Design of Dynamic Multi-Obstacle Tracking Algorithm for Intelligent Vehicle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Improved Joint Probability Data-Association Algorithm
2.1.1. Tracking Gate Establishment of Improved JPDA
2.1.2. Data Association of Improved JPDA
2.2. Obstacle State Estimation Algorithm Design
2.2.1. Unscented Kalman Filter-Based Obstacle State Estimation
- (1)
- Prediction
- (2)
- Measurement Updates
2.2.2. Interacting Multiple Model Construction
2.3. Obstacle Motion Model Construction
3. Results
3.1. Experimental Equipment and Parameter Setting
3.2. Data-Association Experiments
3.3. Obstacle State Update Experiment
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Z. Analysis of the Development Trend of Smart Car Industry. Int. J. Educ. Econ. 2018, 1, 78–81. [Google Scholar]
- Dulău, M.; Oniga, F. Obstacle Detection Using a Facet-Based Representation from 3-D LiDAR Measurements. Sensors 2021, 21, 6861. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Wang, J. Obstacle detection for autonomous driving vehicles with multi-lidar sensor fusion. J. Dyn. Syst. Meas. Control 2020, 142, 021007. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Chen, Z.H.; Han, L. Obstacle detection of Lidar based on Improved DBSCAN algorithm. Laser Optoelectron. Prog. 2021, 58, 2428005. [Google Scholar]
- Li, J.; Li, R.; Wang, J.; Yan, M. Obstacle information detection method based on multiframe three-dimensional lidar point cloud fusion. Opt. Eng. 2019, 58, 116102. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, J.; Liu, Z.H.; Wang, X.Q.; Lai, K.C. Improved Lidar Obstacle Detection Method Based on Euclidean Clustering. Laser Optoelectron. Prog. 2020, 57, 201105. [Google Scholar]
- Zhang, H.; Ikbal, M.A. Unmanned vehicle dynamic obstacle detection, tracking and recognition method based on laser sensor. Int. J. Intell. Comput. Cybern. 2021, 14, 13. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Liu, X.; Zhang, X.; Bai, R. Obstacle detection and tracking algorithm based on multi-lidar fusion in urban environment. IET Intell. Transp. Syst. 2021, 15, 1372–1387. [Google Scholar] [CrossRef]
- Xie, D.; Xu, Y.; Wang, R. Obstacle detection and tracking method for autonomous vehicle based on three-dimensional LiDAR. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419831587. [Google Scholar] [CrossRef]
- Llamazares, Á.; Molinos, E.J.; Ocaña, M. Detection and Tracking of Moving Obstacles (DATMO): A Review. Robotica 2020, 38, 761–774. [Google Scholar] [CrossRef]
- Zoltan, R.; Tamas, S. Obstacle Prediction for Automated Guided Vehicles Based on Point Clouds Measured by a Tilted LIDAR Sensor. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2708–2720. [Google Scholar]
- Yeom, S. Long Distance Moving Vehicle Tracking with a Multirotor Based on IMM-Directional Track Association. Appl. Sci. 2021, 11, 11234. [Google Scholar] [CrossRef]
- Yang, Y. Review of Target Tracking Algorithms Based on Bayes Filtering. In Proceedings of the 2022 3rd International Conference on Computer Science and Intelligent Communication, Tianjin, China, 12–13 March 2022; pp. 112–123. [Google Scholar]
- Li, Y.; Xing, X. Improved N-Best Multiple Hypothesis Tracking Algorithm. J. Phys. Conf. Ser. 2021, 1883, 012047. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Li, Y.; Yu, J.; Li, X. A Novel Probabilistic Data Association for Target Tracking in a Cluttered Environment. Sensors 2016, 16, 2180. [Google Scholar] [CrossRef] [Green Version]
- Ba, H.; Cao, L.; He, X.; Cheng, Q. Modified joint probabilistic data association with classification-aided for multitarget tracking. J. Syst. Eng. Electron. 2008, 19, 434–439. [Google Scholar]
- Farag, W. Self-Driving Vehicle Localization using Probabilistic Maps and Unscented-Kalman Filters. Int. J. Intell. Transp. Syst. Res. 2022, 20, 623–638. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z. A framework for state-of-charge and remaining discharge time prediction using unscented particle filter. Appl. Energy 2020, 260, 114324. [Google Scholar] [CrossRef]
- Fu, R.; Zhang, M.; Wang, C. Behavior analysis of distant vehicles using LIDAR point cloud. Clust. Comput. 2019, 22, 8613–8622. [Google Scholar] [CrossRef]
- Choi, S.; Hong, D. Position estimation in urban U-turn section for autonomous vehicles using multiple vehicle model and Interacting Multiple Model filter. Int. J. Automot. Technol. 2021, 22, 1599–1607. [Google Scholar] [CrossRef]
- Wan, W.; Feng, J.; Song, B.; Li, X. Vehicle state estimation using Interacting Multiple Model based on square root cubature Kalman filter. Appl. Sci. 2021, 11, 10772. [Google Scholar]
- Schuhmacher, D.; Vo, B.T.; Vo, B.N. A consistent metric for performance evaluation of multi-object filters. IEEE Trans. Signal Process. 2008, 56, 3447–3457. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Sun, B.; Dang, R.; Wang, Z.; Li, W.; Sun, K. Design of Dynamic Multi-Obstacle Tracking Algorithm for Intelligent Vehicle. World Electr. Veh. J. 2023, 14, 39. https://doi.org/10.3390/wevj14020039
Wang Y, Sun B, Dang R, Wang Z, Li W, Sun K. Design of Dynamic Multi-Obstacle Tracking Algorithm for Intelligent Vehicle. World Electric Vehicle Journal. 2023; 14(2):39. https://doi.org/10.3390/wevj14020039
Chicago/Turabian StyleWang, Yuqiong, Binbin Sun, Rui Dang, Zhenwei Wang, Weichong Li, and Ke Sun. 2023. "Design of Dynamic Multi-Obstacle Tracking Algorithm for Intelligent Vehicle" World Electric Vehicle Journal 14, no. 2: 39. https://doi.org/10.3390/wevj14020039
APA StyleWang, Y., Sun, B., Dang, R., Wang, Z., Li, W., & Sun, K. (2023). Design of Dynamic Multi-Obstacle Tracking Algorithm for Intelligent Vehicle. World Electric Vehicle Journal, 14(2), 39. https://doi.org/10.3390/wevj14020039