and hidden layers. The difference is that the BP
neural network may have multiple hidden layers, while the RBF has a single hidden layer.
In the case of the same number of nodes in the hidden layer, the approximation effect of
RBF is better than that of BP, and the structure of BP neural network is more complex than
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that of RBF with the same number of samples and accuracy requirements. Considering the
slow convergence speed of BP neural network and the problem of local optimal solution,
the RBF neural network with higher approximation accuracy and faster convergence speed
is used to adjust the PID controller parameters online in real time [32].

Neural networks can be trained to approximate arbitrary complex nonlinear systems.
In this section, RBFNN is used to identify the Jacobian information of the controlled object,
and the gradient descent algorithm is used to calculate the adjustment quantity of the PID
parameters to obtain the continuously optimized PID parameters. The parameter-tuned
PID controller can adapt to environmental changes, making it have strong robustness and
high control accuracy for nonlinear systems. Finally, a pure electric vehicle adaptive cruise
longitudinal control algorithm is designed based on RBFNN tuning PID control.

2.2.1. Parameter Tuning of RBFNN-Based PID

PID control can realize the control of the error of the controlled system, with the
characteristics of simple algorithm structure and better robustness. The current commonly
used PID control method is digital PID control, which is divided into positional PID control
and incremental PID control, both of which use the deviation values of different sampling
points as control inputs.

The equation of the positional PID control is shown in Equation (1), which has a great
deal of calculation due to the need for the accumulation process of e(k).

u(k) = Kp

{
e(k) +

T
TI

k

∑
j=0

e(j) +
TD
T

[e(k)− e(k− 1)]

}
, (1)

As shown in Equation (2), the essence of incremental PID control is not the control
quantity for the target, but the increment of the control quantity. Therefore, the incremental
PID control that facilitates quick results of requirements is less affected by system error
disturbances and has little calculation.

∆u(k) = Kp∆e(k) + KIe(k) + KD[∆e(k)− ∆e(k− 1)]
∆e(k) = e(k)− e(k− 1)
u(k) = u(k− 1) + ∆u(k)

, (2)

Classical PID controllers are usually used to calibrate time-invariant systems, resulting
in fixed proportional-integral-differential coefficients. For nonlinear time-invariant systems,
the parameter calibration process using classical PID control methods is more complex and
requires extensive experience of the operators, whose control effect that can be achieved
is far from the ideal effect with the problem of control overshoot. The neural network
algorithm is outstanding in nonlinear system control, so it can be used to identify the
nonlinear system and continuously optimize the PID parameters. Thus, this paper proposes
PID control based on RBFNN tuning for the design of a longitudinal control algorithm.

In this paper, the PID control based on RBFNN tuning is shown in Figure 3. By
processing the input and output information of the controlled object, the PID proportional-
integral-differential coefficients are continuously optimized to make the actual output of
the controlled object as fast and smooth as possible to approach the control target output.
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The incremental PID control algorithm was selected to facilitate the optimal design of
the PID coefficients by RBFNN. The control error can be expressed as follows:

error(k) = rin(k)− yout(k), (3)

The rectification index of the neural network is selected, as shown in Equation (4).

E(k) =
1
2

error(k)2, (4)

The adjustment quantity of the PID parameters are calculated using the gradient
descent algorithm as follows:

∆kp = −ηk
∂E
∂kp

= −ηk
∂E
∂y

∂y
∂∆u

∂∆u
∂kp

= ηkerror(k)
∂y

∂∆u
xc(1), (5)

∆ki = −ηi
∂E
∂ki

= −ηi
∂E
∂y

∂y
∂∆u

∂∆u
∂ki

= ηierror(k)
∂y

∂∆u
xc(2), (6)

∆kd = −ηd
∂E
∂kd

= −ηd
∂E
∂y

∂y
∂∆u

∂∆u
∂kd

= ηderror(k)
∂y

∂∆u
xc(3), (7)

where ∂y
∂∆u is the Jacobian information of the controlled object, ηp, ηi, ηd is the learning rate

of PID parameters, xc(1) = error(k)− error(k− 1), xc(2) = error(k), xc(3) = error(k)−
2error(k− 1) + error(k− 2).

Based on the above work, the coefficients correction results were obtained as follows:
kp(k) = ∆kp + kp(k− 1)
ki(k) = ∆ki + ki(k− 1)

kd(k) = ∆kd + kd(k− 1)
, (8)

2.2.2. Jacobian Information Recognition Based on RBFNN

Based on the research content of the previous section, it is known that if we obtain the
real-time optimized feature parameters, then the Jacobian information of the controlled
object needs to be obtained. Next, this paper will achieve the recognition of Jacobian
information of the controlled object based on RBFNN.

The RBF network is a three-layer feedforward network, including an input layer, a
hidden layer, and an output layer, in which the transformation from the input layer to
the hidden layer is nonlinear. The commonly used activation function of the hidden layer
is the Gaussian function, as shown in Equation (10), and the hidden layer to the output
layer of the RBF neural network is a linear transformation, as shown in Equation (13).
The RBFNN structure is shown in Figure 4. RBF learning methods mainly include the
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k-means method, OLS (orthogonal least squares), and gradient descent method [33], etc. In
the current RBF neural network application, the number of neurons in the hidden layer can
be selected empirically. In addition, there are three other parameters that need to be learned
in the network, namely, the center vector of the radial basis function, the width of the basis
function, and the weight of each connection from the hidden layer to the output layer. In this
paper, all three parameters are trained using supervised learning methods, and all parameters
undergo an error correction learning process, and the data taken for training is also the error
between the target value and the actual value output by the system. In this paper, the gradient
descent method is used. Then the iterative algorithm for the output weight, node center, and
node base width parameters is calculated as shown in Equations (15)–(19).
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In Figure 4, where X = [x1, x2, · · · , xn]
T is the input vector of the network, in this

paper the input vector is chosen as follows:

X = [du, yk, yk−1]
T , (9)

where du is the input value difference between the current and previous cycle of the
controlled object, yk is the output value of the current cycle, and yk−1 is the output value of
the previous cycle.

The Radial basis vector of the RBF network is H =
[
h1, h2, · · · , hj, · · · , hm

]T , where hj
is the Gaussian basis function.

hj = exp

(
−
‖X− Cj‖2

2b2
j

)
(j = 1, 2, . . . , m), (10)

The center vector of the j th node of the network is Cj =
[
cj1, cj2, . . . , cji, . . . , cjn

]T ,
where i = 1, 2, . . . , n.

Let the base width vector of the network be shown as follows:

B = [b1, b2, . . . , bm]
T , (11)

where bj is the base width parameter of node j.
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The weight vector of the network is as follows:

W =
[
w1, w2, . . . wj, . . . , wm

]T , (12)

The output of the identification network is as follows:

ym(k) = w1h1 + w2h2 + . . . + wmhm, (13)

The performance function of the identifier is as follows:

J1 =
1
2
(yout(k)− ym(k))

2, (14)

According to the gradient descent algorithm, the iterative algorithm for the output
weight, node center, and node base width parameters is calculated as follows:

wj(k) = wj(k− 1) + η(yout(k)− ym(k))hj + α
(
wj(k− 1)− wj(k− 2)

)
, (15)

∆bj = (yout(k)− ym(k))wjhj
‖X− Cj‖2

b3
j

, (16)

bj(k) = bj(k− 1) + η∆bj + α
(
bj(k− 1)− bj(k− 2)

)
, (17)

∆cji = (yout(k)− ym(k))wj
xj − cji

b2
j

, (18)

cji(k) = cji(k− 1) + η∆cji + α
(
cji(k− 1)− cji(k− 2)

)
, (19)

where α is the momentum factor, η is the learning rate.
The Jacobian array is obtained as follows:

∂y(k)
∂∆u(k)

≈ ∂ym(k)
∂∆u(k)

=
m

∑
j=1

wjhj
cji − x1

b2
j

, (20)

where x1 = ∆u(k).

2.2.3. Longitudinal Control Algorithm

In the control framework, the perception layer algorithm analyzes the relative state
of the host vehicle to the lead vehicle based on the radar signal and the vehicle signal; the
decision algorithm identifies the sliding acceleration and calculates the target acceleration
to determine whether the car is in driving or braking state according to the mode switching
logic. The inputs of the pure electric vehicle adaptive cruise longitudinal control algorithm
designed in this paper are the target acceleration and the actual acceleration of the vehicle.
Then, RBFNN is used to identify the vehicle system and calculate the adjustment quantity
of the PID parameters to obtain the PID parameters that are continuously optimized. The
outputs of the algorithm are the motor torque and total brake torque demands for driving
and braking, which are sent to the vehicle model so that the host vehicle can accurately
track the desired acceleration. The pure electric vehicle in the driving process only needs
to achieve the target acceleration tracking by controlling the motor drive torque. Thus
according to the demand of the PID control algorithm based on RBFNN, as shown in
Figure 5, the difference between the selected target acceleration areq and the current actual
acceleration aveh is selected as the control algorithm input, with the motor demand drive
torque Tmotor_drive_req as the output of the driving process control algorithm.
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When the braking system performs the braking response to track the target acceler-
ation, it is necessary to first confirm the magnitude of the total demand braking torque
Tbrake_all . Thus, the difference between the target acceleration areq and the actual accelera-
tion aveh can be selected as the control algorithm input and the total demand braking torque
Tbrake_all as the control algorithm output, as shown in Figure 6, according to the demand of
the RBFNN-tuned PID control algorithm.
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3. Results and Discussion

In the driving and braking process control, to verify the effectiveness, fast response,
and anti-jamming of the control algorithm, based on the research in Section 2, this paper
uses Matlab/Simulink and Carsim platform to build the longitudinal control model based
on RBFNN-PID, and verify the drive and brake control effect. The control method of this
paper and the traditional PID control are used to simulate the braking system and drive
system models by responding to step signals and fighting against external disturbances,
and the control effects of both are compared to prove that the control method of this paper
has better control effects.

To verify the effectiveness of the longitudinal control algorithm, several experiments
are conducted utilizing Matlab/Simulink (v.9.5, MathWorks, Natick, MA, USA) and Carsim
(v.2016, MSC, The Ann Arbor, MI, USA). The main parameters used in the simulations are
set in Table 1.
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Table 1. Main parameters used in the simulations.

Para. Value Units

Vehicle weight 1450 kg
Rolling resistance coefficient 0.015

Gravity acceleration 9.8 m/s2

Aerodynamic drag coefficient 0.3
Mass density of air 1.29 kg/m3

Vehicle frontal area 1.2258 m2

Vehicle transmission ratio 8.28
Transmission efficiency 0.9

Wheel radius. 0.334 m
Height of mass center 530 mm

Wheelbase 2800 mm
Tread 1500 mm

ηp, ηi, ηd 0.2, 0.0005, 0
n 3
m 6
η 0.25
α 0.05

kp, ki, kd in driving process 0.4, 0.7, 0
kp, ki, kd in braking process 2.2, 1.5, 0

Sampling time 0.001 s

3.1. Results and Discussion of the Driving Process
3.1.1. Step Response of the Driving Process

As shown in Figure 7, it can be seen that the initial vehicle speed is 10 km/h, and
the vehicle speed increases continuously with a certain slope to respond to the target
acceleration. The specific acceleration response effect is shown in Figure 8, and the control
effect is evaluated in terms of system response rapidity and smoothness. The settling
time, i.e., the time required to reach the allowable error range, is used to evaluate the
rapidity of the system response. The settling time of the traditional PID control algorithm
is 1.41 s, while the algorithm of this paper is 0.459 s. It can be seen that the response rate of
this paper is significantly faster than the effect of traditional PID control. The maximum
overshoot, which is the ratio of the difference between the maximum peak value and the
steady-state value to the steady-state value, is used to evaluate the smoothness of the
system response. The maximum overshoot of the conventional PID control algorithm is
39.9%, while the method in this paper is 6%. It can be seen that the response process of this
algorithm is smoother. Because the vehicle traction and brake system are very complex,
with strong nonlinearity and coupling, it is difficult to establish a mathematical model to
describe them accurately. As for acceleration fluctuations after 5 s in Figure 8, due to the
inevitable errors in the established motor and battery model system in Matlab/Simulink,
the acceleration simulation results inevitably fluctuate, and it is hard to get close to the
target value without error. The acceleration error variation is shown in Figure 8, and it
can be seen that both control methods have almost no static difference under steady-state
conditions. The control effect of the PID control based on RBFNN can meet the control
requirements and has an excellent control effect in the driving process. In a contrast, the
conventional PID controller parameters are set to similar values to the last stable value of
the RBFPID controller parameters. The change in the coefficients of the RBFPID controller
is shown in Figure 9, whose initial values are 0.2, 0, and 0. The parameter Ki was adjusted
the fastest, reaching a stable value for the first time in 0.362 s, with a final stable value of
0.7094. Additionally, the parameter Kp and parameter Kd finally stabilized at 0.4213 and
0.0024, respectively.
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3.1.2. Response under Perturbation of the Driving Process

As shown in Figure 10, an external disturbance of amplitude 0.5 m/s2 is added to the
target acceleration at 10 s during the response of the drive system to the step signal. The
vehicle speed rises essentially at a constant slope and is largely unaffected by disturbances.
It can be seen from Figure 11 that the conventional PID takes 1.56 s to reach the steady state
after the external disturbance, while the control method in this paper is shortened to 1.13 s,
which shows a better anti-jamming performance.

3.2. Results and Discussion of the Braking Process
3.2.1. Step Response of the Braking Process

From Figure 12, it can be seen that the initial vehicle speed is 100 km/h, and the vehicle
speed decreases continuously with a certain slope to respond to the target acceleration.
The specific deceleration response effect is shown in Figure 13, and the system shows an
overdamping state. Similarly, the settling time is used to evaluate the system response
rapidity. The simulation results show that the settling time of the traditional PID is 1.051 s
and the method of this paper is 0.521 s. Obviously, the response rate of the proposed
algorithm in this paper is faster during the braking process. By observing the variation of
acceleration error in Figure 13, it can be clearly seen that under steady-state conditions, both
control algorithms have almost no static difference. The control effect of the PID control
based on RBFNN can meet the control requirements and also has an excellent control effect
for the braking process.
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3.2.2. Response under Perturbation of the Braking Process

As shown in Figure 14, an external disturbance of amplitude 0.5 m/s2 is added to the
target acceleration at 5 s during the response of the brake system to the step signal. As
shown in Figure 14, the vehicle speed decreases essentially at a constant slope and is largely
unaffected by disturbances. It can be seen from Figure 15 that the conventional PID takes
0.67 s to reach the steady state after the external disturbance, while the control method in
this paper is shortened to 0.5 s, which also shows a better anti-jamming performance in the
braking process.
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4. Conclusions

The main performances in the simulations are shown in Table 2.
This paper proposes an adaptive cruise longitudinal control algorithm, specifically

including the design of adaptive cruise driving and braking control algorithm based on
RBFNN tuning PID control. Finally, a joint simulation using Matlab/Simulink and Carsim
platforms is conducted to verify the target acceleration tracking effect in drive and brake
control. The control algorithm of this paper and the traditional PID control were simulated
separately to compare the control effects of both, whose conclusions were drawn as follows:

(1) In response to the step signal in the driving case, the control method in this paper
reaches the steady state with no static difference faster than the traditional PID control
in the steady state condition, and the time required is reduced by about two-thirds.
In addition, the maximum overshoot of this control algorithm is smaller, only about
one-seventh of the traditional PID control, so the system response process is smoother.



World Electr. Veh. J. 2023, 14, 32 17 of 19

When adding disturbances, the control method used in this paper takes about three-
tenths of the time to restore the steady state than the traditional PID control, showing
a better anti-jamming ability;

(2) In response to the step signal during the braking process, the response speed of this
control algorithm is doubled compared with the traditional PID control. Similarly,
when adding disturbances, this control algorithm takes less time to restore the steady
state, which is about three-tenths less than the traditional PID control. The control
algorithm has a better anti-jamming ability.

Table 2. Main parameters used in the simulations.

Para. Value Units

Settling time of PID in driving process 1.14 s
Settling time of RBF-PID in driving process 0.459 s

Maximum overshoot of PID in driving process 39.9 %
Maximum overshoot of RBF-PID in driving process 6 %

Time to steady of PID under disturbance in driving process 1.56 s
Time to steady of RBF-PID under disturbance in driving process 1.13 s

Settling time of the PID in braking process 1.051 s
Settling time of the RBF-PID in braking process 0.521 s

Maximum overshoot of the PID in braking process 0 %
Maximum overshoot of the RBF-PID in braking process 0 %

Time to steady of PID under disturbance in braking process 0.67 s
Time to steady of RBF-PID under disturbance in braking process 0.5 s

The control method in this paper is a control algorithm with adaptive capability.
It optimizes the current control input based on past inputs and the effect of the error
following. The control method does not require an exact model of the system itself and
is highly adaptable to nonlinear and time-varying systems. The outputs of the algorithm
are the motor torque and total brake torque demands for driving and braking, which
are sent to the vehicle model so that the host vehicle can accurately track the desired
acceleration. If considering the braking energy recovery characteristics, the pure electric
vehicle braking control mechanism includes the motor and hydraulic braking system. The
total braking force demanded by the algorithm output can be used for regenerative braking
system design for the next step of braking force distribution, including front and rear axle
braking force distribution and hydraulic braking force, and motor regenerative braking
force distribution. By responding to step signals and fighting against external disturbances,
the control algorithm in this paper exhibits higher robustness, better control accuracy, and
stronger anti-jamming capability in driving and braking situations. It has proved that the
adaptive cruise longitudinal control algorithm for pure electric vehicles proposed in this
paper has a good control effect. It also expands the application range of adaptive cruise
control systems and improves the performance index of the adaptive cruise control system.
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