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Abstract: In this paper, we address the problem of trajectory tracking control of autonomous vehicles
by considering the nonlinear characteristics of tires. By considering the influence of the tires’ dynamics
on steering stability, the proposed predictive controller can track the desired trajectory and desired
velocity in the presence of road curvature while minimizing the lateral tracking deviation. First
of all, a hierarchical control structure is adopted, in which the upper-level controller is used to
calculate the desired acceleration and the desired front-wheel angle to maintain the control target,
and the lower-level controller realized the command through the corresponding component devices.
Moreover, a force estimator is designed based on the radial basis function (RBF) neural network to
estimate the lateral force of the tires, which is incorporated into the boundary conditions of the vehicle
envelope constraint to improve the adaptability of the controller to the vehicle performance. Finally,
the proposed controller is tested by co-simulation of CarSim (a simulation software specifically for
vehicle dynamics)/Simulink (a modular diagram environment for multidomain simulation as well as
model-based design) and hardware-in-loop simulation system. The co-simulation and experimental
results demonstrate the controller safely driving at the vehicle’s handling limits and effectively reduce
the slip phenomenon of the vehicle.

Keywords: trajectory tracking control; model prediction control; slip constraint; RBF neural network
estimator

1. Introduction

Autonomous vehicles have a great potential in improving traffic flow and safety
performance, which makes the technology of autonomous vehicle more and more popular,
especially in developed countries and emerging markets [1,2]. As one of the important
components of autonomous vehicles, the trajectory tracking control system aims to track the
desired trajectory by controlling the actuators of the steering wheel, brake and throttle [3].
The high nonlinearity of the vehicle dynamics will make it difficult for the trajectory
tracking controller to ensure the tracking accuracy and stability of the vehicle at the same
time [4]. Therefore, a good trajectory tracking control system should fully consider the road
information and the nonlinearities characteristics of tires.

In order to address the trajectory tracking problem, much research has been devoted to
selecting the suitable control algorithms, such as the linear quadratic regulator (LQR) [5,6],
fuzzy control [7,8], the sliding mode control (SMC) [9,10] and the proportional-integrated-
differential (PID) control [11]. However, the constrains caused by tires during trajectory
tracking cannot be fully considered in these controller design. In recent years, the model
prediction control (MPC) methods have been widely used in trajectory tracking control,
which is characterized by rolling optimization and dealing with the optimization problem
while considering the input and output constraints [12]. A large number of researches
indicate that the MPC algorithms are good at dealing with the trajectory tracking control
problems with the multi-constraints [13,14]. Some researches converted the trajectory
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tracking control problem based on the MPC controller that considering vehicle stability
and environmental constraints [15] or collision avoidance restraints [16]. Some researches
improve trajectory tracking accuracy by adaptively adjusting the weight matrix in the target
function [17,18]. In addition, a kinematic cascade MPC-PID controller with side slip angle
compensation was designed in Ref. [19] to solve the trajectory tracking control problem
of high-speed autonomous vehicles. The authors of [20] proposed a dead-band penalty
function to solve the inequality constraints and guarantee smoothness of the solution.

More precise vehicle models can improve the controller’s ability to predict the future
behavior of the vehicle. Banginwar proposed a real-time predictive vehicle controller by
using Pontryagin’s optimization method in Ref. [21]. Meanwhile, Raigoza enhanced the
trajectory tracking method with automatic collision avoidance in Ref. [22]. The authors
of [23] designed a MPC controller, which takes the 8-degree-of-freedom vehicle model as
the prediction model and the 14-degree-of-freedom vehicle model as the control object
to achieve trajectory tracking. The Unscented Kalman Filter (UKF) was used in Ref. [24]
to estimate the vehicle states, which were used to judge vehicle stability. Although the
MPC method with a prediction function could significantly improve the trajectory tracking
accuracy, it needed to repeatedly solve optimization problems at each control step, which
leads to a heavy computing burden and potential risks in real-time control. In addition,
some constraints have a great impact on the trajectory tracking performance of the vehicle,
such as the slip and body deviation [25]. Therefore, a suitable equivalent model of vehicle
dynamics should be constructed by considering the reasonable constraints

Ignoring the aerodynamics and gravity, the tire force plays a critical role in improving
the vehicle’s handling performance. However, most researches limited the tire model to
the linear area [26]. With increasing the vehicle speed, the nonlinearity caused by the tires’
dynamics had an influence on the trajectory tracking accuracy, even the handling stability.
In Ref. [27], the piecewise linear approximation of the tire characteristic curve method and
root mean square error (RMSE) were used to obtain segmented points in different regions
to improve the approximate accuracy of the tire models. By combining regularization with
continuous linearization, a nonlinear tire model was established to estimate the lateral
force of the tire. In addition, Mammar et al. [28] derived the tire cornering stiffness and
slip angle based on the tire characteristics to establish a tire model. However, the piecewise
affine (PWA) tire model and tire cornering stiffness estimation are only the approximation
of the tire model in a limited area, which could not capture the nonlinearity evident for the
trajectory tracking control. Thus, the tires’ dynamics should be fully considered.

It is essential to guarantee the vehicle stability, and it should be mentioned that equilib-
rium analysis [29] or empirical judgment methods [30] are indeed needed to judge vehicle
stability, along with the vehicle stability judged using the envelope constraints [31]. The
lateral velocity as a boundary condition for the envelope constraints could not be obtained
from the sensors directly. Considering that the lateral velocity can be estimated accurately
as presented in Refs. [32,33], the lateral velocity could be gained as a configuration, which
is set as the input of the envelope constraint of the vehicle swing.

Motivated by the above discussion, this paper presents a trajectory tracking controller
design with consideration of the tires’ dynamics and slip constraints. The innovations of
the paper are summarized as follows:

• Proposing a MPC controller by considering the tires’ dynamics and the road curvature
for the trajectory tracking control;

• Designing a tire force estimator based on the radial basis function (RBF) neural network
to estimate the vehicle driving states, which are used to update the slip constraint.

• Conducting the co-simulation (CarSim/Simulink) and Hardware-in-loop (HIL) plat-
form to validate the performance of the proposed trajectory tracking control system.

The remainder of this paper is organized as follows. In Section 2, the control strategy
of the trajectory tracking control system is described. In Section 3, a trajectory tracking
model is established based on the trajectory tracking control system. In Section 4, based
on the MPC algorithm, the trajectory tracking problem considering the slip constraint is
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solved. In Section 5.1, the CarSim/Simulink co-simulation platform is constructed to verify
the effectiveness of the envelope constraint under extreme driving states and test that the
vehicle can still drive effectively beyond the nonlinear region of the tire, and it is compared
with the algorithm proposed in Ref. [34]. In Section 5.2, the HIL platform is built, and the
effectiveness of the algorithm is verified based on the quintic polynomial function trajectory
planning, and it is compared and verified with the co-simulation. Section 6 summarizes the
contents of this paper.

2. Proposed Trajectory Tracking Control System

A hierarchical control structure is proposed to construct the controller for the trajectory
tracking control system, as shown in Figure 1. The overall goal of the control strategy
is to calculate the desired front-wheel steering angle and longitudinal acceleration and
implement this control target via the corresponding component devices to eventually
tracking the desired trajectory. The control structure consists of two sub-controllers, which
are the upper-level controller and the lower-level controller. The functional implementation
of the upper-level controller is divided into two parts, including the vehicle trajectory
tracking model and control law, which are used to collect the state between the vehicle
and the desired trajectory and driver input, and then compute the desired front-wheel
steering angle and desired longitudinal acceleration. The lower-level controller realizes
the output of the upper-level controller via the steering and driving devices to track the
desired trajectory.
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3. Trajectory Tracking Model

A valuable vehicle model can improve the smoothness of the vehicle during driving
and the handling stability of the vehicle during real-time control of autonomous vehicles.
Thus, in this section, the trajectory tracking model is established by considering the force of
the tires, as shown in Figure 2.
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The model is established based on the following assumptions:

• The influence of road slope is not taken into account;
• The coupling relationship between longitudinal and lateral forces is ignored; only the

pure cornering characteristics of the tire is considered;
• The load transfer of the tire is ignored;
• The air resistance is ignored;

The heading error eϕ and longitudinal velocity error ev are defined as:{
eϕ = ϕ− ϕr
ev = vx − vr

, (1)

where eϕ represents the orientation error of the yaw angle with respect to the desired
trajectory, and ev is the error between the current and the desired longitudinal velocity.

The desired yaw rate is obtained:

.
ϕr = vxCR, (2)

where CR is the road curvature.
Thus, combined Equation (1) with Equation (2):{ .

eϕ = r− vxCR.
ev =

.
vx −

.
vr

, (3)

The assumption for the heading error is small;
.
ey can be defined as:

.
ey = vy + vxeϕ, (4)

The vehicle dynamics model can be described by the following differential equations:
m
( .
vx − rvy

)
= Fx f + Fxrcosδ f = max

m
( .
vy + rvx

)
= Fy f + Fyr

Iz
.
r = l f Fy f − lrFyr

, (5)

where ax is the generalized longitudinal acceleration of the vehicle; l f and lr are the distance
from CG(center of gravity) to the front/real axle; Fx f is the longitudinal force of the front
wheel; Fxr is the longitudinal force of the rear wheel; and δ f is the front-wheel steering
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angle. The lateral force of the front/rear wheel Fy f and Fyr are functions of the slip angle of
the tire, which can be calculated in the following ways:{

Fy f = fy f

(
α f , µ, Fz f

)
Fyr = fyr(αr, µ, Fzr)

, (6)

where µ is the road friction coefficient, and Fz represents the total vertical load of the
vehicle.

The slip angles α f and αr indicate the angle between the wheel velocity and the
direction of the wheel itself: 

α f = tan−1
( vy+l f r

vx

)
− δ f

αr = tan−1
(

vy−lrr
vx

) , (7)

The total vertical load of the vehicle is distributed between the front and rear wheels
according to the geometry of the car model, described by the parameters l f and lr:

Fz f =
l f mg

2(l f +lr)

Fzr =
lrmg

2(l f +lr)

. (8)

By analyzing Equation (6) and considering tire characteristics, we find that there
are three main factors affecting the lateral force Fy: the vertical load Fz, the road friction
coefficient µ, and the slip angle α, which is a complex nonlinear time-varying function with
three inputs and one output. It is difficult to establish its accurate mathematical model with
traditional methods, so this paper establishes a neural network model of the lateral force
by the characteristics of the RBF neural network approximation of nonlinear functions as
shown in Figure 3. The neural network consists of three layers. The first layer is the input
layer, which consists of three input quantities: Fz, µ, α. The second layer is the hidden
layer, and the activation function adopted by the hidden layer is a Gaussian function:

Cj = exp

(
−
‖X− Cj‖2

β2
j

)
j = 1, 2, · · · , n, (9)

where β j is the center width of the hidden layer; X is the input vector; Cj is the central unit
of the jth radial basis function, which is the same as the input vector X dimensionality. The
third layer is the output layer, which is the output lateral force Fy, and its solution is:

Fy = ∑n
i=1 wiGi, (10)

where wi is the weight.
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When the road friction coefficient is fixed, the lateral force is estimated by the RBF
neural network as shown in the Figure 4:
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As shown in Figure 4, the lateral force estimator based on the RBF neural network can
estimate the lateral force of the tire well.

Equations (3)–(10) can be combined to obtain the nonlinear vehicle dynamics equations:

.
vy = a11vy + a11r + b1δ f
.
r = a21vy + a22r + b2δ f
.
ey = vy + vxeϕ
.
eϕ = r− CR(ev + vxr)
.
ev = rvy −

.
vxr + ax

, (11)

where, a11 = 1
m

(
∂ fy f
∂vy

+
∂ fyr
∂vy

)
, a12 = 1

m

(
∂ fy f
∂r +

∂ fyr
∂r

)
− vx, a21 = 1

Iz

(
l f

∂ fy f
∂vy
− lr

∂ fyr
∂vy

)
,

a22 = 1
Iz

(
l f

∂ fy f
∂r − lr

∂ fyr
∂r

)
, b1 = 1

m

(
∂ fy f
∂δ f

)
, b2 = 1

Iz

(
l f

∂ fy f
∂δ f

)
.

Equation (11) is rewritten as a linear state space equation form:

.
x(t) = A(t)x(t) + B1(t)u(t) + B2(t)ρ(t), (12)

with A(t) =


a11 a12 0 0 0
a21 a22 0 0 0
1 0 0 vx 0
0 1 0 0 CR
r 0 0 0 0

, B1(t) =


0
0
0

b1
b2
0

0
1

0
0

, B2(t) =


0 0
0 0
0 0
−vxr 0

0 −1

, where

the state variables is x(t) =
[
vy r ey eϕ ev

]T , the control input is u(t) =
[
ax δ f

]T ,

the output variable the output variable is y(t) =
[
vy r ey eϕ ev

]T , and ρ(t) =[
CR,

.
vr
]T is defined as the disturbance.

In real-time control applications, the trajectory tracking model is usually applied to
the discrete time domain, and then converted to a discrete time domain through zero-order
retention (ZOH) discretization, expressed as:{

x(k + 1) = Adx(k) + Buu(k) + Bdρ(k)
y(k) = Cx(k)

, (13)
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where k represents the kth sampling time, Ad, Bu, Bd and C are system matrices, which can
be expressed as:

Ad =
∞
∑

k=0

AkTk
s

k! , Bu =
∞
∑

k=0

Ak−1Tk
s

k! B1,

Bd = ∑∞
k=0

Ak−1Tk
s

k! B2, C =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

,
(14)

where Ts is sampling time (Ts = 50 ms), C is an identity matrix, and y ∈ R5 is the state
quantity of vehicle trajectory tracking system.

4. Control Law Allocation

This section describes the proposed control law used for calculating the front-wheel
angle and the longitudinal acceleration. The control law is designed to solve the MPC-based
trajectory tracking control problem. In addition, this control law takes into account the
vehicle’s handling stability, which is defined by the envelope constraint.

4.1. Control Objectives

To improve the lateral tracking accuracy and the vehicle’s handling stability, the lateral
position deviation, heading error, and longitudinal velocity error of the vehicle should be
minimized, and the yaw rate and lateral velocity of the vehicle should be limited by the
maximum lateral force and maximum slip angle that the tire can provide. Therefore, the
targets of the trajectory tracking control system can be considered as:

• The target of the trajectory tracking behavior can be regarded as the vehicle’s accurate
tracking of the desired trajectory:

Objective(A) :


ey(k)→ 0
eϕ(k)→ 0
ev(k)→ 0

, as k→ ∞, (15)

• The controller proposed uses the envelope suggested by Ref. [35], and the vehicle
stability is judged by the vehicle’s velocity state: lateral velocity

(
vy
)

and the yaw rate
(r), and we estimate the lateral force under different driving conditions through the
RBF neural network. Using the lateral force estimated by the RBF neural network,
the threshold of the slip angle α under different driving conditions is calculated from
the tire model, and the lateral velocity

(
vy
)

limit is defined by limiting the slip angle
of the rear tire. The maximum slip angle limit of the rear tire can be transformed
into the constraint on the lateral velocity

(
vy
)

and the yaw rate (r) of the vehicle by
Equation (7): ∣∣∣∣vy − lrr

vx

∣∣∣∣ ≤ αt, (16)

where the threshold of the yaw rate can be obtained according to the maximum lateral
force and Equation (5). In addition, the maximum lateral force of the tire is estimated
by the RBF neural network.

∣∣∣∣r + g
vx

ϕ

∣∣∣∣ ≤ min

 Fy f

(
1 +

l f
lr

)
mvx

,
Fyr

(
1 + lr

l f

)
mvx

 (17)

The constraints (16) and (17) form a closed envelope, as shown in Figure 5. Equation (16)
limits the control boundary of the yaw rate, and the Equation (17) limits the control
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boundary of the lateral velocity. When all states are within the envelope, the vehicle
stability can be guaranteed.

• In order to achieve the required lateral tracking accuracy and control stability, the
steering angle and the physical characteristics of the driving and braking should be
considered. Apply the following constraints to the vehicle’s variables:{

∆umin ≤ ∆u(k) ≤ ∆umax

umin ≤ u(k) ≤ umax
, (18)

where u(k) and ∆u(k) are the control input and control input increment of the trajec-
tory tracking control system.
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4.2. Trajectory Tracking Controller Based on MPC

The function of the proposed trajectory tracking control system is to calculate the dy-
namic control command and subsequently manipulate the vehicle to the desired trajectory.
This function is achieved with the control law and can be translated into solving an MPC
problem. The schematic block diagram of the MPC algorithm is shown in Figure 6.
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During the transitional state, the reference is Yr(k + 1) described as the control objec-
tive (Ad), and the disturbances ρ(k) are the road curvature and the desired longitudinal
acceleration. The output y(k + 1) is the lateral velocity, yaw rate, heading error and lon-
gitudinal velocity error. The MPC controller consists of three parts: the constraints, the
trajectory tracking control model, and the cost function. The trajectory tracking model is
designed according to the Equation (11). The constraints are shown in Equations (16)–(18).



World Electr. Veh. J. 2023, 14, 54 9 of 23

To facilitate the design of the controller, the state vector x(k) and the input incre-
ment ∆u(k) are usually coupled in a broadening vector that can be expressed as x̃(k) =
[x(k), ∆u(k)]T . Rewriting Equations (13) and (14):{

x̃(k + 1) = Ãx̃(k) + B̃u∆u(k) + B̃dρ(k)

ỹ(k) = C̃x̃(k)
, (19)

where Ã =

[
Ad Bd

0Nu×Nx INu

]
, B̃u =

[
Bu
INu

]
, B̃d =

[
Bd
INu

]
, C̃ = [C, 05×2], Nx is the dimension

of the state quantity and Nu means the dimension of the control quantity, and the change
of the control input is ∆u(k) = u(k)− u(k− 1). The predicted output performance vector
and the sequence of the future incremental inputs at time step k are denoted as Y(k) and
∆U(k), respectively.{

Y(k) =
[
ỹ(k + 1|k), ỹ(k + 2|k), · · · , ỹ

(
k + Np

∣∣k)]T

∆U(k) = [∆u(k), ∆u(k + 1), · · · , ∆u(k + Nc − 1)]T
, (20)

where Np is the prediction horizon and Nc means the control horizon, ỹ(k + 1), ỹ(k + 2), · · · ,
ỹ
(
k + Np

)
are the predictive performance at the step k, ∆u(k), ∆u(k + 1), · · · , ∆u(k + Nc − 1)

are the control input increments for the control time domain.
The MPC controller can predict the state of the next moment according to the state of

the current moment, so the prediction equation can be expressed as:

x̃(k + 1) = Ãx̃(k) + B̃u∆u(k) + B̃dρ(k)
x̃(k + 2) = Ã2 x̃(k) + ÃB̃u∆u(k) + B̃u∆u(k) + ÃB̃dρ(k) + B̃dρ(k + 1)
x̃(k + 3) = Ã3 x̃(k) + Ã2B̃u∆u(k) + ÃB̃u∆u(k + 1) + · · ·
+B̃u∆u(k + 2) + Ã2B̃dρ(k) + ÃB̃dρ(k + 1) + B̃dρ(k + 2)
...
x̃(k + Nc) = ÃNc(k)x̃(k) + ÃNc−1B̃u∆u(k) + · · ·
+B̃u∆u(k + Nc − 1) + ÃNc−1B̃dρ(k) + · · ·+ B̃dρ(k + Nc − 1)
...
x̃
(
k + Np

)
= ÃNp(k)x̃(k) + ÃNp−1B̃u∆u(k) + · · ·

+B̃u∆u
(
k + Np − 1

)
+ ÃNp−1B̃dρ(k) + · · ·+ B̃dρ

(
k + Np − 1

)

, (21)

The output vector of the predictive can be expressed in matrix form:

Y(t) = ψt x̃(t) + θt∆u(t) + τtφ(t), (22)

where ψt =



∼
C
∼
A

∼
C
∼
A

2

...
∼
C
∼
A

Nc

...
∼
C
∼
A

Np


, θt =



∼
C
∼
Bu 0 · · · 0

∼
C
∼
A
∼
Bu

∼
C
∼
Bu · · ·

...
...

... · · · 0
∼
C
∼
A

Nc−1∼
Bu

∼
C
∼
A

Nc−2∼
Bu · · ·

∼
C
∼
Bu

...
...

. . .
...

∼
C
∼
A

Np−1∼
Bu

∼
C
∼
A

Np−2∼
Bu · · ·

∼
C
∼
A

Np−Nc∼
Bu


,
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τt =



∼
C
∼
Bd 0 · · · 0

∼
C
∼
A
∼
Bd

∼
C
∼
Bd · · ·

...
...

... · · · 0
∼
C
∼
A

Nc−1∼
Bd

∼
C
∼
A

Nc−2∼
Bd · · ·

∼
C
∼
Bd

...
...

. . .
...

∼
C
∼
A

Np−1∼
Bd

∼
C
∼
A

Np−2∼
Bd · · ·

∼
C
∼
A

Np−Nc∼
Bd


.

To calculate the desired control increment, the trajectory tracking problem is converted
to solve the quadratic optimal solution problem:

min
∆u,ε

J(x(k), u(k− 1), ∆U(k)) =
Np

∑
k=1

Q‖Yr(k)−Y(k)‖2 +
Nc−1

∑
k=1

R‖∆u(k)‖2, (23)

s.t.



x(k + 1) = Adx(k) + Buu(k) + Bdρ(k)

y(k) = Cx(k)

|Hshy(k)| ≤ Gsh(k)

∆Umin ≤ ∆U ≤ ∆Umax

umin ≤ A∆U + U � umax

, (24)

where Q, R is the weight matrix; and ε is the coefficient of relaxation. Combining
Equation (20) with Equation (22), and defining E(k) = −Yr(k) + θt∆u(k) + τtφ(k), the
objective function can be transformed into a quadratic optimization problem combined
with the constraints and the following optimization problems can be solved:

min
∆u,ε

J(x(k), u(k− 1), ∆U(k)) =
[
∆U(k)T , ε

]T
Hk

[
∆U(k)T , ε

]
+ Gk

[
∆U(k)T , ε

]

s.t.


x(k + 1) = Adx(k) + Buu(k) + Bdρ(k)
y(k) = Cx(k)
|Hshy(k)| ≤ Gsh(k)
∆Umin ≤ ∆U ≤ ∆Umax
umin ≤ A∆U + U � umax

(25)

where Hk =

[
θT

t Rθt 0
0 Ssh

]
, Gk = 2ETQθt.

In addition, Equations (12) and (20) transform the slip constraint (16) into a constraint
on the control increment ∆u:

|HsshY(k)| = |Hssh(ψt x̃(t) + θt∆u(t) + τtφ(t))| ≤ Gssh(k)

⇒ |Hssh(θt∆u(t))| ≤ −|Hssh(ψt x̃(t) + τtφ(t))|+ Gssh(k) ,
(26)

where, Hssh = diag(Hsh, Hsh, · · ·Hsh)Np×Np, Gssh(k) = (Gsh, Gsh, · · ·Gsh)
T
Np×1.

4.3. Lower-level Controller Design

In order to verify the effectiveness of the proposed MPC control algorithm, the lower-
level controller needs to be established to convert the output of the MPC controller into
the input of the actuator [36]. Among them, the control input of the steering system of the
actuator is the front-wheel steering angle, and the control input of the driving system is
the desired throttle opening athdes and the desired braking master cylinder pressure Pbdes.
The schematic is shown in Figure 7. The switching logic of the lower-level controller can
be simplified to compare ax with 0, to apply the drive control (drive mode) when ax ≥ 0,
to compare the desired throttle opening athdes with the throttle opening threshold ath_sat
and to carry out the PI control. Otherwise, the braking control (braking mode) is applied



World Electr. Veh. J. 2023, 14, 54 11 of 23

to compare the desired braking master cylinder pressure pbdes with the braking master
cylinder pressure threshold pb_sat and carry out the PI control. The switching logic can be
formulated as:

αthdes =

{
αthdes, ax ≥ 0

0, ax < 0
, (27)

Pbdes =

{
0, ax ≥ 0

Pbdes, ax < 0
, (28)World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 12 of 24 
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5. Experimental Platform and Testing

In order to fully demonstrate the advantages of the proposed control algorithm, the
double-shift line condition is used as the test environment and builds a co-simulation
performed of CarSim and Matlab/Simulink and the HIL platform. The development
process is shown in Figure 8. Firstly, the functional analysis of the trajectory tracking
system is carried out; secondly, the effectiveness of the MPC algorithm is verified by the
co-simulation environment; thirdly, the MPC controller is compiled into the Raspberry Pi
through the method of generating C++ code by Matlab, and the Raspberry Pi is used as a
controller to control the controlled vehicle of the CarSim. CarSim, as a simulation software
for vehicle dynamics, utilizes detailed vehicle characteristic parameters to simulate the
dynamic behavior of vehicles and is widely used in the development of modern automotive
control systems.
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5.1. Simulation

In order to verify the validity of the proposal control algorithm, this section combines
the virtual vehicle in CarSim software with the controller proposed in Matlab/Simulink to
achieve trajectory tracking. The block diagram of the co-simulation is shown in Figure 9,
and the primary parameters of the co-simulation are shown in Table 1.
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Table 1. Symbol and definition of parameters.

Definition Symbol Value

Vehicle mass m (kg) 1723
Inertia moment of the vehicle about yaw axis Iz

(
kg·m2) 4175

Distance of the front/rear axle from CG l f /lr(m) 1.232/1.464
Minimal/maximal yaw rate rmin/rmax(rad/s) −0.5/0.5

Furthermore, the RESM performance index was introduced to determine quantitative
differences between the plotted data, and the RMSE is formulized as follows:

RMSE =

√
1
n ∑n

i=1(yi −Yi)
2, (29)

where yi is the predicted value at the time i, Yi is the true value at the time i.

5.1.1. Accuracy of RBF Neural Network in Estimating Lateral Force

In order to verify the accuracy of the proposed RBF neural network in estimating
lateral force, we carried out simulation experiments on ice-covered pavement, and set the
adhesion coefficient of the ice-covered pavement to 0.3. The double-shift line condition was
tested at 36 km·h−1, and the experimental results are shown in Figure 10. The error between
the RBF neural network estimate and the true value of the tire is within 9N as shown in
Figure 10. The RESM performance index between the RBF neural network estimate and the
true value of the tire is 7.1473, which can effectively estimate the lateral force and apply it
to the boundary value of the vehicle nonlinear dynamics model and slip constraint.
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5.1.2. Influence of Slip Constraints

In order to verify the influence of the proposed algorithm on the operation stability of
autonomous vehicles at the vehicle’s handling limits, we carried out simulation experiments
on ice-covered pavement, and set the adhesion coefficient of the ice-covered pavement
to 0.3. We compared applying the slip constraint and not applying the slip constraint at
50 km·h−1, and the experimental results are shown in Figure 11. Table 2 shows the RSME
of the trajectory tracking error on the ice-covered pavement, and Figure 11 shows the
results of the trajectory tracking and the comparison of the lateral velocity and yaw rate
under the ice-covered pavement. Figure 11a,b show the vehicle has a serious skidding
phenomenon at 160 m when no slipping constraint was imposed, and the vehicle can still
drive effectively when the slip constraint is applied. As shown in Table 2, when the vehicle
is in the slip constraint, the tracking performance of the desired trajectory is better, where
the RESM of the trajectory tracking error is 0.9406; the front-wheel steering angle under the
slip constraint is within the saturation constraint of the actuator as shown in Figure 11c.
As shown in Figure 11d, the vehicle seriously exceeds the envelope constraint without the
envelope constraint, and the vehicle becomes unstable. In summary, it can be seen that
the application of the slip constraint can effectively improve the slip phenomenon of the
vehicle and the vehicle is guaranteed to be within the envelope constraint.
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tracking results; (b) Lateral tracking error; (c) The front-wheel steering angle; (d) Comparison of the
lateral velocity and yaw rate under whether slip constraints are applied.
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Table 2. RMSE of trajectory tracking error on ice-covered pavement.

Regardless of Constraints Considering the Constraint

5.0016 0.9640

5.1.3. Effect of Nonlinear Envelope Constraints

The algorithm proposed for verification can still ensure the driving of the vehicle
beyond the nonlinear area of the tire. We carried out the simulation experiments on wet
asphalt pavement and set its pavement adhesion coefficient to 0.6. We compared applying
the slip constraint and not applying the slip constraint at 75 km·h−1. Figure 12 shows
the results of the experiment. Figure 12 shows the results of the trajectory tracking and
the comparison of the lateral velocity and yaw rate under the ice-covered pavement. The
vehicle can still drive efficiently beyond the linear region, as shown in Figure 12a,b, and the
tracking error of applying the nonlinear envelope constraint is smaller than the error of
applying the linear envelope in the second half of the trajectory. As shown in Table 3, the
nonlinear envelope constraint performed well in tracking the desired trajectory, where the
RESM of the trajectory tracking error is 1.0886. The front-wheel steering angle is within
the saturation constraint of the actuator as shown in Figure 12c. As shown in Figure 12d,
the vehicle is constrained beyond the linear envelope and within the nonlinear envelope
constraint, and the vehicle remains stable. In summary, it can be seen that the vehicle is
within the constraint of the nonlinear envelope, and the vehicle can still drive effectively.

World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 15 of 24 
 

constraint, and the vehicle remains stable. In summary, it can be seen that the vehicle is 
within the constraint of the nonlinear envelope, and the vehicle can still drive effectively. 

  
(a) (b) 

  
(c) (d) 

Figure 12. Simulation results of wet asphalt pavement trajectory tracking at 75 km ∙ hିଵ; (a) Trajec-
tory tracking results; (b) Lateral tracking error; (c) The front-wheel steering angle; (d) Comparison 
of the lateral velocity and yaw rate under whether slip constraints are applied. 

Table 3. RMSE of trajectory tracking error. 

Linear Region Nonlinear Regions 
1.1974 1.0886 

5.1.4. Comparison of Simulation Result 
This section offers a comparison with the MPC trajectory tracking algorithm pro-

posed in the Ref. [34]. In the first scenario, the vehicle has a driving speed of 36 km ∙ hିଵ 
in the double-shift line condition as shown in Figure 13. In the second scenario, the vehicle 
has a driving speed of 45 km ∙ hିଵ in the double-shift line condition as shown in Figure 
14. In the third scenario, the vehicle has a driving speed of 55 km ∙ hିଵ in the double-shift 
line condition as shown in Figure 15. The RESM of the trajectory tracking error as shown 
in Table 4 

As shown in Figure 13a, the algorithm proposed in Ref. [34] and the algorithm pro-
posed in this paper effectively track the desired trajectory at 36 km ∙ hିଵ. Moreover, the 
tracking error of the algorithm proposed can be maintained within the range of 0.04 m. 
The tracking error of the Ref. is within 0.07 m as shown in Figure 13b, but it is still large 
compared to the algorithm proposed. When the driving speed is 45 km ∙ hିଵ, Ref. [34] has 

0 50 100 150 200
X/m

-5

0

5
Linear region
Nonlinear region
Desired trajectory

0 50 100 150 200
X/m

-4

-2

0

2

4

6
Linear region
Nonlinear region

0 5 10 15 20 25
Time/s

-1.5

-1

-0.5

0

0.5

1

1.5
Linear region
Nonlinear region

Figure 12. Simulation results of wet asphalt pavement trajectory tracking at 75 km·h−1; (a) Trajectory
tracking results; (b) Lateral tracking error; (c) The front-wheel steering angle; (d) Comparison of the
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Table 3. RMSE of trajectory tracking error.

Linear Region Nonlinear Regions

1.1974 1.0886

5.1.4. Comparison of Simulation Result

This section offers a comparison with the MPC trajectory tracking algorithm proposed
in the Ref. [34]. In the first scenario, the vehicle has a driving speed of 36 km·h−1 in the
double-shift line condition as shown in Figure 13. In the second scenario, the vehicle has
a driving speed of 45 km·h−1 in the double-shift line condition as shown in Figure 14. In
the third scenario, the vehicle has a driving speed of 55 km·h−1 in the double-shift line
condition as shown in Figure 15. The RESM of the trajectory tracking error as shown in
Table 4.
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Figure 13. Trajectory tracking results compared to the algorithm proposed at 36 km·h−1; (a) Compar-
ison of driving paths; (b) Comparison of lateral errors.
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Figure 14. Trajectory tracking results compared to the algorithm proposed at 45 km·h−1; (a) Compar-
ison of driving paths; (b) Comparison of lateral errors.
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Table 4. RESM of the trajectory tracking error.

Proposed Controller MPC-Ref Controller Improvement

36 km·h−1 0.0574 0.0653 12.09%
45 km·h−1 0.0490 0.2774 82.33%
55 km·h−1 0.0527 - -

As shown in Figure 13a, the algorithm proposed in Ref. [34] and the algorithm pro-
posed in this paper effectively track the desired trajectory at 36 km·h−1. Moreover, the
tracking error of the algorithm proposed can be maintained within the range of 0.04 m.
The tracking error of the Ref. is within 0.07 m as shown in Figure 13b, but it is still large
compared to the algorithm proposed. When the driving speed is 45 km·h−1, Ref. [34] has a
large tracking error, and the algorithm proposed still maintains a good control effect, and
the tracking error is maintained in the range of 0.05m, as shown in Figure 14. As shown in
Figure 15, the algorithm proposed can effectively track the desired trajectory, and the track-
ing error remains within 0.07 m. Compared with the algorithm proposed in Ref. [34], the
proposed controller performed well in tracking the desired trajectory, as shown in Table 4.
The effectiveness of the trajectory tracking controller proposed is effectively verified, and it
can be tracked at higher speeds compared with Ref. [34].

5.2. Hardware-in-loop Platform and Test
5.2.1. Desired Trajectory Setting

The quintile polynomial curve fitting can plan a trajectory with a smooth curvature
according to the initial and final states of the vehicle, which is widely used in trajectory
tracking. The time-based quintile polynomial curve fitting generates the desired trajectory,
and it verifies the effectiveness of the MPC trajectory tracking controller through the
Raspberry Pi. The quintile polynomial curve fitting can be described as:{

xr(t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5

yr(t) = b0 + b1xr + b2x2
r + b3x3

r + b4x4
r + b5x5

r
, (30)

where a0, · · · , a5, b0, · · · , b5 are designed according to the initial and final state of the vehicle.
The calculation formula for the heading angle ϕr and the curvature road CR is as follows:

ϕr(t) = arctan
{

y′r[xr(t)]
}

, (31)
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CR(t) =
y′′r [xr(t)](

1 + {y′r[xr(t)]}2
) 3

2
, (32)

5.2.2. Hardware-in-loop Platform Setup

In the hardware-in-loop platform design, the Robot Operating System (ROS) system
is used as a platform for the operation of the vehicle program, and the MPC trajectory
tracking program runs in ROS. As an alternative to a physical car, CarSim has the same
object characteristics as a physical car. In addition, Matlab implements the information
transfer between CarSim and ROS through topic communication. ROS (MPC trajectory
tracking program) obtains the status information of the vehicle: the vehicle position,
acceleration, yaw angle and yaw rate, and the quintile polynomial curve fitting to calculate
the desired trajectory information and processes, and it calculates that information and
obtains the feedback information at the current moment, such as the vehicle’s desired
throttle opening, the desired brake master cylinder pressure, and the front-wheel steering
angle, where this feedback control information is simultaneously communicated to CarSim
(vehicle) to control the vehicle in real time. The control block diagram is shown in Figure 16.
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ROS runs on the Raspberry Pi 4B (CPU 64bit 1.5 GHz, 8 GB Sto-rage) with the
ubuntu18.4+ros melodic system, and CarSim runs on the same computer as Matlab (CPU i9-
10850k 3.60 GHz). The control cycle of ROS (MPC trajectory tracking program) is Tb = 20 ms.
Four scenarios (low speed, medium speed, medium-high speed, and high speed) are set to
verify the effectiveness of the proposed algorithm. The primary parameters of the simulated
vehicle are shown in Table 1.

In the first scenario, the vehicle enters the desired trajectory at an initial velocity of
36 km/h, reaches the center point of the desired trajectory at a speed of 54 km/h, and then
reaches the end of the desired trajectory to return to the initial speed and continue driving
at the initial speed. The description of the other three scenes is similar to the first. The
information for the four scenario is shown in Table 5. Scenario A, B, C, and D represent the
first, second, third, and fourth scenario, respectively.
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Table 5. Simulation scenarios.

Initial Velocity Center Point Velocity Time of Lane Change

Scenario A 36 km/h 45 km/h 8.3 s
Scenario B 72 km/h 80 km/h 4.8 s
Scenario C 108 km/h 112 km/h 3.3 s
Scenario D 144 km/h 147.6 km/h 2.2 s

5.2.3. Hardware-in-loop Platform Results and Analysis

In this hardware-in-loop platform experiment, dry asphalt pavement was selected and
the adhesion coefficient was set to 0.75. Table 6 shows the RMSE of trajectory tracking error
under the three scenarios. The results of the trajectory tracking under the three scenarios are
displayed in Figure 17. Figure 17a,b show that the lateral deviation of unmanned vehicles
is always kept within 0.10 m, where the control effect is good under the three scenarios. The
lower the velocity, the lower the tracking error. As shown in Table 6, the RMSE of trajectory
tracking error is always kept within 0.0430, and the lower the velocity, the smaller the
RMSE of the tracking error. Figure 17c shows that the front-wheel steering angle optimized
by the controller is within the saturation constraint of the actuator regardless of the velocity.
The three scenario errors are small and have better tracking performance as shown in
Figure 17d. Figure 17e shows that the longitudinal acceleration of the vehicle is much
less than 0.2 g and is always within the saturation constraint. Figure 17f shows that the
longitudinal velocity error of the vehicle is 0.15 m/s and has good tracking performance
in the two scenarios of Scenario A and Scenario B, but the longitudinal velocity error in
Scenarios C is within 0.35 m/s, and the longitudinal velocity error is large.
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Table 6. RMSE of trajectory tracking error in the three scenarios.

Scenario A Scenario B Scenario C

0.0081 0.0191 0.0430

5.3. Comparative Analysis of Co-simulation and Hardware-in-loop Platform Experiments

The comparison verification is carried out in Scenario D, where the dry asphalt pave-
ment was selected and the adhesion coefficient was set to 0.75; the results are shown in
Figure 18. The RMSE of the trajectory tracking error is shown in Table 7. The results
show that the controller proposed in this paper achieves good control effects in both Car-
Sim/Simulink co-simulation and the HIL platform. However, the front-wheel steering
angle in the HIL platform is higher than that in co-simulation as shown in Figure 18c. The
longitudinal velocity error of the HIL simulation is larger, as shown in Figure 18f. What is
more, the co-simulation performed well in tracking the desired trajectory, where the RESM
of the trajectory tracking error is 0.0667, as shown in Table 7.

Table 7. RMSE of trajectory tracking error in Scenario D.

HIL CarSim/Simulink Improvement

Scenario D 0.0705 0.0667 −5.69%
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6. Conclusions

In this paper, a control law is designed to improve the trajectory tracking accuracy
and vehicle handling stability to achieve safe driving. The control law is based on the
model predictive control with the slip constraint, which calculates the desired longitudinal
acceleration and the desired front-wheel steering angle. In addition, the proposed control
law can satisfy such control objectives and the vehicle handling stability simultaneously
during the control period. The research is summarized below:

1. In order to improve the tracking accuracy of the vehicle and the stability of the vehicle,
a control method, which considers the influence of road curvature and tire nonlinear
dynamic characteristics on the trajectory tracking performance, is developed by the
control law based on the MPC. Furthermore, the lateral force is estimated based on
the RBF neural network, which is incorporated into the boundary conditions of the
vehicle envelope constraint to reduce the slip phenomenon of vehicles;

2. The trajectory tracking control system with the control law is simulated by Mat-
lab/Simulink and Raspberry Pi combined with the CarSim-based vehicle model.
Meanwhile, the development technology route was expounded;

3. In co-simulation (CarSim/Simulink), the accuracy of the RBF neural network in
estimating the lateral force is verified under actual driving conditions; the slip phe-
nomenon can be effectively reduced after the vehicle is applied to the envelope
constraint; and the influence of the vehicle on the driving state after the linear and
nonlinear envelope constraint is analyzed. Finally, compared with the Ref. [34], the
results show that the proposed controller is better than the controller proposed in the
Ref. [34];
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4. In the HIL platform, we verify the performance of the proposed MPC controller in
three different scenarios. Finally, in comparing the co-simulation results with the HIL
platform, the results show that the co-simulation is better than the HIL platform;

5. In the future research, the study of the tire deflection characteristics based on experi-
mental data would be considered. In addition, on the basis of the establishment of the
HIL platform, the ROS-based verification platform is built to verify the effectiveness
of the proposed algorithm.
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Abbreviations
The following abbreviations and symbols are used in this paper:

Symbol Description
x/y(m) Coordinates of center of gravity (CG)
ϕ (rad) Yaw angle of vehicle body
r (rad/s) Yaw rate of vehicle body
vx/vy (m/s) Longitudinal/lateral velocity
ey(m) Offset of CG from the reference point
eϕ (rad) Orientation error of yaw angle with respect to the desired trajectory
ev(m/s) Error between the current and the desired longitudinal velocity
m (kg) Vehicle mass
Iz
(
kg·m2) Yaw moment of inertia of the vehicle

l f /lr (m) Distance from CG to the front/real axle
Fx f /Fxr(N) Longitudinal tire force of the front/rear wheel
Fy f /Fyr(N) Lateral tire force of the front/rear wheel
Fz(N) Vertical load
C f (N/rad) Cornering stiffness of the front wheel
Cr(N/rad) Cornering stiffness of the real wheel
α f /αr(rad) Slip angle of the front/ rear wheel
ax
(
m·s−2) Longitudinal acceleration of vehicle

δ f (rad) Front-wheel steering angle
CR
(
m−1) Road curvature

µ Road friction coefficient
β j Center width of the hidden layer
X Input vector for RBF neural network
Cj Central unit of the jth radial basis function
wi Weight for RBF neural network
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Ts (s) Sampling time
Q/R Weight matrix for MPC
ε Coefficient of relaxation
athdes(MPa) Desired throttle opening
Pbdes(MPa) Desired braking master cylinder pressure
athsat (MPa) Throttle opening threshold
ppdes(MPa) Expected braking main cylinder pressure
yi Predicted value for RESM
Yi True value for RESM
MPC Model prediction control
RBF Radial basis function
PID Proportional-integrated-differential
LQR Linear quadratic regulator
SMC Sliding mode control
ZOH Zero-order retention
CarSim A simulation software specifically for vehicle dynamics

Simulink
A modular diagram environment for multidomain simulation
as well as model-based design

RMSE Root mean square error
UKF Unscented Kalman Filter
PWA Piecewise affine
HIL Hardware-in-loop
ROS Robot Operating System
CG Center of gravity
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