Sector Coupling through Vehicle to Grid: A Case Study for Electric Vehicles and Households in Berlin, Germany
Abstract
:1. Introduction
2. Methodology
2.1. Driving and Charging Behaviour
2.2. Energy Availability from Renewable Sources
2.3. Vehicle to Grid Approach
- If both, a RE surplus and a RE deficit remain (see Figure 6b) and another BEV is available for V2G, step (5) is executed again for the next BEV. If no other BEV is available, the process continues with step (4) and the RE profile is scaled down to prevent RE losses.
- If no RE surplus but a RE deficit remains (see Figure 6c) and another BEV is available for V2G, the RE profile is scaled up in step (4) to try to further reduce the RE deficit. If no other BEV is available, the process is terminated and the additional energy which is required from non-renewable sources is determined for the LOR.
- If neither a RE surplus nor a RE deficit remain (surplus deficit balance achieved, see Figure 6d), the process is terminated. Residential and BEV energy demand is met exclusively with RE sources.
3. Results and Discussion
3.1. Power Demand and Supply over the Course of the Day
3.2. Share of Renewable Energies in the LORs
3.3. Peak Power Demand Increase in the LORs
3.4. Battery Load Increase Due to Vehicle to Grid
3.5. Discussion
- In this work, the V2G potential in Berlin was determined for two specific days, one in summer and one in winter. An average profile for available renewable energy was used for each of these two days. However, the availability of renewable energy fluctuates and can deviate significantly from this average. Accordingly, the generated results indicate the V2G potential in Berlin. On a particular day, the amount of renewable energy that can be integrated into the electricity mix depends on the actual daily profile (see Outlook).
- The vehicles participating in V2G are randomly selected in the LORs for each V2G participation scenario. Depending on the selected vehicles, the results may vary from the calculated value, which has not been investigated. However, due to the large number of vehicles in Berlin (1,045,000), we expect a rather small fluctuation.
- The power grid was not modelled. Therefore, network congestion as well as losses of transmission and distribution of electric power were disregarded. If grid conditions are also considered in the model, a lower V2G potential is expected. A possibility of modelling grid conditions is described in [57].
- V2G requires communication between the vehicle owner and the V2G control centre, in which the vehicle owner specifies, for example, their planned parking time. The V2G control centre collects the information and processes it. Appropriate communication between the V2G control centre and the vehicle owner was assumed in this work. An overview of the current communication standards can be found in [17,34].
- Battery ageing is not considered for the V2G investigations. However, due to the increase in battery load battery life is expected to be shortened. The V2G investigations should therefore be extended by a battery ageing model with the aim to find a good trade-off between renewable energy integration and battery degradation. In addition, BEV owners should receive financial compensation for the loss in value of their vehicle due to battery ageing.
- In our case study, we assume that the driving and parking behaviour of all considered vehicles is known in advance. In reality, however, these factors are subject to considerable uncertainty. Therefore, our study clearly shows the potential benefits of V2G integration but the results must be seen as an upper bound and further work is necessary to include uncertainty in our model. One possibility is to use stochastic approaches, as shown in [58].
- With 30% vehicle participation in V2G, more than 99% of the residential energy demand and BEV charging demand in Berlin can be met by renewable energy. Accordingly, there is further untapped V2G potential that could be used to increase the share of renewable energy in commercial or industrial energy consumption.
- In addition to passenger cars, other vehicles such as commercial vehicles or buses are currently being electrified. These vehicles can contribute significantly to the integration of renewable energies into the electricity mix through V2G, as shown in [59]. For a holistic view, these vehicles should therefore be included in our model.
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BEV | Battery electric vehicle |
ICEV | Internal combustion engine vehicle |
LOR | Lebensweltlich-orientierter Raum (neighbourhood-oriented district) |
RE | Renewable energy |
SOC | State of charge |
V2G | Vehicle to grid |
WLTP | Worldwide harmonized light vehicles test procedure |
Appendix A. Electric Reference Vehicles and Charging Curves
Class | Model | Battery Capacity (kWh) | WLTP Consumption (kWh/100 km) |
---|---|---|---|
Mitsubishi i-MiEV | 14.5 | 13.5 * | |
Mini compact | Renault Zoe | 52.0 | 17.7 |
VW e-Up! | 16.0 | 14.3 | |
BMW i3 | 37.9 | 15.3 | |
Compact | Hyundai Kona E | 64.0 | 14.7 |
VW e-Golf | 32.0 | 15.8 | |
Kia e-Niro | 64.0 | 15.9 | |
Medium | Nissan Leaf | 60.0 | 18.5 |
Tesla Model 3 | 53.0 | 14.3 | |
Audi e-tron | 83.6 | 23.0 | |
Large | Mercedes EQC | 80.0 | 22.6 |
Tesla Model S | 85.8 | 18.9 |
References
- United Nations. Paris Agreement. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 19 February 2022).
- European Comission. The European Green Deal. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1588580774040&uri=CELEX:52019DC0640 (accessed on 30 January 2021).
- Presse- und Informationsamt der Bundesregierung. Ziele der Bundesregierung: Bis 2030 die Treibhausgase Halbieren. 2019. Available online: https://www.bundesregierung.de/breg-de/themen/klimaschutz/klimaziele-und-sektoren-1669268 (accessed on 2 December 2020).
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Kraftfahrt Bundesamt. Fahrzeugzulassungen (FZ): Neuzulassungen von Kraftfahrzeugen nach Umwelt-Merkmalen Jahr 2021. Available online: https://www.kba.de/SharedDocs/Downloads/DE/Statistik/Fahrzeuge/FZ14/fz14_2021_pdf.pdf;jsessionid=D512D10C416439BC18113838C94355D6.live21324?__blob=publicationFile&v=7 (accessed on 29 June 2022).
- Tröndle, T.; Pfenninger, S.; Lilliestam, J. Home-made or imported: On the possibility for renewable electricity autarky on all scales in Europe. Energy Strategy Rev. 2019, 26, 100388. [Google Scholar] [CrossRef]
- Lopes, J.; Almeida, P.M.R.; Silva, A.M.; Soares, F.J. Smart Charging Strategies for Electric Vehicles: Enhancing Grid Performance and Maximizing the Use of Variable Renewable Energy Resources. In Proceedings of the EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Stavanger, Norway, 13–16 May 2009. [Google Scholar]
- Mesarić, P.; Krajcar, S. Home demand side management integrated with electric vehicles and renewable energy sources. Energy Build. 2015, 108, 1–9. [Google Scholar] [CrossRef]
- Aziz, M.; Oda, T.; Mitani, T.; Watanabe, Y.; Kashiwagi, T. Utilization of Electric Vehicles and Their Used Batteries for Peak-Load Shifting. Energies 2015, 8, 3720–3738. [Google Scholar] [CrossRef] [Green Version]
- Heinisch, V.; Göransson, L.; Erlandsson, R.; Hodel, H.; Johnsson, F.; Odenberger, M. Smart electric vehicle charging strategies for sectoral coupling in a city energy system. Appl. Energy 2021, 288, 116640. [Google Scholar] [CrossRef]
- Lo Franco, F.; Ricco, M.; Mandrioli, R.; Grandi, G. Electric Vehicle Aggregate Power Flow Prediction and Smart Charging System for Distributed Renewable Energy Self-Consumption Optimization. Energies 2020, 13, 5003. [Google Scholar] [CrossRef]
- Seddig, K.; Jochem, P.; Fichtner, W. Integrating renewable energy sources by electric vehicle fleets under uncertainty. Energy 2017, 141, 2145–2153. [Google Scholar] [CrossRef] [Green Version]
- Fridgen, G.; Keller, R.; Körner, M.F.; Schöpf, M. A holistic view on sector coupling. Energy Policy 2020, 147, 111913. [Google Scholar] [CrossRef]
- Ramsebner, J.; Haas, R.; Ajanovic, A.; Wietschel, M. The sector coupling concept: A critical review. WIREs Energy Environ. 2021, 10, e396. [Google Scholar] [CrossRef]
- Robinius, M.; Otto, A.; Heuser, P.; Welder, L.; Syranidis, K.; Ryberg, D.; Grube, T.; Markewitz, P.; Peters, R.; Stolten, D. Linking the Power and Transport Sectors—Part 1: The Principle of Sector Coupling. Energies 2017, 10, 956. [Google Scholar] [CrossRef] [Green Version]
- Kempton, W.; Tomić, J. Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy. J. Power Sources 2005, 144, 280–294. [Google Scholar] [CrossRef]
- Mwasilu, F.; Justo, J.J.; Kim, E.K.; Do, T.D.; Jung, J.W. Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renew. Sustain. Energy Rev. 2014, 34, 501–516. [Google Scholar] [CrossRef]
- Tan, K.M.; Ramachandaramurthy, V.K.; Yong, J.Y. Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques. Renew. Sustain. Energy Rev. 2016, 53, 720–732. [Google Scholar] [CrossRef]
- Amamra, S.A.; Marco, J. Vehicle-to-Grid Aggregator to Support Power Grid and Reduce Electric Vehicle Charging Cost. IEEE Access 2019, 7, 178528–178538. [Google Scholar] [CrossRef]
- Tomić, J.; Kempton, W. Using fleets of electric-drive vehicles for grid support. J. Power Sources 2007, 168, 459–468. [Google Scholar] [CrossRef]
- Hernández, J.C.; Sanchez-Sutil, F.; Vidal, P.G.; Rus-Casas, C. Primary frequency control and dynamic grid support for vehicle-to-grid in transmission systems. Int. J. Electr. Power Energy Syst. 2018, 100, 152–166. [Google Scholar] [CrossRef]
- DeForest, N.; MacDonald, J.S.; Black, D.R. Day ahead optimization of an electric vehicle fleet providing ancillary services in the Los Angeles Air Force Base vehicle-to-grid demonstration. Appl. Energy 2018, 210, 987–1001. [Google Scholar] [CrossRef] [Green Version]
- Kesler, M.; Kisacikoglu, M.C.; Tolbert, L.M. Vehicle-to-Grid Reactive Power Operation Using Plug-In Electric Vehicle Bidirectional Offboard Charger. IEEE Trans. Ind. Electron. 2014, 61, 6778–6784. [Google Scholar] [CrossRef]
- van der Kam, M.; van Sark, W. Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study. Appl. Energy 2015, 152, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Khemir, M.; Rojas, M.; Popova, R.; Feizi, T.; Heinekamp, J.F.; Strunz, K. Real-World Application of Sustainable Mobility in Urban Microgrids. IEEE Trans. Ind. Appl. 2022, 58, 1396–1405. [Google Scholar] [CrossRef]
- Göhlich, D.; Raab, A.F. (Eds.) Mobility2Grid—Sektorenübergreifende Energie- und Verkehrswende; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Fattori, F.; Anglani, N.; Muliere, G. Combining photovoltaic energy with electric vehicles, smart charging and vehicle-to-grid. Sol. Energy 2014, 110, 438–451. [Google Scholar] [CrossRef]
- Pfeifer, A.; Dobravec, V.; Pavlinek, L.; Krajačić, G.; Duić, N. Integration of renewable energy and demand response technologies in interconnected energy systems. Energy 2018, 161, 447–455. [Google Scholar] [CrossRef]
- Dorotić, H.; Doračić, B.; Dobravec, V.; Pukšec, T.; Krajačić, G.; Duić, N. Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources. Renew. Sustain. Energy Rev. 2019, 99, 109–124. [Google Scholar] [CrossRef]
- Forrest, K.E.; Tarroja, B.; Zhang, L.; Shaffer, B.; Samuelsen, S. Charging a renewable future: The impact of electric vehicle charging intelligence on energy storage requirements to meet renewable portfolio standards. J. Power Sources 2016, 336, 63–74. [Google Scholar] [CrossRef]
- Nunes, P.; Farias, T.; Brito, M.C. Enabling solar electricity with electric vehicles smart charging. Energy 2015, 87, 10–20. [Google Scholar] [CrossRef]
- Bömermann, H. Stadtgebiet und Gliederungen. Zeitschrift für Amtliche Statistik Berlin und Brandenburg 2012, 1+2, 76–87. [Google Scholar]
- Senatsverwaltung für Stadtentwicklung und Wohnen. Lebensweltlich Orientierte Räume (LOR) in Berlin. 2023. Available online: https://www.berlin.de/sen/sbw/stadtdaten/stadtwissen/sozialraumorientierte-planungsgrundlagen/lebensweltlich-orientierte-raeume/ (accessed on 5 March 2023).
- Vadi, S.; Bayindir, R.; Colak, A.M.; Hossain, E. A Review on Communication Standards and Charging Topologies of V2G and V2H Operation Strategies. Energies 2019, 12, 3748. [Google Scholar] [CrossRef] [Green Version]
- Straub, F.; Streppel, S.; Göhlich, D. Methodology for Estimating the Spatial and Temporal Power Demand of Private Electric Vehicles for an Entire Urban Region Using Open Data. Energies 2021, 14, 2081. [Google Scholar] [CrossRef]
- Kraftfahrt Bundesamt. Bestand an Personenkraftwagen am 1. Januar 2018 nach Bundesländern Sowie Privaten und Gewerblichen Haltern Absolut. Available online: https://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/Halter/2018/2018_b_halter_tabellen.html?nn=3524774&fromStatistic=3524774&yearFilter=2018&fromStatistic=3524774&yearFilter=2018 (accessed on 2 December 2020).
- Straub, F.; Maier, O.; Göhlich, D.; Zou, Y. Forecasting the spatial and temporal charging demand of fully electrified urban private car transportation based on large-scale traffic simulation. Green Energy Intell. Transp. 2023, 2, 100039. [Google Scholar] [CrossRef]
- Deutsches Zentrum für Luft- und Raumfahrt e.V.. Mobilität in Deutschland 2017/Zeitreihendatensatz: B3: Lokal-Datensatzpaket – Datensätze mit Angabe von Kleinräumigen Gitterzellen. 2018. Available online: https://daten.clearingstelle-verkehr.de/279/ (accessed on 2 December 2020).
- Geske, J.; Schumann, D. Willing to participate in vehicle-to-grid (V2G)? Why not! Energy Policy 2018, 120, 392–401. [Google Scholar] [CrossRef]
- van Heuveln, K.; Ghotge, R.; Annema, J.A.; van Bergen, E.; van Wee, B.; Pesch, U. Factors influencing consumer acceptance of vehicle-to-grid by electric vehicle drivers in the Netherlands. Travel Behav. Soc. 2021, 24, 34–45. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, Y.; Fan, J.; Guo, H. Usage pattern analysis of Beijing private electric vehicles based on real-world data. Energy 2019, 167, 1074–1085. [Google Scholar] [CrossRef]
- BMW Group Baut Ladeinfrastruktur Weiter Aus. 2019. Available online: https://www.press.bmwgroup.com/deutschland/article/detail/T0303719DE/bmw-group-baut-ladeinfrastruktur-weiter-aus?language=de (accessed on 1 September 2021).
- Audi Investiert rund 100 Millionen Euro in Ladeinfrastruktur an Eigenen Standorten. 2020. Available online: https://www.audi-mediacenter.com/de/pressemitteilungen/audi-investiert-rund-100-millionen-euro-in-ladeinfrastruktur-an-eigenen-standorten-12480 (accessed on 1 September 2021).
- ALDI Elektrisiert: E-Ladestationen an Weiteren ALDI SÜD Filialen. 2021. Available online: https://www.aldi-sued.de/de/nachhaltigkeit/neuigkeiten/e-ladestationen.html (accessed on 1 September 2021).
- Volle Ladung E-Mobilität. 2021. Available online: https://www.lidl.de/c/echarge-app/s10007751 (accessed on 1 September 2021).
- Schnelles Laden Kommt zum Kunden. 2019. Available online: https://www.hagebau.com/unternehmen/hagebau-unternehmensgruppe/aktuelles/presse/schnelles-laden-kommt-zum-kunden.html (accessed on 1 September 2021).
- Rudschies, W. Elektroautos auf der Langstrecke: Wie Kann das Funktionieren? 2020. Available online: https://www.adac.de/rund-ums-fahrzeug/tests/elektromobilitaet/schnellladen-langstrecke-ladekurven/ (accessed on 11 June 2020).
- Fastned B.V.. Fast Charging. 2021. Available online: https://support.fastned.nl/hc/en-gb/sections/4409800889105-Fast-charging (accessed on 15 February 2022).
- Fraunhofer Institute for Solar Energy Systems ISE. Energy Charts: Net Electricity Generation in Germany. 2021. Available online: https://energy-charts.info/charts/power/chart.htm?l=en&c=DE&stacking=stacked_absolute_area (accessed on 2 September 2021).
- Apostolaki-Iosifidou, E.; Codani, P.; Kempton, W. Measurement of power loss during electric vehicle charging and discharging. Energy 2017, 127, 730–742. [Google Scholar] [CrossRef]
- Lund, H.; Kempton, W. Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy 2008, 36, 3578–3587. [Google Scholar] [CrossRef]
- Datta, U.; Saiprasad, N.; Kalam, A.; Shi, J.; Zayegh, A. A price-regulated electric vehicle charge-discharge strategy for G2V, V2H, and V2G. Int. J. Energy Res. 2019, 43, 1032–1042. [Google Scholar] [CrossRef] [Green Version]
- Schmalstieg, J.; Käbitz, S.; Ecker, M.; Sauer, D.U. A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. J. Power Sources 2014, 257, 325–334. [Google Scholar] [CrossRef]
- Marongiu, A.; Roscher, M.; Sauer, D.U. Influence of the vehicle-to-grid strategy on the aging behavior of lithium battery electric vehicles. Appl. Energy 2015, 137, 899–912. [Google Scholar] [CrossRef]
- Clement-Nyns, K.; Haesen, E.; Driesen, J. The impact of vehicle-to-grid on the distribution grid. Electr. Power Syst. Res. 2011, 81, 185–192. [Google Scholar] [CrossRef]
- Oldfield, F.; Kumpavat, K.; Corbett, R.; Price, A.; Aunedi, M.; Strbac, G.; O’Malley, C.; Gardner, D.; Pfeiffer, D.; Kamphus, J.T. The Drive towards a Low-Carbon Grid: Unlocking the Value of Vehicle-to-Grid Fleets in Great Britain. Available online: https://www.eonenergy.com/content/dam/eon-energy-com/Files/vehicle-to-grid/The%20Drive%20Towards%20A%20Low-Carbon%20Grid%20Whitepaper.pdf (accessed on 16 May 2021).
- Flores-Quiroz, A.; Strunz, K. A distributed computing framework for multi-stage stochastic planning of renewable power systems with energy storage as flexibility option. Appl. Energy 2021, 291, 116736. [Google Scholar] [CrossRef]
- Goehlich, D.; Spangenberg, F.; Kunith, A. Stochastic total cost of ownership forecasting for innovative urban transport systems. In Proceedings of the 2013 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM 2013), Bangkok, Thailand, 10–13 December 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 838–842. [Google Scholar] [CrossRef]
- Raab, A.; Lauth, E.; Strunz, K.; Göhlich, D. Implementation Schemes for Electric Bus Fleets at Depots with Optimized Energy Procurements in Virtual Power Plant Operations. World Electr. Veh. J. 2019, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Allgemeiner Deutscher Automobil-Club e.V.. ADAC. 2022. Available online: https://www.adac.de/ (accessed on 16 November 2022).
Case | V2G Participation Scenario | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0% | 5% | 10% | 15% | 20% | 25% | 30% | 40% | 50% | 75% | ||
LORs that use 100% RE (x/448) | Summer | 0 | 0 | 2 | 30 | 213 | 383 | 408 | 445 | 446 | 448 |
Winter | 0 | 4 | 113 | 260 | 430 | 445 | 446 | 446 | 448 | 448 | |
Renewables share in Berlin (%) | Summer | 49.5 | 66.2 | 80.4 | 90.0 | 96.1 | 98.0 | 99.1 | 99.93 | 99.98 | 100 |
Winter | 46.3 | 83.0 | 95.2 | 98.4 | 99.5 | 99.8 | 99.95 | 99.99 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Straub, F.; Maier, O.; Göhlich, D.; Strunz, K. Sector Coupling through Vehicle to Grid: A Case Study for Electric Vehicles and Households in Berlin, Germany. World Electr. Veh. J. 2023, 14, 77. https://doi.org/10.3390/wevj14030077
Straub F, Maier O, Göhlich D, Strunz K. Sector Coupling through Vehicle to Grid: A Case Study for Electric Vehicles and Households in Berlin, Germany. World Electric Vehicle Journal. 2023; 14(3):77. https://doi.org/10.3390/wevj14030077
Chicago/Turabian StyleStraub, Florian, Otto Maier, Dietmar Göhlich, and Kai Strunz. 2023. "Sector Coupling through Vehicle to Grid: A Case Study for Electric Vehicles and Households in Berlin, Germany" World Electric Vehicle Journal 14, no. 3: 77. https://doi.org/10.3390/wevj14030077
APA StyleStraub, F., Maier, O., Göhlich, D., & Strunz, K. (2023). Sector Coupling through Vehicle to Grid: A Case Study for Electric Vehicles and Households in Berlin, Germany. World Electric Vehicle Journal, 14(3), 77. https://doi.org/10.3390/wevj14030077