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Abstract: Low temperatures induce limited charging ability and lifespan in lithium-ion batteries,
and may even cause accidents. Therefore, a reliable preheating strategy is needed to address this
issue. This study proposes a low-temperature preheating strategy based on neural network PID
control, considering temperature increase rate and consistency. In this strategy, electrothermal
films are placed between cells for preheating; battery module areas are differentiated according
to the convective heat transfer rate; a controller regulates heating power to control the maximum
temperature difference during the preheating process; and a co-simulation model is established to
verify the proposed warm-up strategy. The numerical calculation results indicate that the battery
module can be preheated to the target temperature under different ambient temperatures and control
targets. The coupling relationship between the preheating time and the maximum temperature
difference during the preheating process is studied and multi-objective optimization is carried out
based on the temperature increase rate and thermal uniformity. The optimal preheating strategy is
proven to ensure the temperature increase rate and effectively suppress temperature inconsistency
of the module during the preheating process. Although preheating time is extended by 17%, the
temperature difference remains within the safety threshold, and the maximum temperature difference
is reduced by 49.6%.

Keywords: low-temperature preheating; thermal consistency; neural network PID control; multi-objective
optimization

1. Introduction

A battery thermal management system (BTMS) is necessary for the safety and durabil-
ity of a vehicle [1,2]. A battery module’s working performance and cycle life are affected by
ambient temperature and inconsistent temperature of the batteries [3–6]. Specifically, when
the working temperature of a battery is too high [7–9], it will lead to the loss of electrolytes
and the separation of the electrode and the binder, causing irreversible damage to the
battery. Conversely, lithium ions will deposit inside the battery when the operating tem-
perature is too low, forming lithium dendrites [10,11], or internal resistance will increase,
and charging will accelerate to the cut-off voltage [12–14]. At the same time, non-uniform
temperature distribution of batteries will cause unbalanced electrical performance in the
module, affecting an electric vehicle’s power system [15]. Therefore, the battery thermal
management system must keep the battery module operating at a suitable temperature and
reduce temperature inconsistency in the batteries.

1.1. Review of Battery Thermal Management Methods at Low Temperatures

A low-temperature environment leads to degradation of the cruising range of electric
vehicles and reduction in charging efficiency [16,17]. Therefore, scholars have studied
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a variety of low-temperature preheating technologies for batteries. Low-temperature
preheating technology is divided into internal and external preheating procedures [18].
The classification of preheating techniques proposed in this study is shown in Figure 1.
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External preheating methods mainly include (a) thermal fluid preheating, (b) phase-
change material (PCM) preheating, and (c) electrothermal element techniques. Thermal
fluid preheating refers to heating air [19] or liquids [20–22], using the air or liquid as
a medium, and then transferring heat into a power battery by heat exchange. PCM
preheating [23,24] releases the stored heat in the process of converting to a solid state. An
electrothermal film [25] is generally placed on the surface of the battery. The heat generated
by the current flowing through the electrothermal film proceeds directly into the battery by
thermal conduction. In Peltier-effect [26–28] preheating, current flows through the interface
of two different conductors, and the heat is absorbed from the outside or released to the
outside. Therefore, the hot end of a Peltier module can be used to realize the preheating
function, and the intensity of preheating can be precisely controlled by adjusting the current
level. Internal heating methods mainly include (d) SHLB (Self-heating lithium-ion batteries)
preheating [29,30] and (e) current excitation techniques. In the internal preheating method,
Joule heat is generated by current passing through a conductor with a resistance value to
heat the battery. The conductor can be the battery. Depending on the positive and negative
current flow, preheating methods are divided into DC (direct current) preheating [31,32],
AC (alternating current) preheating [33,34], and pulse preheating [35]. The viscosity of
the electrolyte inside the power battery increases at low temperatures, which hinders the
movement of charge carriers, increasing the internal impedance of the power battery. The
increased impedance at low temperatures brings a huge potential for heat generation to
the battery. The conductor can also be a metal with high resistivity, such as nickel foil [29].
Self-heating techniques require a redesign of the cell structure to embed the nickel foil into
the cell [30].

Hu et al. [23] conducted research on the current development status of low-temperature
heating technology and concluded that internal heating of battery modules has the ad-
vantages of a fast temperature increase rate and good temperature consistency, but is
problematic in terms of impact on battery life and safety of use. The heat transfer character-
istics of a battery can be quantified when designing an external heating system. The main
problem is poor temperature consistency within the module [36]. The electrothermal film
preheating method can shorten the heat transfer path, reduce heat loss to the surrounding
environment, and have high efficiency and low-cost characteristics. In practical scenar-
ios, it is widely used by BTMS [35]. To study this preheating method, Zhang et al. [37]
compared to the case where the electrothermal film is arranged on the side and bottom
of the battery module. Under the same energy consumption, the side heating method
has a faster temperature rise and better temperature consistency; Lei et al. [38] conducted
simulation analysis by building a three-dimensional finite element model. By reducing the
power of the heating element and setting the resting time during the heating process, the
temperature consistency of the battery module can be improved. This method improved
the temperature consistency. However, the preheating time should be shorter. Therefore, it
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is difficult for this preheating technology to overcome the temperature inconsistency in the
battery module while ensuring the preheating rate. Chen et al. [39,40] proposed a double-
direction liquid heating-based CTC battery module and a parallel liquid cooling system
for the battery module. A multi-objective optimized design is carried out to improve the
preheating efficiency considering the heating rate, thermal safety, thermal uniformity, and
energy cost, which guides the balance of each technical factor for the thermal management
of electric vehicles.

1.2. Motivation and Contributions of This Paper

Considering the need to balance reliability and economy in the practical application
of BTMS, developing the electrothermal film preheating method is more meaningful. The
most challenging problems in employing the electrothermal film preheating method are
summarized as follows:

(1) How to solve the problem of the inconsistent battery module temperature caused
by the electrothermal film in the actual use process?

(2) How to optimize the design of this preheating method to obtain a balance of
performance indicators, such as temperature increase rate and maximum temperature
difference, that are important for ensuring effective and safe preheating of batteries at
low temperatures?

To overcome the challenges mentioned above, this study uses the neural network
PID controller to regulate the preheating power and realizes the active control of the maxi-
mum temperature difference during the preheating process of the battery module. Further,
the coupling relationship between the preheating time and the maximum temperature
difference is studied. The multi-objective optimization of the temperature increase rate
and distribution is based on the Pareto optimal theory. Finally, the verification results
indicate that the preheating strategy can ensure the temperature increase rate of the mod-
ule and effectively suppress the temperature inconsistency of each battery during the
preheating process.

1.3. Paper Organization

The remainder of this paper is structured as follows. Section 2 introduces the pre-
heating structure, modeling, and simulation analysis. Section 3 provides the design of
the temperature balancing strategy and the simulation analysis, respectively. Section 4
proposes a scheme that takes into account the temperature uniformity and the temperature
increase rate. Section 5 concludes the paper.

2. Preheating System and Simulation Analysis
2.1. Experiment and Structure of the Preheating System

The battery cell tested is the 100 Ah nickel manganese cobalt oxide (NCM) prismatic
lithium-ion battery (148 mm × 95 mm × 50 mm). The accuracy of the basic and ther-
mal parameters of the cells provided important safeguards for subsequent studies of the
modules, which were then followed by a set of experimental tests as shown in Figure 2.
During the test, the cells are weighed and the thermocouples are arranged at different
locations. An appropriate aluminum plastic film is prepared and sealed with a plastic
sealant. In addition, a series of ARC setup preparations are performed to ensure that an
adiabatic tracking test environment is provided such that the temperature within the cavity
is always consistent with the temperature of the cell. Temperature rise and heat generation
data are recorded, and the heat capacity is calculated as shown in Figure 2a. In order to
measure the thermal conductivity of the cell in different directions, a ceramic heating plate
is used for local heating to obtain temperature data of different parts of the cell. Local
heating is performed in ARC using ceramic heating pads, as shown in Figure 2b, and three
thermocouples are arranged outside the battery cell to monitor the temperature rise. The
test consists of encapsulating the battery core with aluminum plastic film and wrapping it
with insulation to prevent heat exchange with the environment. COMSOL is applied based
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on the test data to construct a 3D model for parameter sensitivity analysis and optimiza-
tion identification, and identification parameters include core thermal conductivity and
convective heat exchange coefficient. Table 1 shows the parameters obtained.
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Table 1. Physical parameters.

Items Value

Working voltage 2.5~4.2 V
Nominal capacity 101.2 Ah

Heat capacity 1001.8 J/Kg/◦C
Various thermal conductivity 22.4 W/(m·K) (x direction)

22.4 W/(m·K) (y direction)
1.15 W/(m·K) (z direction)

Battery density 2418.2 Kg/m3

Battery mass 1.7 Kg

This research focuses on the temperature distribution and consistency of the battery
modules under different temperature conditions. As shown in Figure 3, the battery module
consists of six series and two parallel connected cells, resulting in a total of 12 cells. Elec-
trothermal films are placed on the main surface of the batteries and are tightly arranged
to form a battery module. Electrothermal film is mainly composed of polyimide film and
the metal copper. The polyimide film with excellent electrical insulation and thermal
conduction is selected as the thermal jacket. The metal copper is sandwiched between two
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polyimide film layers. The power needed for preheating the battery was determined by
multiplying the maximum surface area of the battery with the upper limit of the power
density range of the electrothermal film (0.4 W/cm2). Therefore, the preheater can be
adjusted within the range of 0 to 56 W using the converter.
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2.2. Grid Independence Test

Since mesh size is known to affect simulation results, while increasing the number of
grid points is beneficial for improving the accuracy of the calculation, the calculation time
increases accordingly [41]. To optimize simulation efficiency, a grid independence test was
conducted using COMSOL Multiphysics 5.6 software (COMSOL Inc.; Stockholm, Sweden).
Five mesh schemes were tested with mesh sizes of 30,173, 59,667, 93,251, 184,487, and
460,792, respectively. The battery module was preheated by the electrothermal film with a
power of 56 W per heating element in a−30 ◦C environment for 2000 s, and the temperature
of each battery was observed using domain probes. As shown in Figure 4, errors in
temperature difference are negligible when the number of grids exceeds 184,487. Therefore,
this study selected 184,487 as the base for the grid mesh of the battery module. Regarding
the maximum temperature difference and maximum temperature in Figure 4, the maximum
temperature difference refers to the difference in temperature between the hottest and
coldest points on the battery module, while the maximum temperature refers to the highest
temperature recorded on the battery module.
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2.3. Numerical Model

During the preheating process, the battery module will not be charged and discharged;
the heat balance equation can be expressed by Equation (1):

Qh = Qba + Q f a, (1)

where Qh is the heat generated by the electrothermal film, Qba is the heat absorbed by the
battery, Q f a is the heat exchange between the battery and the environment.

During this period, the battery itself does not generate heat. The heat absorbed by the
battery comes from the electrothermal film. Therefore, heat absorbed by the battery can be
derived as follows:

Qba =
n

∑
i

Cm
dTi
dt

. (2)

In this study, we used 12 battery cells, where ‘n’ represents the number of cells, where m is
the mass of the battery cell, C is the specific heat capacity of the battery, T is the temperature
of the battery.

Convective heat transfer is considered in this study because the values of heat con-
duction and heat radiation are small and can be neglected. Heat convection is usually
calculated using Newton’s formula, which can be calculated by Equation (3):

Q f a =
n

∑
i

hiSi

(
Tamb(i) − T(i)

)
, (3)

where Q f a is the heat dissipation, h is the heat transfer coefficient, A is the area, Tamb is the
ambient temperature, T is the temperature of the battery; the n is 12 in this study.

Due to the complex internal structure and materials of the battery module, proper
simplification is required.

(1) The density and specific heat capacity of cells are homogeneous;
(2) The battery has the same thermal conductivity in the same direction.
The electrothermal film transfers heat to the battery in the form of thermal conduction,

and the unsteady heat conduction formula of the cell can be established as shown in
Equation (4),

ρC
∂T
∂t

= λx
∂2T
∂x2 + λx

∂2T
∂x2 + λx

∂2T
∂x2 + q, (4)

where q is the heat generation rate, λ is the thermal conductivity, ρ is the density.

2.4. Simulation Analysis

The temperature target is of great significance to battery thermal management, which
guides the design of a reasonable temperature threshold. Ref. [42] shows that when the
average temperature of the battery pack is maintained at 20 ◦C, the total output energy of
the battery pack is the greatest. Liu also shows that the total output energy of the battery
module has an inflection point when the maximum temperature difference is 10 ◦C severely
attenuated. Therefore, for battery thermal management in a low-temperature environment,
the average temperature needs to reach 20 ◦C, and the maximum temperature difference
within the module should be controlled within 10 ◦C.

A three-dimensional model of the battery module was constructed using COMSOL
Multiphysics 5.6 finite element analysis software, and the model was meshed before solving.
The ambient temperature was set to −30 ◦C and the power of each electrothermal film
was kept at 56 W in order to preheat the battery module to an average temperature of
20 ◦C. The temperature cloud map of the side and upper section of the battery module
is shown in Figure 5. There is a serious inconsistency in the temperature of the battery
module; the maximum temperature difference reached 16.9 ◦C, which can severely hurt
the performance of the module. The temperature distribution pattern, characterized by
lower temperatures on both sides and higher temperatures in the middle area, can mainly
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be attributed to the outer battery’s large surface area, which is in direct contact with the air.
This surface has a faster rate of convective heat transfer than the middle area, causing heat
to be more easily lost.
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preheated to 20 ◦C.

3. Temperature Balancing Strategy and Result Analysis
3.1. Balancing Strategy

According to the analysis of simulation results in Section 2.3, the electrothermal film
as a method of preheating the battery module causes a serious temperature inconsistency
problem. Therefore, the following temperature balancing strategy is designed, as shown
in Figure 6. Firstly, the battery module area should be differentiated. According to the
area of the battery placed in the fluid, the two sides of the battery module are defined
as the area with fast convection heat transfer, and the middle area of the module is de-
fined as the area with slow heat transfer. Secondly, the controller regulates the power
of electrothermal films to control the maximum temperature difference. The power of
the inner-layer electrothermal film is feedback-controlled by the temperature difference
between the inner-layer battery and the outer-layer battery, as well as the power of the
sub-inner layer electrothermal films. The outer battery is in a fast convection heat exchange
area, and heat is easily lost. Therefore, the outer-layer electrothermal film maintain the
maximum power during the preheating process. Finally, the battery temperature difference
control in the fast and slow regions of convective heat transfer is realized, and the battery
module is not charged and discharged during the preheating process. The energy for the
heater is supplied by external energy sources.
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3.2. Neural Network PID Controller

PID control is a standard method in the field of control engineering. In practical
applications, however, the controlled object often exhibits the characteristics of high nonlin-
earity, time-varying, and uncertainty, resulting in an unsatisfactory control effect. Since the
relationship between proportional, integral and differential cooperate and constrain each
other, there are infinitely many combinations in parameter tuning [43]. Neural network PID
control with the capability of online learning to realize the optimal parameter combination
can address the needs of temperature control in a complex and changing environment.

As shown in Figure 7, the PID neural network is a type of neural network that inte-
grates PID control laws into the hidden layer, where PID neurons are used as activation
functions with proportional, integral, and differential relationships. The network is con-
tinuously trained during forward and backward computation, modifying the connection
weights between neurons to optimize the control performance of the system. When training
the neural network, the first step is to initialize the network structure, including the number
of nodes in the input layer (IN), the number of nodes in the hidden layer (H), and the
number of nodes in the output layer (Out). Weight matrices (wi and wo) are then randomly
initialized, and the back-propagation algorithm is used to update the weight matrices to
minimize the difference between the control output of the network and the given reference
signal. To speed up the convergence of the weights and ensure the stability of the control
system, the momentum gradient update method is used to update the weight matrices.
This method limits the output range and ensures that the control output of the network
closely matches the reference signal. Overall, the PID neural network is an effective ap-
proach for implementing control systems that can adapt and optimize performance through
continuous learning.
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Using the incremental form of the PID control equation, the following Equations (5) and (6)
can be obtained:

U(k) = U(k− 1) + Kp[e(k)− e(k− 1)] + Kie(k) + Kd[e(k)− 2e(k− 1)− e(k− 2)], (5)

e(k) = r(k)− y(k), (6)

where U(k) is the input of the system, Kp is the proportional adjustment parameter of PID,
ki is the critical adjustment parameter of PID, Kd is the differential adjustment parameter
of PID, e(k) is the difference between the expected output value of the system and the
output value.
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According to the system’s operation, through the self-adaptation of the neural network
and the adjustment of the weighting coefficient, the three parameters output by the neural
network correspond to the PID controller parameters of the optimal control law under the
closed-loop logic.

A three-layer neural network is then adopted; the input of the input layer can be
expressed in Equation (7):

O(1)
j = x(j), (j = 1, 2, 3). (7)

The input and output of the hidden layer of the network can be derived as follows:

net(2)i (k) =
M

∑
j=0

w(2)
ij O(1)

j , (8)

O(2)
j (k) = f

[
net(2)i (k)

]
, (i = 1, 2, 3), (9)

where w(2)
ij is the weighting coefficient of the hidden layer. The activation function of the

neurons in the hidden layer is computed as the positive and negative symmetry of the
Sigmoid function, given by the following equation:

f (x) = tanh(x) =
ex − e−x

ex + e−x . (10)

The input and output of the output layer can be expressed using the incremental form
of the PID control equation, as shown in the following Equations (11) and (12):

net(3)i (k) =
Q

∑
j=0

w(3)
li O(3)

j (k), (11)

O(3)
l (k) = g

[
net(3)i (k)

]
, (l = 1, 2, 3), (12)

O(3)
1 (k) = Kp,

O(3)
2 (k) = Ki,

O(3)
3 (k) = Kd.

The output nodes of the output layer correspond to three adjustable parameters Kp,
Ki, and Kd, respectively. The activation function of the neurons in the output layer takes a
non-negative Sigmiod function as Equation (13):

f (x) =
1
2
[tanh(x)] =

ex

ex + e−x . (13)

The performance indicator function is shown in Equation (14):

E(k) =
1
2
[yd(k)− y(k)]2. (14)

The weight coefficients are adjusted using the gradient descent method to produce the
inertia equation for fast convergence of the search as Equation (15):

∆w(3)
li (k) = η

∂E(K)

∂w(3)
li

+ α∆w(3)
li (k− 1), (15)
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where η is the learning efficiency; α is the inertia coefficient.

∂∆u(k)

∂O(3)
1 (k)

= e(k)− e(k− 1),

∂∆u(k)

∂O(3)
2 (k)

= e(k),
∂∆u(k)

∂O(3)
3 (k)

= e(k)− 2e(k− 1) + e(k− 2).

(16)

Therefore, the neural network output layer weight learning algorithm can be expressed
in Equations (13) and (14):

∆w(3)
li (k) = α∆w(3)

li (k− 1) + ηδ
(3)
l O(1)

i (k), (17)

δ
(3)
i = e(k)sgn

[
∂y(k)

∂∆u(k)

]
∂∆u(k)

∂O(3)
3 (k)

g′
[
net(3)l (k)

]
. (18)

Hidden layer weighting coefficient learning algorithm expressed in Equations (19) and (20)
denotes:

∆w(2)
li (k) = α∆w(2)

li (k− 1) + ηδ
(2)
l O(1)

i (k), (19)

δ
(2)
i = f ′

[
net(3)l (k)

] 3

∑
l=1

δ
(3)
l w(3)

li (k), (i = 1, 2, 3). (20)

According to the preheating strategy formulated in this study, the COMSOL and
Simulink co-simulation model is built, in which a battery module is constructed using the
COMSOL Multiphysics 5.6 software and the controller is implemented using MATLAB and
SIMULINK 2021a. The ambient temperature is selected as −30 ◦C, the battery module is
preheated to an average temperature of 20 ◦C, and the maximum temperature difference
is 10 ◦C as the control target for simulation. Figure 8 shows the change in temperature
in each area. The battery module is preheated to an average temperature of 20 ◦C, and
the total time is 2236 s. During the preheating process, the neural network PID controller
is able to control the maximum temperature difference in the battery module. There is
no evident overshoot, and the maximum overshoot is 0.4 ◦C. At the end of preheating,
the maximum temperature difference is 9.95 ◦C, and the error from the expected value is
0.05 ◦C. Figure 9 shows the power of the electrothermal film and the controller parameter
changes. The controller adaptively adjusts the parameter Kp, Ki, Kd according to the change
in temperature difference during the process„ which in turn changes the power of the
inner-layer and the sub-inner-layer electrothermal film. This is the key to the temperature
difference being controlled to the desired value. The analyzed neural network is trained
for the performance function, and the maximum number of times is set to 30 considering
the practical situation. As shown in Figure 10, when time is 1000 s, the results show that
the score decreases rapidly in the first five generations, indicating that the method has
convergence and good performance.

In order to further explore the objective law of the strategy, the target control value
of the maximum temperature difference between 0 and 10 ◦C is set for simulation under
different ambient temperatures. Figure 11 shows that the preheating time increases as
the ambient temperature decreases, which is obvious. At the same time, at the same
ambient temperature, with the target control value of the maximum temperature difference
increasing from 0 to 10 ◦C, the preheat time is gradually reduced. This is due to the fact that
in the process of preheating to the average target temperature, as the target control value
of the maximum temperature increases, the power of the inner layer and the sub-inner
layer increases. Increasing the total power of the preheat system per unit time decreases
the preheat time.
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4. Multi-Objective Optimization
4.1. Optimization Principle

In this study, by setting the target control value of the maximum temperature dif-
ference, the goals of rapid preheating at low temperature and temperature-balancing
preheating at low temperature can be met. When the target control value of the maximum
temperature difference is set to the maximum allowable value of 10 ◦C, this is the shortest
preheating time, which is primarily targeted at the fast-preheating pre-departure appli-
cation scenario. The controller can maintain the temperature consistency of the battery
module when the target control value of the maximum temperature difference is set to 0 ◦C.
In practical application scenarios, however, both temperature-balancing and preheating
rate must be considered. In the case of battery module preheating at low temperatures,
the two subgoals of preheating rate and temperature-balancing are a pair of irreconcilable
contradictions. In terms of how to consider the preheating rate and temperature-balancing,
joint optimization is required. Multi-objective optimization is a reasonable and appropriate
method for multiple contradictory objectives and finds an optimal method that achieves the
optimal goal. With respect to multi-objective optimization indicators, the target preheating
time in this study is a cost-type indicator. The shorter the heating time, the better, while the
temperature balancing is an indicator of benefit type, that is, the higher the temperature
balance, the better.

Combined with the simulation results, it can be known that when preheating at low
temperature, the setting of the control target determines the maximum temperature differ-
ence and preheating time when preheating to the target average temperature. Furthermore,
there is functional correspondence between the maximum temperature difference and the
control target. According to Section 3.2, the error between the final control result and the
expected value for the maximum temperature difference does not exceed 0.5 ◦C. Therefore,
the sub-target temperature difference evaluation function is y1(x) = x. For the preheating
time at an ambient temperature of −30 ◦C, the relationship between it and the control
target is fitted to a fifth-order function, so the evaluation function of the heating time is
y2(x) = 0.05865x5 − 1.653x4 + 16.59x3 − 62.43x2 − 108.1x + 3652. In addition, the two
sub-goal evaluation functions refer to different objects. At the same time, the order of
magnitude is very different. Therefore, this study adopts the standardization method of the
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range method to reconstruct the evaluation function Y of the sub-goal. The standardization
Equation (21) denotes

Yi =
yi − ymin

ymax − ymin
, i ∈ M, (21)

where yi denotes the value of preheating time or temperature difference under the ith
scheme, M is the set of all schemes, Yi is the normalized value in the range [0, 1], and the
scale of normalization is chosen as the difference between the maximum and minimum
value of this data value in the selected scheme. After the index is standardized, the closer
the value is to 1, the better the effect, and the closer the value is to 0, the worse the
effect. Therefore, after standardization, the objective function of the entire multi-objective
optimization is to take the maximum value, calculated by Equation (22):

minu, (22)

where u is the objective function to be optimized. According to the importance of each
sub-goal in the objective function, weight Yi(i = 1, 2) is assigned to sub-goal λi(i = 1, 2),
the evaluation function is constructed by linear weighting. Then, the evaluation equation
of the multi-objective optimization model is as follows:

u = λ1 ∗Y1 + λ2 ∗Y2. (23)

The objective function is constructed by the linear weighting method, that is, multiple
objective functions are integrated into a single objective function through the linear weight-
ing method, which transforms the problem into a general linear programming problem. In
this study, we adopt the method of linear weighting, and the key to this is determining the
weight of each indicator. We will now explore the determination of weight coefficients.

4.2. Weight Coefficient Determination

The key to the joint optimization of the linear weighting method is to determine the
weight coefficient. The methods to determine the weight coefficient include the entropy
weight method, fuzzy analytic hierarchy process (FAHP) [44], principal component analysis
method (PVC) [45]. The entropy weight method can generally solve this problem [46]. To
evaluate the index weight of problems, the method used in this study to determine the
weight coefficient is the entropy weight method.

Table 2 shows the ambient temperature of −30 ◦C, along with the corresponding
values of preheating time and temperature difference. Entropy weighting is a method
for objectively determining weights, and the idea is to determine weights based on the
amount of variation in the indicators. Thus, if an indicator’s information entropy is lower,
it indicates that the indicator’s uncertainty is lower. Therefore, the more information
is provided, the more meaningful the role should be in the overall assessment, and the
greater the weight should be. In contrast, when an indicator’s information entropy is more
prominent, indicating that the more prominent the uncertainty in the indicator, the less
information provided, the smaller the role that should be played in the comprehensive
evaluation, and the smaller the weight should be.

To calculate the weights of the two indicators simulated at −30 ◦C, the steps are
described as follows:

(1) Data standardization
Calculated by Equation (21), the standardized data table can be obtained as shown in

Table 3.
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Table 2. The value of preheating time and temperature difference at the ambient temperature of−30 ◦C.

Preheating Time (s) Temperature Difference (◦C)

3660 0
3465 1
3330 2
3090 3
2910 4
2775 5
2640 6
2565 7
2445 8
2325 9
2236 10

Table 3. Standardized value of preheating time and temperature difference.

Standardized Preheating Time Qt Standardized Temperature Difference Q∆

1 0
0.860215 0.1
0.763441 0.2
0.591398 0.3
0.462366 0.4
0.365591 0.5
0.268817 0.6
0.215054 0.7
0.129032 0.8
0.043011 0.9

0 1

(2) The information entropy calculation of each indicator
The proportion of each data under all scenarios pi can be calculated by Equation (24):

pi =
Qi

∑n
i=1 Qi

. (24)

Then, the information entropy of each indicator can be calculated following Equa-
tion (25):

Ei = −
1

ln n ∑n
i=1 pi ∗ ln pi. (25)

The proportion of each data is shown in Table 4.

Table 4. The proportion of preheating time and temperature difference occupied.

Calculate the Proportion of Preheating Time pt Calculate the Proportion of Temperature Difference p∆

0.183024468 0
0.162434255 0.018083183
0.125829362 0.036166365
0.098375745 0.054249548
0.077785319 0.072332731
0.057195106 0.090415913
0.04575617 0.108499096

0.027453617 0.126582278
0.009151277 0.144665461

0 0.162748644
1 0
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(3) Determination of the weight of each indicator
According to the calculated information entropy, the weight of each indicator can be

derived as follows:
λi = −

1− Ei
k−∑ Ei

. (26)

The process has two metrics, therefore k = 2, the weight of the preheating time
λ1 = 0.57, the weight of the temperature difference λ2 = 0.43.

4.3. Optimization Solution

The evaluation equation of the multi-objective optimization model is minu. Then,
the target optimization problem is solved based on the genetic algorithm. The genetic
algorithm uses population search technology to solve the population as a set of problems.
It generates a new population generation by applying genetic operations such as selection,
crossover, and mutation of similar biological, genetic, and environmental factors to the
current population. It gradually optimizes the population to contain the states of the
approximate optimal solution. The genetic algorithm toolbox is used in MATLAB to realize
the Pareto optimal solution to the evaluation function minu. The optimal solution obtained
is 8.2 ◦C. When the control target is set to 8.2 ◦C, the temperature is preheated to the
target average temperature of 20 ◦C at an ambient temperature of −30 ◦C. Moreover, the
preheating speed and temperature balancing are both considered.

This study uses the ambient temperature of −30 ◦C and preheating to an average
temperature of 20 ◦C as examples. The performance of the three preheating strategies is
compared. One of the intermittent preheating strategies proposed in paper [38] proposes
preheating for 0.1 s and stopping preheating for 0.3 s, which can effectively reduce the
temperature difference. From Figure 12, it can be observed that different control strategies
affect the power distribution in the preheating process, which in turn affects the preheating
effect. Each electrothermal film is kept at 56 W during preheating without an optimal
control strategy. Although its preheating time is the smallest among the three strategies, its
maximum temperature reached 16.3 ◦C, far exceeding the safety threshold. The optimized
control strategy is used compared to that. Although the preheating time was extended by
17%, the maximum temperature difference remained within the safety threshold, and the
maximum temperature difference is reduced by 49.6%. Intermittent preheating is used.
Although the maximum temperature difference is kept at 6.2 ◦C, the smallest among the
three strategies, its preheating time reaches 9824 s. In comparison, the optimized control
strategy of the maximum temperature difference is expanded by 32%, but its preheating
time is reduced by 75.3%. It is visible, and the preheating speed is greatly improved.
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Figure 12. Comparison of the results of different preheating strategies.
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5. Conclusions

In this study, a preheating strategy is proposed that is suitable for different ambient
temperatures and can actively control the maximum temperature difference in the battery
module. The first step is to divide the area of the battery module according to the convective
heat transfer rate, and the power of the heater element in the module is feedback controlled
by the temperature difference of each layer of the battery in order to realize the control of
the maximum temperature difference within the module. Then, combined with the neural
network PID controller and the online learning ability to achieve the optimal parameters.
Finally, we investigate the coupling relationship between preheating time and maximum
temperature difference in the process. The Pareto-optimal solution of the constructed
valuation function is achieved using the genetic algorithm. The proposed low-temperature
preheating strategy, based on the optimized control objective, can effectively suppress
the temperature inconsistency in the module during the preheating process to ensure the
rate of temperature rise. We use the optimized control strategy compared to without this.
The results show that although the preheating time is extended by 17%, the maximum
temperature difference remained within the safety threshold, and the maximum tempera-
ture difference is decreased by 49.6%. Intermittent preheating is applied. The maximum
temperature difference is maintained at 6.2 ◦C, the lowest of the three strategies, but its
preheating time reached 9824 s. In comparison, while the optimized maximum temperature
difference control strategy is extended by 32%, its preheating time was reduced by 75.3%.
Future research will focus on extending the cruising range of electric vehicles based on
post-departure path planning and battery pack status at the time of departure.
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