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Abstract: Integrating photovoltaic technology has undergone significant development in recent
years, owing to its manifold advantages. One of the most recent domains where this technology has
found application is within the transportation sector. The utilization of this technology possesses
the potential to initiate a new revolution in transportation by enhancing the range and reducing fuel
consumption in vehicles. The performance of these systems is influenced by numerous factors, which
have been thoroughly examined in this study. These factors have been categorized into three broad
groups: installation site, solar cell characteristics, and environmental conditions. It is important to
note that these conditions are inherently interdependent, so this study reveals that the radiation
incident on the roof of a van can be 1.09–3.85 times greater than the radiation incident on its sides,
according to varying meteorological conditions and different seasons. The current research serves as
a valuable foundation for future investigations in this field, offering a targeted and practical overview
of the work conducted thus far and summarizing the current state of research.

Keywords: vehicles integrated photovoltaics; electric vehicles; solar cell; reduce CO2 emission

1. Introduction

Environmental pollution and its damage to human life is the primary motivation
for using renewable resources. A large percentage of this pollution is related to carbon
emissions caused by the consumption of fossil fuels in vehicles [1]. According to statistics,
more than 82 million different vehicles have been produced in 2021 [2], and the amount of
direct carbon dioxide emissions from the combustion of fossil fuels in the transportation
industry in 2021 singly is about 7.65 gigatons [3]. One of the essential solutions to reduce
carbon emissions is the production and use of electric and hybrid vehicles instead of
conventional vehicles that work with fossil fuels [4]. However, a fundamental problem of
electric vehicles is the charging time and the number of times they are charged [5].

Vehicles are usually exposed to direct sunlight, and their body can be an excellent
place to install photovoltaic cells [6]. With the progress achieved in the production and
development process of photovoltaic cells, these cells can be integrated into the body of
vehicles. This technology can fully or partially provide the required energy for electric
vehicles [7]. In addition, this technology can reduce the number of recharging times and
increase the vehicle’s range. As a suitable solution to produce electric energy needed
by vehicles from a renewable and clean source and supply their energy, this technology
can significantly contribute to the development of electric vehicle manufacturing and
promote their use [8]. Despite the numerous advantages of photovoltaic technology, it
is essential to acknowledge the various limitations that hinder its utilization in Vehicle-
Integrated Photovoltaics (VIPV) applications. For instance, certain solar cell types, such
as silicon, exhibit a considerable weight proportion attributed to the presence of glass.
Additionally, some solar cells are susceptible to fragility. Consequently, these factors
must be meticulously addressed when integrating photovoltaic systems into vehicles
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with intricate body geometries. However, it is worth noting that certain researchers have
successfully tackled this challenge by devising innovative solutions [9,10].

Since transportation is an essential part of people’s daily life, accounting for many
air pollution and carbon dioxide emissions [1,3], many researchers and industrial groups
have investigated and developed vehicles integrated photovoltaics (VIPV). Many articles
have been published on integrated photovoltaics of vehicles. Various researchers have
categorized and introduced various types of VIPV systems [11], commercial products and
laboratory samples in this field [12], methods of simulating and simplifying these systems,
etc. The number of published papers between 2011 and 2023 about VIPV that were used in
this research, can be seen in Figure 1.
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Figure 1. The number of annually published papers in 2011–2023 on VIPVs.

Figure 2 shows the actual trend in the research on this topic. The clustering algorithm,
based on the Scopus database, found that only 32 sources (journals and conferences) have
a minimum of five documents. Only journals have been selected (22 journals). For each
of the 22 journals, the total strength of the citation link is evaluated (publication and how
many times is cited by). The dimension of the source depends on the number of documents
(i.e., applied energy has 32, energies 42, energy 24). Finally, VOSviewer applied a clustering
algorithm with five main clusters in different colors (i.e., cluster 1 is red and embraces
Energy, Energies, Sustainability, IEEE Access, and lecture notes in electrical engineering,
which have different mutual citations).

This work provides a comprehensive examination of recent research by scholars, focus-
ing on the factors that influence the efficiency of integrated photovoltaic systems in vehicles.
Firstly, an in-depth review of recent projects undertaken in this field is presented, consider-
ing the types of vehicles and modes of transportation. Subsequently, a detailed analysis of
the challenges and potential associated with each case is conducted. In general, numerous
factors contribute to energy production by solar cells installed on vehicles. However, this
study categorizes explicitly and discusses the research activities carried out by scholars
in three main domains: cell installation conditions, photovoltaic cell characteristics, and
environmental/geographical conditions. The study delves into the impact of these factors
on the efficiency of integrated photovoltaic systems, providing comparative analyses. This
study will likely guide future research endeavors, enabling more focused and pragmatic
approaches to further advancements in this field.
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2. A Review of Vehicle-Integrated Photovoltaic

In recent years, the use of integrated photovoltaic systems in residential areas has
become popular due to the increase in the density and population of cities in buildings and
vehicles [13]. Among the positive points of this technology, it can be integrated into the
body of buildings and vehicles [14]. Another positive point of this technology is that the
generated electricity can be directly transferred to the car’s internal power grid and does
not need a storage system [15]. This subject is the most crucial advantage of integrated solar
vehicle systems compared to fixed parking lots equipped with solar cells [16–19]. However,
due to being in a fixed position, solar parking lots can quickly receive the highest amount
of incoming radiation using tracking systems [20–23]. While this is somewhat difficult
in vehicles due to movement, in the present work, various solutions will be presented
to increase the efficiency of these types of systems by examining the factors affecting the
efficiency of these types of systems [24].

In general, many ideas have been presented in the development of vehicle-integrated
photovoltaics and used in various applications, such as private cars [25], airplanes [26],
buses [27,28], ships, and boats [29], trains [30], and trucks [31–33]. The energy produced by
solar cells, depending on the vehicle type, can supply part of the electricity consumed by
accessories (fan, air conditioner, audio player, etc.) or even help to increase the range and
charge the battery in two modes: parking and movement [11]. For example, the electricity
generated by solar cells in ships and yachts can be used for interior lighting at night, in
food trucks to provide the electricity needed for refrigeration [31], and in vans and campers
for air conditioning in the cabin. In cars that are lighter than others, it can even increase
the driving distance and charge the batteries [12]. Of course, the energy produced by solar
cells in each vehicle can be utilized in many other ways, and the mentioned items are just
some examples of the various available applications. Another essential application of these
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systems is during natural disasters. Natural disasters, such as floods, earthquakes, etc.,
sometimes lead to power outages in households. Vehicles equipped with solar cells can
be used as a source of electricity for families affected by natural disasters. For instance,
in Japan in 2011, a truck equipped with 250 solar panels, each with a power of 20 watts
(5 kilowatts), was used for this purpose [34].

3. Effecting Parameters on Vehicles’ Integrated Photovoltaic Performance

In general, many factors affect the efficiency and performance of integrated photo-
voltaic systems of vehicles [35]. Among these factors, we can mention the driving pattern,
road conditions, atmospheric and climatic conditions, cell installation location, vehicle type,
installed cell type, internal connections, etc. For example, the body of trucks has a simpler
geometry than personal cars, and installing solar cells on it is less of a challenge [36]. On
the other hand, there is a more usable surface area for installing photovoltaic cells on trucks.
However, on the other hand, they have much weight, and due to their use for carrying
loads, they consume much energy when moving [37]. For this reason, it may not be easy
to fully supply its energy with the help of integrated photovoltaic systems. However, in
personal light vehicles, considering their lower weight and their type of use, this seems
more accessible. For example, in Figure 3a, the photovoltaic modules installed on the
car body of Sion (a product of Sono Motors) and its weekly solar array can be seen. The
power of silicon monocrystal cells used in the body of this car is 1200 WP. The results of
Figure 3b are based on Munich, Germany, and separately from cloudy and precise weather
conditions. According to these results, the range of the mentioned car in ideal conditions is
112 km per week on average, which can be increased to 245 km per week depending on the
conditions [38]. The difference in solar range values in the season, weather conditions, and
different situations show the impact of these factors on the efficiency of energy production
by photovoltaic modules installed on vehicles.

According to the mentioned cases, many factors affect the performance of integrated
photovoltaic systems of vehicles. Hence, studying and investigating the effect of these
factors and knowing them is essential in designing these types of systems. For this reason,
the research carried out in this field was analyzed in the present work by dividing it into
three general sections, including installation site conditions, photovoltaic cell conditions,
and environmental conditions.
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Figure 3. (a) Integrated solar cells and (b) Solar range of Sion per week [38].

3.1. Installation Position of PV

A large percentage of the vehicle body is exposed to sunlight, and for this reason, it has
a very good potential for installing photovoltaic cells. As mentioned in the previous section,
integrated photovoltaic cells can be integrated into the body of vehicles due to the variety
of colors, shapes, and dimensions. Usually, in most VIPV projects, photovoltaic cells are
integrated into the vehicle roof, because, here, researchers face fewer technical requirements
and installation challenges than in other places [12]. However, with the advancement of
technology and production technologies of photovoltaic cells, researchers and craftsmen
have tried to make maximum use of the outer surface of vehicles and install integrated
photovoltaic cells on different parts such as sides, hood, trunk, and even windows [39]. It is
also possible to add solar cells in a portable form or as a desired part and as a side option,
such as a canopy to boats and ships, spoilers of trucks, etc. Among the reasons for this is an
increase in installed cells and, as a result, the increased efficiency of the VIPV system [33].

In Figure 3, the amount of incoming radiation of different levels of two cars can
be seen in different conditions. The results of Figure 4a are related to the test of the
assumed vehicle along a 36 km route in Hanover, Germany (51◦59′ N, 9◦31′ E) on
31 May 2021. The supposed car has been moving or stationary on this route in different
time intervals, and the vertical gray lines are used to separate these intervals. On the
body of this car, there are 15 amorphous silicon modules (five on the roof, four on each
side, and two on the back) with a total power of 2180 Wp (the total power of the modules
installed on the roof is 875 Wp and the modules installed on the side and back are
1305 Wp) with an area of about 11.6 square meters (including the space between the
modules, this amount will be about 15 square meters) [39]. The graphs in Figure 4b
show the results obtained from the pyranometers installed on a car in Miyazaki, Japan,
along a 15 km route (31◦49′ N, 131◦24′ E). This test was conducted in clear and sunny
weather on 28 July 2018 [40]. According to these diagrams, it can be claimed that the
amount of radiation on the car’s roof is generally higher than on other parts of the car’s
body. However, the amount of this difference may vary in different conditions. Since
the incoming radiation, in addition to the location of the cell installation on the vehicle,
depends on various other factors such as weather conditions, temperature, seasonal
changes, etc. For example, according to the results of another test that was conducted
during 2019–2020 on a 21 km route located in Hanover, Germany (52◦22′28” N 9◦44′19”
E), the amount of incoming radiation on the roof of a van in different conditions can be
between 1.09 and 3.85 times the incoming radiation to its sides [41].
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3.2. PV Cell

Various types of solar cells, such as silicon crystal, thin film, multi-junction, semi-
transparent cells, etc., have been introduced or used as options for integration into vehicle
bodies. Each of the mentioned types of solar cells has different advantages and challenges
for installation and integration in the body of vehicles [6]. For this reason, in this section, from
four different aspects, the effect of geometry, material, type of internal electrical connections,
and thermal factors on the performance of different solar cells has been investigated.
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3.2.1. Shape and Geometry Design

The body of some vehicles, especially private cars, has a complex shape and many
curves. Sometimes, in these conditions, using and installing solar cells on them is a big
challenge. Additionally, this issue affects the efficiency of the solar cell and its output power.
In general, the output power of a solar cell can be calculated from Equation (1) [42]:

P = η·Irr·A (1)

Furthermore, by applying some changes in the formula of Equation (1), the power of
photovoltaic curve modules can be calculated as follows [43]:

P = f ·ACurved Sur f ace·Irrroo f ·ηPV (2)

In this equation, f is the curve correction factor, ACurved Sur f ace is the surface area of the
curved module, Irrroo f is the amount of radiation absorbed by the assumed car roof and ηPV
is the efficiency of the solar cell. All the mentioned items can be measured or pre-calculated,
but the curve correction factor will be obtained from the following equation [44]:

f = f1 f2 f3 (3)

In fact, this coefficient calculates the losses caused by the curvature of the vehicle body
and its effect on the output power of the photovoltaic cell. In this equation, f1 is the coverage
factor, f2 is the optical curve correction factor, and f3 is the uneven expansion correction
factor. The value of the coverage coefficient will be obtained from Equation (4) [40]:

f2 =
AProjected Sur f ace

ACurved Sur f ace
(4)

As can be seen in Figure 5, the blue part corresponds to the predicted area and the
gray part corresponds to the surface of the curve. According to the calculations, the value
of f2 for most commercial vehicles in the market is around 0.85 to 0.95 [43]. Furthermore,
in this figure, the calculated values of the curve correction factor for four different levels
with different values of f2 can be seen. According to this diagram, when f2 is equal to one
(that is, the predicted surface area and the body surface are equal), the value of the curve
correction coefficient will also be equal to 1.
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Figure 5. (a) Schematic of projected surface (blue part) and curved surface (gray part) [40] and
(b) calculated values for four different surfaces [44].

According to Equation (2), a range of variables, such as the type of photovoltaic cell
and its efficiency, the percentage of coverage of the curved surface with solar cells, the
area of the car body, and the amount of incoming radiation affect the performance of a
curved photovoltaic cell. Naturally, the more cells are integrated into the car body, and
the more surface of the car is exposed to sunlight, the system’s output power increases.
However, this value is different according to the physical limitations of the body and the
type of solar cell in terms of flexibility or transparency. Additionally, the curvature of
the corresponding surface causes some optical losses due to local cosine loss [45]. All the
parameters mentioned affect output power somehow. For this reason, to design a VIPV
system, it is necessary to consider all the mentioned items. Since in addition to their effect
on the output power, some cases have a mutual effect on each other. So, the number of
cells that can be integrated on the body’s surface can differ based on different conditions
because in addition to mechanical factors such as curvature and strength, optical factors,
and the discussion of the amount of incoming radiation are also essential [42].

In general, the value of each of the mentioned items can differ depending on the car
type. Using and defining dimensionless numbers for the independence of a study or a
design from different parameters or reducing their number is a convenient and popular
method among researchers. In this regard, and according to more than 200 models of
roofs of different cars, its design can be described or analyzed with the help of eight
dimensionless geometric parameters mentioned in Table 1, regardless of the car model.
Equations (5)–(7) show the relationship between the mentioned parameters. Furthermore,
for a better understanding of these parameters, the schematic of a car and its related
parameters can be seen in Figure 6 [42,43].

f (x) =
−tan(θx)

mx
|Xmx | (5)
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g1(y) =
−tan(θy1)

my1

∣∣∣∣( y
r1
)

my1
∣∣∣∣ (6)

g2(y) =
−tan(θy2)

my2

∣∣∣∣( y
r2
)

my2
∣∣∣∣ (7)

Table 1. Eight dimensionless parameters defined to describe the roof of different commercial vehicles [43].

Parameter Details

mx Order of the curve of the ridgeline in the width direction
my1 Order of the curve of the front ridge of the side
my2 Order of the curve of the ridgeline behind the side
θx Tangential angle in the width direction
θy1 Forward tangential angle
θy2 Backward tangential angle
r1 Relative distance from the top of the vehicle roof to the front end
r2 Relative distance from the top of the vehicle roof to the rear end
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3.2.2. Type and Material

In recent years, along with the development of solar cell manufacturing technologies,
various types of these cells have been launched on the market, each with specific advantages
and limitations [6]. According to recent studies, the efficiency of solar cells based on III–V is
higher than others. Furthermore, among these types of cells, the six-junction III–V cell has
the highest efficiency [46]. Generally, each solar cell’s efficiency, advantages, and limitations
are different, and depending on the conditions, they can be integrated into different parts of
the vehicle body. Additionally, according to Equation (2), the effect of the type of solar cell
on the efficiency and the percentage of photovoltaic coverage on the body’s surface directly
affects the output power of the VIPV system. As discussed in the previous section, different
parts of the car body have limitations and technical conditions and are exposed to direct
sunlight. For this reason, various solutions have been proposed for integrating different
photovoltaic cells with different efficiency and benefits. Since as much as the percentage of
covering the car body with photovoltaic cells increases, the total output power increases
because of the area in the formula. In the previous sections, the potential of different parts
of the car for installing a solar cell and the effect of its geometry on the output of the cell
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was investigated. In the following, the types of photovoltaic cells that can be used to be
integrated into different parts of the car body and the advantages and challenges of each
one have been investigated.

Crystalline silicon solar cells, as the primary and essential member of the first genera-
tion of solar cells, have become the most widely used and consumed solar cells in the world
for reasons such as high durability, good stability in different weather conditions, good
efficiency, and low price [47]. According to these cases, silicon-based crystalline solar cells
are one of the essential options for integration into vehicle bodies. On the one hand, it has
good efficiency, and on the other hand, due to the mobility of vehicles, it has good stability
for use under these conditions. Of course, it should also be noted that the relevant cell is not
flexible. Therefore, in some cases, such as personal cars, it cannot be integrated directly due
to the complexity of the geometry. For this reason, apart from direct integration, various
solutions such as removing the glass (Figure 7b) [32], thinning the cell [48], miniaturizing
and changing the cell arrangement [49], and using different materials to laminate the cell to
install solar cells on the body of vehicles have been proposed [50].
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In addition to the mentioned geometric limitations, some junctions in silicon-based
solar cells are located on the surface of the modules. In addition to shading, this issue
will occupy the existing physical space. Since the surface of the car body and the number
of solar cells that can be installed on it is limited, it is possible to use Interdigitated Back
Contact (IBC) cells as one of the configurations of Rear Contact Solar Cells. In this type of
solar cell, all or part of these connections are moved to the back of the cell and the space
occupied by the connections between the cells is reduced [51]. According to Equation (2),
the output power increases due to the increase in the coverage area of the solar cell
on the body.

Amorphous silicon solar cells, belonging to the silicon-based solar cell family, fall
under the classification of thin-film solar cells. Additionally, other solar cell variants such
as CIGS and CdTe also fall within this category. The reduced silicon amount in amorphous
silicon solar cells has resulted in a decrease in their price when compared to crystalline
cells. However, it should be acknowledged that the efficiency of amorphous silicon cells
is comparatively lower than that of crystalline cells. Nonetheless, the flexible nature of
amorphous silicon solar cells renders them highly suitable for integration into the body of
vehicles [39]. Particularly, vehicles with less complex body geometries such as trucks [33,39]
and buses [29] demonstrate significant potential for thin film solar cell integration.

According to Equation (3), in VIPV systems, factors such as vehicle body curvature,
shading factors, vehicle movement, and not being in the best position concerning the
sun, unlike fixed solar systems, lead to a reduction in the curvature correction factor, PV
surface coverage and radiation will enter, which will eventually reduce the output power
of the photovoltaic system. According to the mentioned cases, using cells with higher
efficiency and increasing the value of the solar cell efficiency parameter in Equation (2)
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influences the amount of output power and moderates the effect of these cases to some
extent. As mentioned, the highest efficiency of solar cells is related to multi-junction
solar cells [52]. These cells can be used in different modes, even with a concentrator
for integration into the body of vehicles [53]. Using a concentrator structure and lenses
with different concentrations can be effective in the amount of incoming radiation and,
ultimately, the output power of the system (Figure 8a) [49,54]. Since when direct solar
radiation decreases, this structure will be able to absorb radiation from different directions
and focus it on the solar cell. Moreover, using flexible materials in this structure can help
integrate fragile solar cells because different parts of the concentrator structure can be
produced from flexible materials so that fragile solar cells can be installed on the surface
of the car body [55]. Of course, one of the challenges of using the concentrator structure
is creating a space between the cells placed in it. One of the solutions to this challenge is
to install high-efficiency cells in the center of the lenses (such as multi-junction cells) and
fill the space between these cells with low-cost solar cells (such as conventional silicon
cells) [56]. The schematic of the proposed design (Partial CPV module) can be seen in
Figure 8b.
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However, in some vehicles, such as personal cars, windows constitute a percentage of
the body. Mentioned cells cannot be installed in these parts due to a lack of transparency
issued, blocking the passage of light that, if installed, will obstruct the mentioned items.
In addition to equipping this part with a solar cell, transparent photovoltaic (TPV) cells
can increase the output power by increasing the surface of the body covering due to the
passage of light [57]. For example, Golubev and Lunt simulated the integration of these
types of cells in the windows or the whole body to the calculation of the driving distance
with potential VIPV power (miles per year) for five different American cities by a Jeep
Grand Cherokee car (Energy Efficiency 26 kWh per 100 miles) [58]. According to these
calculations, when these cells were integrated into the entire vehicle body, this value was
between 9450 and 13,420 miles per year. When these cells were integrated only into the car
windows, the calculated value was between 3000 and 4280 miles per year. The importance
of using different types of solar cells becomes clear when known that according to these
calculations, if only silicon cells were used in the roof, this amount would be 2770 to
3700 miles per year [58].

3.2.3. Interconnections and Electrical Devices

Each solar module consists of connecting several solar cells. The type of connection
of these cells to each other in each string or for each cell can be in series or parallel and
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using different numbers of bypass diodes. Mentioned items can differ depending on
the need and the system’s expected final output. Furthermore, the number of bypass
diodes required depends on variables, such as the amount of curvature of the module,
the amount of shading, etc., because the results have shown that adding a bypass diode
in curved modules (with a greater equivalent spherical radius) can moderate the effects
of curvature on output results and cause increase output voltage [49]. For this reason,
different numbers of bypass diodes can be used in different systems according to other
system characteristics. For example, Macias et al. [59] calculated the amount of daily energy
production in kilowatt hours for two different sizes of solar cells (in the first case, 176 solar
cells, each with dimensions of 80 × 80 mm square, and in the second case, with 54 solar
cells each with dimensions of 144 × 144 mm) square) and eight different configurations.
The mentioned items were calculated in two situations without shading factors (clear sky)
and applying geometric shading. Results showed that increasing the number of bypass
diodes in flat solar cells will not necessarily improve the system’s performance [59]. Of
course, it should be noted that a vehicle-integrated photovoltaic system can be considered
a microgrid of different electrical devices and different parts [60–62]. Therefore, apart from
the effect of the internal connections of the solar cell, the efficiency and type of architecture
of all the components of this microgrid also affect the overall performance of this type of
system [11,63].

3.2.4. Temperature and Cooling Effect

All electronic systems possess a defined and specific temperature range to ensure
optimal functionality. Operating within this range is crucial, as deviating from it can
disrupt or challenge the system’s performance, ultimately impacting its efficiency [64].
Consequently, it becomes imperative to consider the appropriate temperature range for
electronic systems, including solar cells [65]. Each solar cell produced typically exhibits
a specific coefficient, indicating the influence of temperature variation on the system’s
performance per degree. This aspect is also pertinent to Vehicle-Integrated Photovoltaic
(VIPV) systems [66]. Figure 9 illustrates the impact of elevated module temperature on the
open circuit voltage of a VIPV system for two distinct vehicles. As depicted, an increase in
module temperature leads to a decrease in the open circuit voltage value of the VIPV system.
However, it is worth noting that VIPV systems possess an advantageous characteristic when
compared to fixed photovoltaic systems: the presence of a convection current generated by
the moving vehicle, which positively influences the cooling process and aids in temperature
control of the VIPV system [67].

3.3. Environmental Conditions

So far, the influence of various factors, such as the type and geometry of the solar cell
and its installation location, on the performance of an integrated photovoltaic system of
vehicles has been studied. However, besides these things, for the proper design of a VIPV
system, one should pay attention to variables such as climate, weather conditions, shading
factors, etc. [68]. According to the mentioned conditions, the amount of incoming radiation
and, as a result, the efficiency of the integrated photovoltaic system of vehicles will have
different values [69]. For example, Golubev and Lunt [58] calculated the efficiency of a
photovoltaic system integrated into the roof (the area of the roof of the car was 2.6 m2) of
a Jeep Grand Cherokee. They simulated the integration of a typical silicone panel on the
roof of this car for one day in Phoenix, Arizona. They first calculated efficiency according
to the amount of daily radiation without considering the effect of the radiation angle and
temperature, and, in the next step, they applied these effects respectively, which decreased
efficiency from about 20% to about 16% [58].
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As mentioned in the previous sections, the amount of incoming radiation differs
for car parts, such as the roof and sides. However, the amount of this difference will
vary according to different conditions. Among these things are the conditions of the
driving route [70]. For example, in Figure 10, the ratio of the incoming radiation to
the roof to the incoming radiation to the car’s sides can be seen for different condi-
tions. The results of this graph are for a van on a 21 km route in Hanover, Germany
(52◦22′28′ ′ N 9◦44′19′ ′ E). The mentioned route has been chosen to have the actual city
driving conditions and different situations that can be experienced. The test route is divided
into the following categories (in the first two cases, the average height of the buildings is
15 m with a standard deviation of 6.5):

• Narrow streets with high building density with a speed limit of 30 km/h (the height
of the building is greater than the distance between the vehicle and the building)

• Wide, slow-moving streets such as alleys and streets with more than one lane in each
direction, with a speed limit of 50 km/h (the height of the building is greater than the
distance between the vehicle and the building)

• Wide, fast streets with no adjacent buildings (but with several overpasses)

Of course, the assumed test path has been chosen so that for each category of men-
tioned cases, it exists equally in different directions of north–south (and vice versa) and
west–east (and vice versa). The duration of each test varied between 40 and 55 min accord-
ing to traffic and conditions. According to Figure 10, radiation is generally higher in sunny
weather than in cloudy weather. Additionally, the radiation in cloudy weather has much to
do with the season. Since the amount of radiation in winter is not much different in cloudy
and sunny weather, in summer, the amount of radiation in sunny weather is about eight
times that in cloudy weather [41].
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Figure 10. Ratio of irradiance to roof of the car compared to sides (%) in different conditions and in
(a) cloudy (b) sunny weather [41].

4. Conclusions

In the present work, various factors affecting the performance of an integrated photo-
voltaic system of vehicles were investigated. These factors were studied in three general
categories: installation position, solar cell, and environmental conditions. Each of the
reviewed items is interdependent and cannot be separated. Since according to different
conditions, the output of a VIPV system will be different. In general, the three main factors
of photovoltaic cell coverage percentage on the body, the amount of incoming radiation,
and photovoltaic cell efficiency should be considered to improve the performance of a VIPV
system. For example, environmental factors such as atmospheric and climatic conditions,
driving patterns, driving route conditions, and shading factors directly affect the amount
of incoming radiation. In general, the amount of incoming radiation on the car roof is
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higher and requires the definition of lower standards for installing and integrating solar
cells. However, due to the increase in the body’s surface covered with solar cells, other
parts of the body were also considered. However, the amount of incoming radiation to
these two areas differs in different conditions and significantly depends on environmental
and atmospheric conditions. Since the Solar Altitude is lower in winter than in summer, the
direct radiation to the roof is reduced. However, in cloudy conditions, the emission of light
is higher and compensates for some of this decrease due to the increase of scattering in the
atmosphere. Generally, the average radiation on the sides is about 43.1% of the average
radiation on the roof. Of course, this value reaches about 92% in sunny winter and 26% in
sunny summer conditions.

Each type of solar cell has advantages and challenges for integration into vehicle bodies.
Therefore, the progress of various manufacturing technologies and the development of
photovoltaic cells have led to the production of cells with higher efficiency. On the other
hand, flexible and transparent solar cells can also help to increase the coverage of the car
body with solar cells. Various other methods can help increase the body’s surface with a
solar cell or its efficiency. Due to occupying some of the space in front of the cells by the
internal connections, transferring them to the space behind the cells not exposed to the sun
can improve the system’s performance (IBC solar cells). On the other hand, some solar
cells may cause a challenge in the integration process due to their fragility, and variables
such as miniaturizing the cells and, changing their arrangement, using different laminate
methods for the polymer base layer and concentrator structure have been suggested. The
use of the concentrator structure in cloudy weather conditions, when direct radiation is
reduced, is also suitable for increasing the incoming radiation to the cells integrated into
the roof of the car.
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