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Abstract: As the performances of energy management strategy (EMS) are essential for a plug-in
hybrid electric bus (PHEB) to operate in an efficient way. The proximal policy optimization (PPO)
based multi-objective EMS considering the battery thermal characteristic is proposed for PHEB,
aiming to improve vehicle energy saving performance while ensuring the battery State of Charge
(SOC) and temperature within a rational range. Since these three objectives are contradictory to
each other, the optimal tradeoff between multiple objectives is realized by intelligently adjusting
the weights in the training process. Compared with original PPO-based EMSs without considering
battery thermal dynamics, simulation results demonstrate the effectiveness of the proposed strategies
in battery thermal management. Results indicate that the proposed strategies can obtain the minimum
energy consumption, fastest computing speed, and lowest battery temperature in comparison with
other RL-based EMSs. Regarding dynamic programming (DP) as the benchmark, the PPO-based
EMSs can achieve similar fuel economy and outstanding computation efficiency. Furthermore, the
adaptability and robustness of the proposed methods are confirmed in UDDS, WVUSUB and real
driving cycle.

Keywords: proximal policy optimization; multi-objective energy management strategy; battery
temperature management; reinforcement learning; plug-in hybrid electric bus

1. Introduction

As the main transportation for human travel, internal combustion engine (ICE) vehicles
consume much non-renewable energy and produce mass pollutant gases [1–3]. Vehicle
electrification is one of the effective ways to alleviate the above problems [4]. Due to
the impact of battery technology, hybrid electric vehicles (HEVs) play a crucial role in
promoting the development of vehicle electrification [5]. At the same time, plug-in hybrid
electric buses (PHEBs) have been gradually applied in urban traffic operations due to their
lower fuel consumption and longer driving mileage [6].

Since HEVs have a complex power system and extra freedom degrees, the energy
management problems have attracted researchers’ extensive attention [7]. The existing
energy management strategies (EMSs) are mainly divided into rule-based, optimization-
based, and learning-based EMSs [8]. The rule-based EMSs are usually developed from
engineering practice based on the engine and motor optimal operating interval, including
deterministic rule-based [9] and fuzzy rule-based EMSs [10]. These strategies have strong
real-time performance but poor robustness, which makes it challenging to achieve the
optimal control effect.

The optimization-based EMSs, including global optimization-based and instanta-
neous optimization-based EMSs, aim to reduce vehicle fuel consumption by minimizing
the cost function. Global optimization strategies mainly include dynamic programming
(DP) [11,12], Pontryagin’s minimum principle (PMP) [13,14] and convex optimization (CV)
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based EMSs [15,16]. These strategies can obtain optimal control results and great adapt-
ability in different driving cycles. Nevertheless, the driving cycle and road information are
required in advance and the computation complexity is high. Owing to these shortcomings,
they are difficult to be applied as a real-time energy management controller. Instantaneous
optimization strategies include model predictive control (MPC) [17,18] and equivalent
consumption minimum strategy (ECMS) [19,20]. Although MPC and ECMS have strong
real-time performance, their control effect depends on the prediction accuracy of future
driving conditions or the value of oil-electric conversion efficiency separately.

Unlike conventional control algorithms, Machine learning (ML) can realize real-time
control and strong adaptability. Therefore, EMSs based on ML have become a new research
hotspot in recent years, especially reinforcement learning (RL) algorithms [21]. Typical RL
can not only solve the sequential actions’ decision optimization problem but also have a
long-term perspective by considering future returns.

Q-learning (QL) is the first employed in the energy management field and has achieved
good results [22]. However, its control state and action space are discretized. Thus, it can
not be applied in practice and easily cause “the curse of dimensionality” [23]. Then,
scholars put forward the Deep Q Network (DQN) algorithm, which improves based on QL
and solves the problem of discrete variables by using a neural network to fit the Q table.
Simultaneously, DQN uses the experience replay method to improve learning efficiency
and introduces a target network to make the training process more stable. Ref. [24] applied
DQN for a power-split hybrid electric bus in energy management and the simulation results
proved that the training rate was better than QL. In Ref. [25], DQN was conducted to
optimize the fuel consumption for HEVs. The effectiveness and online application ability
of the strategy were investigated.

Although DQN realizes the transformation from the discrete control state to the
continuous control state, its action space is still discrete. To further deal with the imple-
mentation of continuous action space, the Deep Deterministic Policy Gradient (DDPG)
algorithm is introduced for the energy management of HEVs. In Ref. [26], DDPG was
used to solve optimal energy distribution issues in discrete-continuous mixed action space
considering terrain information of driving routes. In Ref. [27], considering the traffic
information and the number of passengers, a model-free DDPG with the Actor–Critic
framework was adopted. The results showed that the optimization performance of the
proposed strategy was close to that of DP. In Ref. [28], the DDPG algorithm was combined
with the optimal braking-specific fuel consumption curves and the power battery charge-
discharge characteristics. The proposed method had better fuel economy and robustness
than rule-interposing Deep Q-Learning (DQL). However, many hyper-parameters are used
to explore the environment in the DDPG algorithm, resulting in slow convergence speed
and unstable training.

Given these inherent problems, some more developed RL algorithms have been
introduced in the energy management field. In Ref. [29], an optimal EMS based on the
Soft Actor–Critic (SAC) algorithm was designed for electric vehicles with hybrid energy
systems to minimize power consumption. Compared with DQN and rule-based methods,
the proposed strategy had more advantages in control effect and convergence speed.
Although the SAC algorithm has fast training speed and good exploration ability, it needs
to scale the reward, which affects the Q value. Therefore, it depends heavily on the reward
function and is not suitable for solving multi-objective optimization problems. In Ref. [30],
a rule-based controller was embedded in the Twin Delayed Deep Deterministic Policy
Gradient (TD3) loop to eliminate unreasonable torque distribution. The convergence speed
and robustness of the improved algorithm were superior to that of the DRL-based EMS.
Since the TD3 algorithm adds noise to the action output by an Actor network, it is easy to
generate a large number of boundary actions in exploration. Therefore, parameter tuning
ability must be equipped when adopting this algorithm [31].

Proximal Policy Optimization (PPO) algorithms, including PPO-Clip and PPO-Penalty,
use the Actor–Critic framework to realize continuous control state input and continuous
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action space exploration, avoiding the influence of discrete error on optimization results.
A new Actor network is also introduced to separate the agent that learns online from the
agent that interacts with the environment. This structure greatly accelerates the training
speed and enhances computational efficiency. The Minorize-Maximization algorithm is
used to ensure that its performance can be improved with each update policy. Thus, PPO
algorithms are insensitive to hyper-parameter changes. Besides, since the PPO algorithms
can regularize the Q value, they are not highly dependent on the reward function. After
comprehensive analysis and consideration, the PPO-Clip algorithm and PPO-Penalty
algorithm are adopted in the energy management of HEV in this paper, which have the
strengths of stable training, simple parameter adjustment, and strong robustness.

In addition to the optimization algorithms, the determination of the objective function
is also crucial. The existing EMSs of HEVs mainly target to improve fuel economy and
maintain battery charge-sustaining [32,33] and someone has focused on battery degradation,
but without adequately considering the power battery thermal dynamics. The charging
and discharging capacity, cycle life, and safety of the battery are dramatically affected by its
temperature change. When the battery temperature exceeds the optimal operating range,
the battery aging is intensified, the cycle life attenuation is accelerated, and there is a risk of
battery spontaneous combustion.

Motivated by the above literature review and discussion, the PPO-Clip and PPO-
Penalty-based EMSs considering battery thermal characteristics are proposed for PHEB.
The main contributions are summarized below.

(1) With a comprehensive consideration for performances in terms of energy saving,
battery temperature as well as stable tracking for reference State of Charge (SOC), the
PPO-based intelligent algorithm is employed to conduct the research on multi-objective
energy management for PHEB.

(2) The trade-off issue among multiple PHEB energy management objectives is high-
lighted and addressed by intelligently adjusting the weight coefficients in the training process.

(3) The battery temperature is online estimated according to its heat generation/
dissipation characteristics, which is further introduced into the PPO-based EMS framework
to ensure the battery operation with a rational temperature.

(4) With respect to DP-based EMS and other RL-based EMSs, extensive comparative
simulations are conducted to highlight the effectiveness, superiority, adaptability and
robustness of the PPO-based EMSs.

The rest of the paper is organized as follows. Section 2 presents the powertrain model
of the PHEB. Section 3 describes the essential content of the RL algorithm and PPO-based
EMSs. Section 4 analyzes the relationship between different objectives and illustrates the
simulation results. Section 5 concludes the paper and briefly explains future research. The
meanings of some abbreviations are summarized in Abbreviations.

2. System Modeling of PHEB

Referring to the vehicle architecture developed by Zhongtong Group, a single-shaft
parallel PHEB model is established, as shown in Figure 1. The engine and motor are
attached to the same axle and rotate at the same speed. After coupling the torque, the
gearbox and final gear drive the vehicle by reducing speed and increasing torque. When it
is fully charged, the power battery provides electric energy to the motor. When the battery’s
remaining power is insufficient, the mechanical energy is converted into electrical energy
by the motor to charge the battery. Thus, there are four working modes of the PHEB: pure
electric mode, the engine alone working mode, engine and motor hybrid working mode,
and brake recovery mode. The physical parameters of powertrain components are listed in
Table 1. The dynamic equation of the vehicle can be described as:

Ft = Mg f cosα +
1
2

Cd Aρv2 + Mgsinα + δM
dv
dt

(1)
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where Ft is the driving force of the vehicle, M is the vehicle mass, g is the gravitational
acceleration, f is the rolling resistance coefficient, α is the road slope, Cd is the air resistance
coefficient, ρ is the air density, A is the frontal area of the vehicle, v is the vehicle velocity,
δ is the correction factor.

Table 1. Parameters of the PHEB.

Component Parameters Value

Curb mass 10,500 kg
Vehicle Drag coefficient 0.65

Frontal area 6.75 m2

Battery Capacity 90 Ah
Voltage 560 V

Motor Peak power 135 kW
Peak torque 1000 Nm

Engine Peak power 155 kW
Peak torque 760 Nm

Figure 1. The architecture of the PHEB powertrain.

2.1. Engine Model

The fuel consumption of the engine at a specific operating point is related to its speed
and torque. By utilizing the varying continuity of the gearbox, the operating point of the
engine can be adjusted to the optimal economic zone. The engine map is obtained from
bench experiments, as shown in Figure 2. The fuel consumption of the engine per second
can be calculated by:

mfuel =
Pebe(ne, Te)

1000
=

Tenebe(ne, Te)

1000× 9.55
=

Tenebe(ne, Te)

9550
(2)

where be is the fuel consumption rate per unit time, Te is the engine torque (Nm), ne is the
engine speed (rad/s).
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Figure 2. Engine fuel consumption MAP.

2.2. Motor Model

The motor used in the PHEB model is a permanent magnet synchronous motor with
electric mode, generating mode and idling mode. In electric mode, the battery outputs
energy to the motor. In power mode, the motor converts mechanical energy into electrical
energy and stores it in the battery. In idling mode, the motor and the battery do not
exchange energy. The motor operating efficiency is shown in Figure 3. The output power
of the motor can be computed as:

Pm =


nmTm

9550ηm(nm, Tm)
Tm ≥ 0

nmTmηm(nm, Tm)

9550
Tm < 0

(3)

where ηm is the motor operating efficiency, Tm is the motor torque, nm is the motor speed.

Figure 3. Motor efficiency MAP.
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2.3. Battery Electrical Model

The research focuses on lithium-ion batteries which are widely used in electric ve-
hicles in this paper. It is found that the battery’s internal resistance is greatly affected by
temperature, while the open-circuit voltage varies significantly with different SOC [34].
Consequently, considering battery temperature and SOC changes, a battery internal resis-
tance model is established. For battery packs, the total voltage is as high as 560 V, and the
nominal capacity is 90 Ah. The power balance of the battery system is described by:

Pbat = Pb + Pl = Pb + I2
batRb (4)

where Pbat is the total battery power consumption, Pb is the power flowing into or out of
the battery, Pl is the power loss due to internal resistance, Ibat is the charge and discharge
current, Rb is the internal resistance.

The dynamic characteristic of SOC is calculated from the expression:

∆SOC = −Uoc −
√

U2
oc − 4RbPbat

2QbRb
(5)

where Uoc is the open-circuit voltage, Qb is the nominal capacity. The experiment data
including internal resistance and open-circuit voltage are shown in Figure 4.

Figure 4. The characteristic parameters of the single battery cell.

2.4. Battery Thermal Model

There are two main reasons for the battery temperature rise. The first one is the ohmic
resistance heat and the other is the heat generated by a chemical reaction inside the battery.
The ohmic resistance heat is irreversible and the chemical reaction heat is reversible. The
battery heating rate is given by:

Qh = (Ut −Uoc)Ibat +
∂Uoc

∂Tbat
IbatTbat (6)

where Ut is the terminal voltage, Tbat is the battery temperature.
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The battery thermal model is established according to the energy conservation law.
The heat balance process can be expressed as:

mbcb
∂Tbat

∂t
= hAb(Ten − Tbat) + Qh (7)

where mb is the battery mass, cb is the average specific heat capacity, h is the heat exchange
coefficient, Ab is the heat exchange area, Ten is the environment temperature, Qh is the
battery heating rate.

After equivalent changes, the battery temperature estimation can be obtained by:

Tbat = Tbat0 +
∫ Qh − hAb(Tbat_pre − Ten)

mbcb
(8)

where Tbat0 is the initial battery temperature, Tbat_pre is the battery temperature at the
previous moment.

3. EMSs Based on PPO-Clip and PPO-Penalty
3.1. RL Algorithm

RL algorithm can solve sequential decision optimization problems, including two
main components: agent and environment. The agent can complete specific tasks by
learning policy when interacting with the environment. The state of the environment has
Markov property and the future state of the system is only related to the current state and
has nothing to do with the historical state. Therefore, RL is a Markov decision process
(MDP), as a tuple (s, a, P, r). In the tuple, s is the state set, a is the action set, P is the state
transition probability matrix and r is the reward function.

RL agent uses learning as a trial evaluation process. In the beginning, the agent ran-
domly takes an action that impacts the environment. After that, the state of the environment
will change and a reward will be generated and fed back to the agent. The agent selects the
next action according to the reward and the current state. The interaction process is shown
in Figure 5. The principle of action selection is to increase the probability of receiving a
larger reward in the future. When the reward tends to a stable maximum value, the agent’s
task is completed and the optimal results are obtained. In this paper, the agent is the energy
and battery temperature management controller. The environment is the PHEB operating
condition and powertrain system.

Figure 5. Agent-Environment interaction.
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3.2. PPO-Clip and PPO-Penalty Algorithms

The agent starts from a specific state until the end of the task, which is called a
complete episode. In an episode with T moments, the agent constantly interacts with the
environment, forming the following sequence τ:

Trajectory : τ = {s1, a1, s2, a2, · · · , sT, aT} (9)

Since the action taken by the agent may be different at the same state, the sequence τ
is uncertain. When the policy function is πθ , the probability of a sequence τ occurrence is:

pθ(τ) = p(s1)pθ(a1|s1)p(s2|s1, a1)pθ(a2|s2)p(s3|s2, a2) · · ·

= p(s1)
T

∏
t=1

pθ(at|st)p(st+1|st, at) (10)

The return for the sequence τ is the sum of the reward at each moment called R(τ).
Therefore, the expected reward can be obtained as:

Rθ = ∑
τ

R(τ)pθ(τ) = Eτ∼pθ
[R(τ)] (11)

The policy gradient method is utilized to find the optimal policy. The gradient solution
process is:

∇Rθ = ∑
τ

R(τ)∇pθ(τ) (12)

To reduce the variance of the policy gradient, the advantage function is used to replace
the return function. The advantage function is calculated by:

Aθ(st, at) = Qθ(st, at)−Vθ(st) (13)

Vθ(st) = Eπ [
T

∑
k=t

γk−t
l rk|st] (14)

Qθ(st, at) = Eπ [
T

∑
k=t

γk−t
l rk|(st, at)] (15)

where Vθ(st) is the state-value function, rk is the reward function in times of k, Qθ(st, at) is
the action-value function, γl is the discount factor.

Besides, the idea of importance sampling is adopted and another new policy function
πθ′ is introduced. In this way, the data sampled by interacting with the environment can be
reused and the training speed can be improved. The solution process can be expressed as:

∇Rθ = E(st ,at)∼πθ
[Aθ(st, at)∇logpθ

(an
t |sn

t )]

= E(st ,at)∼πθ′
[

pθ(st, at)

pθ′(st, at)
Aθ′(st, at)∇logpθ

(an
t |sn

t )]

= E(st ,at)∼πθ′
[

pθ(at|st)

pθ′(at|st)

pθ(st)

pθ′(st)
Aθ′(st, at)∇logpθ

(an
t |sn

t )] (16)

where pθ(at |st)
pθ′ (at |st)

is the importance weight.
Since that the parameter distributions of the two policy functions πθ and πθ′ are close,

pθ(st) and pθ′(st) are considered equal. As a result, the update function of the network
parameter can be written as:

Jθ′(θ) = E(st ,at)∼πθ′
[

pθ(at|st)

pθ′(at|st)
Aθ′(st, at)] (17)
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The core idea of the PPO algorithms is to limit the policy update range by controlling
the importance weight. OpenAI and DeepMind use the Clip function and KL penalty to
realize, respectively, [35,36].

Method 1 (PPO-Clip): The importance weight is trimmed to a certain extent by
introducing the Clip function. The update function becomes:

Jθ′
PPO-Clip(θ) = E(st ,at)∼πθ′

min(
pθ(at|st)

pθ′(at|st)
Aθ′(st, at),

clip(
pθ(at|st)

pθ′(at|st)
, 1− ε, 1 + ε)Aθ′(st, at)) (18)

Method 2 (PPO-Penalty): KL divergence is used to calculate the similarity degree of
the action probability distribution. The update function becomes:

Jθ′
PPO-Penalty(θ) = Jθ′(θ)− βlKL(θ, θ′) (19)

The penalty for the difference between θ and θ′ distribution will be dynamically
changed. If the KL divergence value is too large, the penalty will increase. On the contrary,
the penalty will reduce if it is small to a certain value.

3.3. Design of Network and Algorithm

In this section, the PPO-Clip-based EMS and PPO-Penalty-based EMS will be illus-
trated in detail. First, define the critical elements of PPO algorithms: state s, action a, and
reward function r.

State s: Considering that battery temperature changes have an impact on driving
safety, in addition to battery SOC and vehicle dynamics, battery temperature is also taken
as the input state in this paper.

s = [v, acc, SOC, Tbat] (20)

where acc is the vehicle acceleration.
Action a: Thanks to the flexibility of the neural network, the output of continuous

action is realized. To reduce the calculation burden, this paper only defines one action,
namely the engine torque Te.

a = [Te] (21)

Then the motor torque Tm is obtained by:
Treq =

Ftrwheel
igioη

Tm = Treq − Te

(22)

where Treq is the demand torque, rwheel is the wheel radius, ig is the transmission ratio of
gearbox, io is the transmission ratio of final gear, and η represents the driveline efficiency.

Reward function r: The PPO-Clip-based EMS and PPO-Penalty-based EMS not only
target to minimize fuel consumption and keep SOC, but also slow down battery temper-
ature rise. By restraining the battery temperature, the battery life will be prolonged and
the operating cost will be reduced [34]. When the agent is in the learning stage, it keeps
exploring and learning actions with more enormous rewards [37]. Therefore, the reward
function can be described as:

r = −(αmfuel + β fSOC + γ fTbat) (23)

where α, β and γ are the weight coefficients, which will affect the training speed and
further affect whether the optimal energy distribution results can be achieved. Moreover,
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when solving multi-objective optimization problems, the weight coefficients need to be
reasonably adjusted until the optimal tradeoff between multiple objectives is realized.

According to the variance of battery charge-discharge internal resistance characteristic,
the SOC must locate in the optimal range to realize high efficiency [28]. In this article, the
initial SOC and terminal SOC are set as 0.8 and 0.3.

fSOC =

{
0, SOC > SOCfin
(SOC− SOCfin)

2, SOC < SOCfin
(24)

Lithium-ion batteries typically operate at 0–40 ◦C. Based on this, the reward function
sets the maximum temperature limit Thigh as 313.15 K (40 ◦C). When the current temperature
is higher than the temperature upper limit, a negative reward will be punished.

fTbat =

{
0, Tbat < Thigh
(Tbat − Thigh)

2, Tbat > Thigh
(25)

PPO-Clip and PPO-Penalty algorithms are based on Actor–Critic architecture, includ-
ing the Actor network and Critic network. The architecture is an online learning algorithm
and parameter updates are very slow. To improve the training efficiency, another Actor
network is introduced to separate the agent training online from the agent interacting
with the environment. Thus, the PPO algorithms are composed of the Actor network
parameterized by θ, another Actor network parameterized by θ′ and the Critic network.
Figure 6 shows how PPO-Clip and PPO-Penalty algorithms are implemented in the energy
management of PHEB. At first, the Actor network parameterized by θ interacts with the en-
vironment to obtain vehicle velocity, acceleration, battery temperature, and SOC. After the
interaction is completed, the Actor network parameterized by θ makes decisions based on
the current states and calculates the reward of the decision to obtain a series of trajectories
τ = {s1, a1, s2, a2, · · · , sT, aT}. The trajectories are sent to the Actor network parameter-
ized by θ′ and the Critic network for network parameter update and policy optimization.
When the update of the Actor network parameterized by θ′ reaches a certain number of
times, its parameters will be transferred to update the Actor network parameterized by
θ. After several iterations, the optimal engine torque distributions are obtained when the
expected reward converges to the maximum value [38]. The pseudo-codes of PPO-Clip
and PPO-Penalty algorithms are listed as Algorithm 1.

A fully connected neural network (Deep Neural Network) with one hidden layer is
adopted for the Actor–Critic architecture in this paper. For the Actor network, the Relu
function is used as the activation function, while the Sigmoid function is used as the output
layer to constrain the output action between [0, 1]. The Critic network is similar to the
Actor network, except the output layer is the Tanh function that maps state and action to
estimated Q values [39]. The parameters of the neural network are described in Table 2.

Table 2. The key parameters of PPO-based EMSs.

Parameters Value

Hidden layer 1
Number of neurons 100

Learning rate 0.001 (AN)
0.002 (CN)

Discount factor 0.99
Minibatch size 64
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Algorithm 1 PPO-Clip and PPO-Penalty algorithms.

1: Define the state s, action a, and reward r
2: Set λ, κ, ε parameters
3: for Episode = 1:M do
4: Initial Actor networks and a Critic network
5: for t = 1:T do
6: According to at = πθ(st), execute action at in PHEB dynamics environment
7: Observe the reward rt and transit to the next state s′t
8: Form the trajectory τ based on probability pθ

9: Actor network parameterized by θ: calculate Q(st, at)
10: Critic network: estimate V(st)
11: Compute the advantage estimate Aθ(st, at)
12: Update Critic network by the gradient method:

L(φc) = E(st ,at)∼πθ
[Aθ(st, at)2]

13: Update Actor network parameterized by θ′ and maximize objective function in
Equation (17) or Equation (18)
14: For PPO-Penalty algorithm
if KL(θ, θ′) > KLmax then

κ ← λκ
else if KL(θ, θ′) < KLmin then

κ ← κ/λ
end if
15: After each L step, update πθ ← πθ′

16: end for
17: end for

Figure 6. PPO-based EMSs.
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4. Simulation Results and Analysis

In this section, the performance of the PPO-Clip-based EMS and PPO-Penalty-based
EMS will be evaluated in Urban Dynamometer Driving Schedule (UDDS), West Virginia
Suburban Driving Schedule (WVUSUB) and real driving cycle collected in Jinan. The UDDS
driving cycle is depicted in Figure 7, where the driving time, the average and maximum
velocity are 1370 s, 8.7012 m/s, and 25.2 m/s, respectively.

Figure 7. The velocity and acceleration of the UDDS.

To realize a complete comparison, the electric consumption of PHEB will be converted
into fuel consumption. The equivalent fuel consumption Fequ is calculated by:

Fequ =
Emηm × 3.6× 106

ηeQhvρfuel × 1000
+ mfuel (26)

where Em is the electric consumption, ηe is the engine operating efficiency, Qhv is the
heating value, ρfuel is the diesel density. To simulate the complete battery SOC downward
trend, the UDDS driving cycle is duplicated four times.

4.1. Tradeoff between Multiple Objectives

Since optimal solutions are diverse, multi-objective problems are difficult to solve.
The optimal solution for one objective may be mutually exclusive from other objectives.
To balance the multiple optimal results, the weight of each objective needs to be adjusted
reasonably. For the energy management problem of PHEBs, it is hoped that the vehicle fuel
consumption can be minimized and the power battery can be in the best operating state.
To find the appropriate weight coefficient between the three objectives of minimizing fuel
consumption, maintaining battery SOC and controlling battery thermal change, an intelli-
gent optimization method is introduced. Firstly, the relationship between each objective
is analyzed by adjusting the weight coefficient in proportion. Then, the optimal interval
corresponding to different coefficients is determined according to the simulation results.
Finally, the reward function is compared to determine the optimal weight coefficient.

The PPO-Clip-based EMS is taken as an example to adjust the weight coefficients of
the three objectives in Equation (22). Firstly, fix α = 1, then set β between 0.1× 450 and
1× 450, and the fsoc value is mostly located between 1 and 10. The SOC trajectories with
different β are shown in Figure 8. When the β is larger, the constraint on SOC is more
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strict so that the final SOC will be higher than 0.3. The simulation results with different
β are shown in Table 3. It reveals that fuel consumption increases gradually when SOC
rises slowly. Simulation results confirm that the two objectives of improving fuel economy
and maintaining SOC are mutually exclusive. By comparison, it can be concluded that the
algorithm can achieve better results in fuel economy and SOC maintenance when the β
range is between 0.4× 450 and 0.7× 450.

Figure 8. SOC trajectories of different β in 4 × UDDS.

Table 3. Simulation results comparison between different β.

The Weight Equivalent Fuel Consumption Terminal
Coefficient (β) (L/100 km) SOC

β = 1.00 × 450 19.706 0.364
β = 0.90 × 450 19.319 0.309
β = 0.80 × 450 18.993 0.308
β = 0.70 × 450 18.572 0.299
β = 0.60 × 450 18.544 0.284
β = 0.50 × 450 18.173 0.275
β = 0.40 × 450 18.005 0.254
β = 0.30 × 450 17.639 0.239
β = 0.20 × 450 17.248 0.216
β = 0.10 × 450 16.899 0.198

After that, fix α = 1, β = 0.5 × 450, and let γ vary from 0.1 to 1. The fbat value
is mostly located between 1 and 10. The battery temperature rise curves are shown in
Figure 9. It is evident that the larger the weight coefficient γ is, the lower the terminal
battery temperature is. When γ = 1, the SOC is the most stable, the temperature rise is the
slowest, and the final battery temperature is the lowest. The simulation results between
different γ are shown in Table 4. It can be discerned that when SOC decreases, the final
battery temperature will increase. It testifies that the two objectives of maintaining SOC
and lowering the battery temperature are mutually beneficial. When the γ ranges from 0.5
to 0.75, it leads to excellent control results on fuel consumption, battery charge sustaining,
and battery temperature rise.
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Figure 9. Battery temperature rise curves of different γ in 4 × UDDS.

Table 4. Simulation results comparison between different γ.

The Weight of Equivalent Terminal Terminal
Battery Temperature Fuel Consumption SOC Battery Temperature

γ = 1.00 20.555 0.375 313.066
γ = 0.90 19.651 0.320 313.341
γ = 0.75 19.057 0.309 313.383
γ = 0.60 18.655 0.298 313.553
γ = 0.50 17.899 0.276 313.836
γ = 0.40 17.714 0.254 313.861
γ = 0.25 17.553 0.228 314.195
γ = 0.10 16.083 0.161 314.442

After that, set two random numbers and assign values to β and γ randomly. The
range of β is (0.4, 0.7) and the range of γ is (0.5, 0.75). After the same training time, store
the current values of β and γ and the reward value of the last training result. After all the
training, the reward value is compared, and the value of β and γ corresponding to the
minimum reward value is the optimal weight coefficient.

4.2. Effectiveness of EMSs Based on PPO-Clip and PPO-Penalty

In the RL algorithm, the agent tends to choose the action with an increased reward
after a period of exploration and learning. The mean reward distributions are shown in
Figure 10. In the beginning, both PPO-Penalty-based EMS and PPO-Clip-based EMS are
in the stage of continuous exploration and their mean reward keeps rising. After that,
the mean reward gradually tends to be stable. For PPO-Clip-based EMS, the previous
exploration is sufficient. After stabilization, the mean reward is higher than that of PPO-
Penalty-based EMS. From Episode 30 to Episode 50, PPO-Penalty-based EMS has a small
section of invalid learning. In this case, the agent always outputs boundary values. After a
period of self-adjustment, the mean reward gradually shows an upward trend and reaches
a stable state.
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Figure 10. The mean rewards of the PPO-based EMSs.

Compared with the original PPO-Clip-based EMS and original PPO-Penalty-based
EMS without considering battery temperature, the effectiveness of the PPO-Clip-based
EMS and PPO-Penalty-based EMS will be testified in battery temperature management.
For original PPO-based EMSs, the state s is set as s = [v, acc, SOC]. The action a remains
the same and the reward function is set as r = −αmfuel + β fSOC. After the training is
completed, the battery temperature rise curves are shown in Figure 11 and simulation
results are shown in Table 5. Compared to original PPO-based EMSs, when the final SOC
and fuel consumption are close, the final battery temperatures of PPO-based EMSs drop
by 1.509 K (1.509 ◦C) and 1.038 K (1.038 ◦C), respectively. It can be concluded that the
proposed strategies have achieved excellent results in battery temperature management.

Figure 11. Battery temperature rise curves with PPO algorithms in 4 × UDDS.
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Table 5. Terminal battery temperature comparison in 4 × UDDS.

Algorithm Equivalent Terminal Battery
Fuel Consumption SOC Temperature

(L/100 km) (K)

Original PPO-Clip 17.873 0.277 315.287
PPO-Clip 17.779 0.280 313.778

Original PPO-Penalty 18.255 0.291 314.892
PPO-Penalty 18.205 0.287 313.854

4.3. Superiority of EMSs Based on PPO-Clip and PPO-Penalty

By comparing the results of fuel consumption, terminal battery state and training
speed under different EMSs, the optimization performance of the EMSs is compared. In
this section, DP serves as an off-line benchmark and the superiority of PPO-based EMSs
is certificated by comparing with DQN-based EMS and DDPG-based EMS. The battery
temperature rise curves of different strategies are shown in Figure 12. It can be found that
the rising trends of the battery temperature are almost the same. The DP-based EMS has
the best control effect on the battery temperature. Its final battery temperature is the lowest,
which is 313.352 K (40.202 ◦C). The SOC downward trends of different strategies are shown
in Figure 13. The SOC can satisfy the restriction limit and finally be stabilized at around 0.3.

Figure 12. Battery temperature rise curves of different approaches in 4 × UDDS.

Figure 14 shows the engine working points of different strategies. In the DP-based
EMS, the engine working points are denser and distributed between the maximum and
optimal torque. The PPO-Penalty-based EMS and DDPG-based EMS have a large number
of working points, most of which are located in the low fuel consumption area. For DQN-
based EMS, the output engine torque is relatively single and centralized, which may be
affected by the limited discrete action variable. Compared with the other algorithms, PPO-
Clip-based EMS has fewer engine working points, which implies less fuel energy and more
electric energy will be utilized.
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Figure 13. Battery SOC trajectories in 4 × UDDS.

Figure 14. Engine working points in 4 × UDDS.

There is no single solution for multi-objective optimization problems to optimize each
objective simultaneously. In this case, the objective function is said to be conflicting, and
there exists a (possibly infinite) number of Pareto optimal solutions. To solve the above
problems, researchers usually set the weights of each goal according to the actual needs.
Thus, the compromise of different goals can be achieved through quantification. In this
paper, the weight of fuel consumption is set as the maximum to find a set of solutions as
close as possible to the Pareto optimal domain. Despite that the PPO-based EMSs achieve a
distinct advantage in fuel economy, the final SOC is lower than the other strategies. It is
proved that in the multi-objective energy management problems of HEVs, the improvement
of fuel economy is at the expense of SOC stability [40].

The fuel consumption and the computing time to run 200 episodes (DRL) are listed
in Table 6. As shown in Table 6, the PPO-Penalty takes 1435 s for 200 training ses-
sions, which is 200 repeated driving cycles. So running one driving cycle generally takes
1435/200 = 7.175 s. This is the time standard that can meet the requirements of real-time
online control for the EMS of HEVs. In contrast, the 9504 s consumed by the DP algorithm is
the time spent on running one driving cycle. It can be seen that although the DP algorithm
has optimal control performance, it consumes a lot of computing time and cannot meet
the real-time control requirements of vehicles. DP is limited by discrete variables and the
optimization results are greatly affected by discrete precision. However, if the discrete pre-
cision is improved, the calculation time will increase. On the contrary, due to the flexibility
of the neural network, PPO-Clip-based EMS and PPO-Penalty-based EMS can sufficiently
explore continuous action space to obtain the optimal energy distribution results. Since
PPO-based EMSs separate the agent that trains online from the agent that interacts with the
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environment, the computing time is greatly reduced. As a result, the trained PPO-based
EMSs can be used as vehicle controllers, making real-time online applications possible.

Table 6. The simulation results in 4 × UDDS.

Algorithm Terminal Battery Computing Equivalent Fuel Saving
SOC Temperature Time Consumption Rate

(K) (s) (L/100 km) (%)

DP 0.293 313.369 9504 17.481 -
DQN 0.310 314.495 1657 19.231 −10.01

DDPG 0.304 313.921 2296 18.917 −8.21
PPO-Clip 0.280 313.778 1449 17.779 −1.70

PPO-Penalty 0.287 313.854 1435 18.205 −4.14

4.4. Adaptability of EMSs Based on PPO-Clip and PPO-Penalty Algorithms

Although the effectiveness and superiority of PPO-Clip-based EMS and PPO-Penalty-
based EMS are confirmed in UDDS, they would experience uncertainty in the different
driving cycles. In this section, the West Virginia Suburban Driving Schedule (WVUSUB) is
used to assess the adaptability of the PPO-based EMSs, as shown in Figure 15. The driving
cycle is duplicated four times to train the PPO-based EMSs, where the driving time, average
and maximum velocity are 1665 s, 7.1885 m/s, and 20.0242 m/s, respectively.

Figure 15. The velocity and acceleration of the WVUSUB.

Figure 16 and Table 7 show battery temperature curves and the final battery temper-
ature comparison results in 4 × WVUSUB. As can be seen from the graph, the battery
temperature trends are roughly the same. When the temperature reaches the upper limit,
the PPO-based EMSs can effectively reduce the battery temperature under the influence of
the reward function.

Similarly, by comparing the DQN-based EMS and DDPG-based EMS, the superiority
of the PPO-based EMSs is corroborated again. The battery temperature rise curves are
shown in Figure 17 and the curves are roughly the same. Compared with other DRL-
based EMSs, PPO-based EMSs have the best battery temperature management effect. The
results of fuel consumption are shown in Table 8. It is clear that PPO-Clip-based EMS and
PPO-Penalty-based EMS reach 98.5% and 97.55% levels of the DP benchmark, respectively,
which proves that the proposed strategies have fabulous adaptability.
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Figure 16. Battery temperature rise curves in 4 ×WVUSUB.

Table 7. The simulation results of battery temperature in 4 ×WVUSUB.

Battery Equivalent Fuel
Algorithm Terminal SOC Temperature Consumption

(K) (L/100 km)

DP 0.296 313.649 18.679
DQN 0.287 314.519 20.418

DDPG 0.286 314.296 20.093
PPO-Clip 0.288 313.938 18.960

PPO-Penalty 0.293 313.759 19.138

Figure 17. Battery temperature rising curves of different EMSs in 4 ×WVUSUB.
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Table 8. The simulation results of fuel consumption in 4 ×WVUSUB.

Algorithm Terminal Battery Computing Equivalent Fuel Saving
SOC Temperature Time Consumption Rate

(K) (s) (L/100 km) (%)

DP 0.296 313.649 11,232 18.679 -
DQN 0.287 314.519 2338 20.418 −9.31

DDPG 0.286 314.296 3556 20.093 −7.59
PPO-Clip 0.288 313.938 1858 18.960 −1.50

PPO-Penalty 0.293 313.759 1855 19.138 −2.45

4.5. Robustness of EMSs Based on PPO-Clip and PPO-Penalty

In practical applications, the vehicle velocity collected by sensors will inevitably be
corrupted by noise. To verify the robustness of the PPO-based EMSs to unknown driving
cycles, another driving cycle gathered in Jinan is used to train the EMSs, where the driving
time, the average and maximum velocity are 6000 s, 7.7197 m/s, 21.6667 m/s, respectively.
The corrupted driving cycle is shown in Figure 18 and the energy management results are
listed in Table 9. The fuel consumption of PPO-based EMSs with noisy states is a little
higher than the PPO-based EMSs with clean states but still lower than other RL-based EMSs.
Besides, RL-based EMS can achieve superior fuel economy in comparison with ECMS and
PPO algorithms-based EMSs can save about 8.6% fuel consumption. It can be concluded
that PPO-Clip-based EMS and PPO-Penalty-based EMS have a significant advantage in
energy management for hybrid electric vehicles and are robust to sensor noise.

Figure 18. The real driving cycle with sensor noise.
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Table 9. The simulation results in a real cycle.

Algorithm Terminal Battery Equivalent
SOC Temperature Fuel Consumption

(K) (L/100 km)

DP 0.303 313.124 17.972
ECMS 0.308 314.114 20.122
DQN 0.300 313.552 19.571

DDPG 0.299 313.466 19.228
PPO-Clip 0.292 313.232 18.026

PPO-Penalty 0.302 313.326 18.186
PPO-Clip

(with sensor noise) 0.306 313.394 18.443
PPO-Penalty

(with sensor noise) 0.299 313.437 18.391

5. Conclusions

To explore the suitable algorithm applied to the multi-objective energy management
optimization problem of PHEB, the PPO-Clip-based EMS and PPO-Penalty-based EMS are
investigated in this paper. In addition to maintaining SOC and improving fuel economy,
the battery temperature is also taken into account as the optimization objective to keep
the battery in optimal working condition. After assigning the proper weights among
the three objectives, extensive comparisons are made for further verification. Compared
with the original PPO-based EMSs, the proposed EMSs provide effective control of power
battery temperature during driving, ensuring that the terminal battery temperature has
a lower value. Besides, PPO-based EMSs can realize faster computing speed, lower fuel
consumption, and slower battery temperature rise in comparison with DQN-based EMS
and DDPG-based EMS. At the same time, the adaptability and robustness of the proposed
EMSs are demonstrated under UDDS, WVUSUB and the real driving cycle. It can be
concluded that PPO-Clip-based EMS and PPO-Penalty-based EMS express great talent in a
comprehensive performance.

There are two aspects to improve the proposed EMSs in our future work. Firstly, a
hardware-in-the-loop experiment and real vehicle validation will be conducted to improve
the performance of the PPO-based EMSs. Secondly, real-time energy distribution will be
realized online by connecting cloud data to promote practical applications.
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Abbreviations
The following nomenclature and abbreviations are used in this manuscript:

Ft vehicle driving force Pbat total battery power consumption
M vehicle mass Pb power flowing into or out of the battery
g gravitational acceleration Pl battery power loss
f rolling resistance coefficient Rb internal resistance
α road slope Ibat charge and discharge current
Cd air resistance coefficient Ut terminal voltage
ρ air density Tbat battery temperature
A vehicle frontal area mb battery mass
v vehicle velocity cb average specific heat capacity
δ correction factor h heat exchange coefficient
be fuel consumption rate Ab heat exchange area
Te engine torque Ten environment temperature
ne engine speed Qh battery heating rate
ηm motor operating efficiency Tbat0 initial battery temperature
Tm motor torque Tbat_pre battery temperature at the previous moment
nm motor speed ρfuel diesel density
rk reward function in times of k Em electric consumption
Qθ the action-value function ηe engine operating efficiency
Qhv heating value γl discount factor
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