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Abstract: Collision avoidance has been widely researched in the field of intelligent vehicles (IV).
However, the majority of research neglects the individual driver differences. This paper introduced a
novel personalized collision avoidance control (PCAC) strategy for IV based on driving characteristics
(DC), which can better satisfy various scenarios and improve drivers’ acceptance. First, the driver’s
DC is initially classified into four types using K-means clustering, followed by the application of the
analytic hierarchy process (AHP) method to construct the DC identification model for the PCAC
design. Then, a novel PCAC is integrated with a preview-follower control (PFC) module, an active
rear steering (ARS) module, and a forward collision control (FCC) module to ensure individual
requirements and driving stability. Moreover, simulations verified the validity of the developed
PCAC in terms of path tracking, lateral acceleration, and yaw rate. The research results indicate that
DC can be identified effectively through APH, and PCAC based on DC can facilitate the development
of intelligent driving vehicles with superior human acceptance performance.

Keywords: collision avoidance; driving characteristics; K-means clustering; analytic hierarchy process
method; adaptive model-predictive control; intelligent vehicles

1. Introduction

Intelligent vehicles (IV), equipped with advanced driving assistant systems (ADAS),
are the best way to improve traffic efficiency, reduce collisions, and achieve self-driving.
However, complex traffic situations, unexpected objects, and different driving styles could
easily induce crash accidents [1]. Therefore, collision avoidance is one essential issue
in the development of IV. Early collision avoidance strategies, such as active emergency
brake (AEB), forward collision warning (FCW), and adaptive cruise control (ACC), are
mainly focused on longitudinal control [2–4]. It cannot achieve all driving conditions at
this stage. Meanwhile, driver and IV will exist simultaneously in the long future. The
driving characteristics (DC) of different individuals are an essential factor that affects
the performance of collision avoidance controllers (CAC) [5]. For this reason, the DC is
becoming a mainly considered aspect of CAC design.

The study on driving characteristics and self-driving for IV has become even more
popular in recent years [6,7]. Presently, humans need to intervene timely according to
the request of the vehicle decision module for quite some time as IV can only handle
some instruction in a specific context. Autonomous collision avoidance faces challenges in
complex environments for IV [8,9]. The integral design thinking for CAC involves initial
path planning followed by precise path tracking [10]. Claussmann et al. [11] reviewed the
most representative methods for path planning. Yim et al. [12] discussed the active steering
methods for path tracking, such as active front steering (AFS) [13], four-wheel independent
steering (4WIS) [14], and active rear steering (ARS) [6]. However, without considering the
effects of DC, these methods lack some accuracy.

World Electr. Veh. J. 2023, 14, 158. https://doi.org/10.3390/wevj14060158 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj14060158
https://doi.org/10.3390/wevj14060158
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0001-7022-3523
https://orcid.org/0000-0003-1605-7573
https://doi.org/10.3390/wevj14060158
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj14060158?type=check_update&version=1


World Electr. Veh. J. 2023, 14, 158 2 of 22

To further consider the effects of DC, Guo et al. [15] reviewed and analyzed the
application of the driving assistance system and man–machine co-driving cooperation
control based on the research results of driving characteristics. Yi et al. [16] developed a
personalized assistance system by observing different drivers performing the same op-
eration at intersections. Zhu et al. [17] divided the drivers of autonomous vehicles into
adaptive drivers and non-adaptive drivers and proved that the traffic capacity improved
with the increase in the number of adaptive drivers. Li et al. [18] established a human-
like trajectory-planning method of IV based on a cyclic neural network. Zhu et al. [19]
designed a human-like autonomous car-following model with deep reinforcement learn-
ing. Yang et al. [20] developed an automated highway driving decision considering driver
characteristics. Jiang et al. [21] designed a personalized driver model, including a longi-
tudinal driving behavior model and a lateral lane-change trajectory-planning model by
analyzing the driving habits of different drivers. These methods have greatly improved
driver adaptability, but they neglect driving safety issues.

When implementing CAC in reality, the driving characteristics cannot be assumed and
must be extracted from data. To further identify DC, Wang et al. [22] used the parameters
of time headway, the inverse of the time to the collision to distinguish driver characteristics,
and the K-means clustering algorithm to classify driving behavior. Zong et al. [23] defined
a driver characteristics identification model by using the neural network method, and
the parameters of steering wheel speed and average velocity are used to characterize
driving characteristics. Wang et al. [24] presented a novel framework for driving style
analysis based on a Bayesian non-parametric approach. Zhu et al. [25] introduced a random
forest model to establish a driving style identification strategy according to the hierarchical
clustering theory. Zou et al. [26] employed a support vector machine to identify the driving
styles, which is more objective than traditional studies on driving characteristics that
are partially subjective and may have issues with calibration accuracy, training sample
labels, and identification results. Compared to traditional DC studies, many previous
works of machine learning (ML) have been utilized [27,28]. Guo et al. [29] developed
a hybrid unsupervised deep learning model for driving behavior recognition. These
machine learning techniques presuppose a balanced dataset, but in most cases, the data are
imbalanced. Therefore, directly applying these methods may lead to a loss of accuracy.

Motivated by the above discussion, this paper develops a novel PCAC strategy with
active security cooperative control. The architecture of the PCAC is comprised of percep-
tion sensors together with a decision layer, a control layer, and a chassis actuator. The
innovations are summarized as follows:

• Unlike the previous work [26] that only collected DC data under a DLC condition,
our study designed five test scenarios for data collection: road construction, the
bus station, crossing pedestrians, opposite lane motorcade, and stopped taxi. We
adopted K-means clustering to classify DC and used AHP to identify it. The first stage
evaluation includes speeding range, brake deceleration, velocity SD, and time ahead
of turn signal with varying weightage;

• Unlike the works [6,12–14] that design the CAC through pure steering or braking
control, this article proposed a PCAC incorporating personalized driver preferences
as a key design factor. Specifically, the PCAC is tailored to individual driving habits
while ensuring optimal driving stability;

• To validate the proposed PCAC based on DC, the PFC model with different DC based
on lateral acceleration feedback (LAC), ARS with different DC based on Adaptive
model-predictive control (AMPC), and FCC with different DC based on fuzzy PID are
respectively designed. Simulation results demonstrate that the proposed PCAC not
only effectively avoids collisions but also enhances drivers’ acceptance. Furthermore,
the proposed PCAC improves driving stability and acceptance for both steady and
general drivers, particularly in high-speed conditions.

The remainder of this paper is organized as follows. Section 2 designs the driving
characteristics identification method. The structure of the PCAC is designed in Section 3.
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Simulations based on the driving simulator and CarSim software are shown in Section 4.
Section 5 presents the conclusions.

2. Driving Characteristics Classification and Identification

Every driver has a unique driving characteristic, also referred to as driving style, which
needs to be classified before identification [30]. In this section, driving characteristics are
classified into four types by the K-means clustering algorithm and identified by the analytic
hierarchy process (AHP) method later. Typically, driving characteristics are characterized
by a large number of driving parameters. The first stage evaluation indexes of over-speed
range, brake deceleration, velocity SD, and time ahead of turn signal are an accumulation
from the solution layer to the criterion layer. The structure of DC identification is shown in
Figure 1.
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2.1. Driving Characteristics Classification Model

To reach a viable classification of the DC, it is necessary to select feasible evaluation
parameters that can describe it.

2.1.1. Evaluation Parameters

To evaluate the DC, the driver’s operation (acceleration, deceleration, steering, shifting,
and braking) can reflect the level of safety consciousness of drivers and the ability of
collision avoidance. The driver’s operation behavior parameters and vehicle dynamics
parameters are taken as the basic indexes to evaluate the DC.

In terms of operation behavior, indicators such as accelerator, steering, brake, and time
ahead of turn signal are mainly considered. In this paper, overspeed, brake deceleration,
velocity SD, and time ahead of the turn signal are used as the evaluation indexes.

2.1.2. K-Means Clustering Algorithm

According to the selected indicators, DC is classified using the K-means clustering
algorithm [26]. Five test scenarios are employed based on typical traffic design principles:
road construction, bus station, crossing pedestrians, opposite lane motorcade, and stopped
taxi. The driving styles are classified using the first three principal components (overspeed,
brake deceleration, and velocity SD) under the bus station and stopped taxi scenario. After
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numerous calculations, a more precise classification is attained, resulting in the division of
DC into four distinct categories as

DC = {steady, general, general radical, radical} (1)

The process flow of K-means clustering is illustrated in Figure 2.
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2.2. AHP Method

The analytic hierarchy process (AHP) [31,32] is a powerful tool for decision-making
situations that enables the determination of the weight of each evaluation index.

2.2.1. Hierarchical Structure

First, define a problem, such as DC recognition, then structure the hierarchy from
the top with the target. Next, target through the criterion levels (first stage evaluation
indexes of over-speed, brake deceleration, velocity SD, and time ahead of turn signal) to the
solution level (5 test scenarios). The step hierarchy diagram for the driving characteristics
recognition model is shown in Figure 3.
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2.2.2. Relative Weigh

Experts’ opinions on the factors were considered when determining the relative weigh-
tage of individual criteria. The AHP process includes a scientific research team consisting of
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six experts. The target layer, criterion layer, and solution layer are represented by symbols.
Table 1 represents the general judgment matrix.

Table 1. Comprehensive judgment matrix.

Ak B1 B2 B3 B4

B1 b11 b12 b13 b14
B2 b21 b22 b23 b24
B3 b31 b32 b33 b34
B4 b41 b42 b43 b44

Ak is the target element, Bi is the selected criteria, and bij is the priority score given to each criterion.

These coupled comparisons enable the development of a coupled comparison matrix
that evaluates the sensitivity of each criterion in DC. The eigenvectors of the judgment
matrix are obtained by the root value method [32] as:

φi =
n

√
n

∏
i=1

bij(i = 1, 2, · · · , n) (2)

Determine the largest matrix eigenvalue as:

λmax =
n

∑
i=1

(
B ∗ φ

)
i

nφ
(3)

Then normalizing the eigenvector of the λmax as:

φi =
φi

n
∑

i=1
φi

(i = 1, 2, · · · , n) (4)

To evaluate the consistency of the experts’ scoring, the consistency ratio PCR is de-
signed as:

PCR =
CI
RI

(5)

where RI is a random index (detailed value reference [27]), n is the order of the judgment
matrix, CI is the consistency index, and CI = (λmax − n)/(n− 1).

Based on the weight of each index, the following DC identification model is established as:

A =
4

∑
i=1

[biBi] (6)

Bi =
n

∑
j=1

(
cijCij

)
(7)

where i = 1, n = 5; i = 2, n = 3; i = 3, n = 3; i = 4, n = 2.

2.2.3. Judgment Criteria

When applying AHP to identify DC, the judgment criteria for each indicator in the
criterion layer after K-means clustering are as follows.

• Over-speed

The characteristics of over-speed are classified and further scored: with a speed that is
15 to 20 percent over the limit, it is considered Radical, scoring 40; 10 to 15% over the limit,
considered General Radical, scoring 60; 5 to 10% over the speed limit, considered General,
scoring 80; less than 5%, considered Steady, scoring 100;
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• Brake deceleration

The brake deceleration of the driver is classified and scored: Greater than 4 m/s2 is
considered to be Radical, scoring 40; 3 to 4 m/s2 is considered General Radical, scoring 60;
1 to 3 m/s2 considered General, scoring 80; less than 1 m/s2 considered Steady, scoring 100;

• Velocity SD

The standard deviation (SD) of the velocity is classified and scored: Greater than
12 km/h is considered to be Radical, scoring 40; 8 to 12 km/h is considered General Radical,
scoring 60; 1 to 8 km/h considered General, scoring 80; less than 4 km/h considered Steady,
scoring 100;

• Time ahead of turn signal

The time ahead of the turn signal is classified and scored: Less than 1 s is considered
Radical, scoring 40; 1 to 2 s is considered General Radical, scoring 60; 2 to 3 m/s2 is
considered General, scoring 80; greater than 3 s considered Steady, scoring 100.

3. Personalized Collision Avoidance Control Design

The PCAC is a two-layered structure, which is composed of PFC, ARS, and FCC. The
general framework of PCAC is shown in Figure 4.
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3.1. Collision Avoidance by Preview-Follower Control

The preview-follower control (PFC) by LAC is designed in Figure 5.
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The relations of the preview distance ∆dp and preview time T can be described as:

T = ∆dp/vx (8)

where vx is the vehicle speed.
After T, the lateral position error can be eliminated as [6]:

∆y∗i = y(t + T)− yd(t) =
.
y(t)T +

1
2

a∗yT2 = 0 (9)

where a∗y is the desired value of ay, yd, and y that are ideal and real side displacements.
The ideal lateral acceleration is designed as:

a∗y = 2
y(t + T)− y(t)− .

y(t)T
T2 (10)

To achieve a∗y , the desired steer angle δ∗f can design as [6]:

δ∗f =
a∗y

Gay
(11)

where Gay = v2
x

l(1+Kv2
x)

.

Coefficient ψs is given by

ψs =
∆dp

∆dsafe
(12)

where preview distance ∆dp varies with different drivers.
In this paper, we classify drivers by four types of DC (steady, general, general radical,

and radical), which makes it easier to analyze the effect of preview distance ∆dp on PFC. The
lateral acceleration and path-tracking responses are evaluation indices for driver acceptance
and PFC efficiency. A block diagram of the PFC model based on LAC is shown in Figure 6.
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3.2. Collision Avoidance by Active Rear Steering Control

The ARS control based on AMPC is illustrated in Figure 7, where the inputs of AMPC
include vehicle speed, steering angle, and yaw rate.
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For the two-DOF linear vehicle model equipped with four-wheel steering (4WS), Fig-
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For the two-DOF linear vehicle model equipped with four-wheel steering (4WS),
Figure 8 illustrates its schematic diagram. For the purpose of analysis, we also make certain
simplifying assumptions. The direct angles of the front and rear wheels are utilized as
inputs. The righting torque influence is not taken into account; it only considers lateral
motion and yaw motion. Therefore, the lateral and yaw motion can be mathematically
expressed, as:  m

.
vy +

(kf+kr)vy
vx

+
(

mvx +
lfkf−lrkr

vx

)
· γ = kfδf + krδr

Iz
.
γ +

(l2
f kf+l2

r kr)γ

vx
+

(lfkf−lrkr)vy
vx

= lfkfδf − lrkrδr

(13)

where kf and kr are the vehicle cornering stiffness, m is the mass of the IV, vx and vy are the
longitudinal and lateral velocities, lf and lr are the distances from CG to the front and rear
axles, respectively, δf and δr are the steering angle of the front and rear wheels, Iz is the yaw
moment of inertia, and γ is the yaw rate.
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The global coordinates in Y axis are transferred as follows:

.
Y =

.
x sin ψ +

.
y cos ψ = vxψ + vy (14)

where ψ is the yaw angle,
.

Y is the vehicle velocity in global coordinates Y axis, and it is
known that .

ψ = γ (15)

Written in the state equation of Equations (13)–(15), as:

.
x = Ax + Bu (16)

where the state vector x = [vy γ Y ψ]T, and the input vector u = [δf, δr]T,

A =


−1
mvx

(kf + kr) − lfkf−lrkr
mvx

− vx 0 0

− lfkf−lrkr
Izvx

− l2
f kf+l2

r kr
Izvx

0 0
1 0 0 vx
0 1 0 0

,B =


kf
m

kr
m

lfkf
Iz
− lrkr

Iz
0 0
0 0


Discrete state space of Equation (16) as

x(k + 1) = Â · x(k) + B̂ · u(k) (17)
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where Â = ∆TA+I, B̂ = ∆TB, and x(k), x(k+1) are output states at time k, k + 1; ∆T is
discretization time.

The states of the future P are:

x(k + P|k ) = ÂP · x(k) +
P−1

∑
i=0

ÂP−1−i B̂ · u(k + i|k ) (18)

Then,
Xk = φx(k) + ϕUk (19)

where φ =
[
Â, A2 · · · AP]T ,ϕ =


Â1−1B̃ · · · 0 0
Â2−1B̃ Â2−2B̂ · · · 0

...
...

. . .
...

ÂP−1B̃ ÂP−2B̂ · · · ÂP−P B̂

.

The sequence of reference Rk is

Rk =
[
rref(k + 1)T , rref(k + 2)T , · · · , rref(k + P)T

]T
(20)

where rref = [Yref, γref].
Then, define a minimization function J as:

J(Uk) =
Np

∑
i=1
||Xk − Rk ||2Q +

Nc−1

∑
i=0
|Uk|2R (21)

where Q and R are the weight matrices, Np and Nc are the predictive and control step lengths.
Then, the optimization problems for ARS control as:

min
∆u,ε
{J(x(t), u(t− 1), ∆u(t))} (22)

Subject to : x(k + 1) = Â · x(k) + B̂ · u(k)
vx(k + 1) = vx(k)

umin(k) ≤ ut(k) ≤ umax(k)
∆umin(k) ≤ ∆ut(k) ≤ ∆umax(k)

ay,min − ε ≤ ay ≤ ay,min + ε

where ε > 0.
The reference value of yaw rate γref is given by [33]:

γref = min
{

vx

l(1 + Kv2
x)
· δf ,

µg
vx

}
(23)

3.3. Forward Collision Control

The architecture of the forward collision control (FCC) based on fuzzy-PID is shown
in Figure 9.

For safe collision time Tsc of FCC design, the value is often set as 2.4 s. Three DC
levels (radical, general, and steady) are used to analyze the influence of DC on FCC and
set ζs = {0.8,1,1.2}. To guarantee drivers’ acceptance, define the collision time by a collision
risk coefficient ζs as:

TSC = ζs
∆d
∆v

(24)

where ∆d and ∆v are the relative distance and speed between the main vehicle and the
obstacle, respectively.
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Figure 9. FCC based on fuzzy-PID. 
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Figure 9. FCC based on fuzzy-PID.

To achieve the design of FCC, a fuzzy-PID is used. The interval changing of parameters
(∆Kp, ∆Ki, ∆Kd) is obtained by fuzzy control. The required braking output of the FCC is
as follows:

Tb =
(
Kp + ∆Kp

)
e + (Ki + ∆Ki)

∫ t

0
edt + (Kd + ∆Kd)

de
dt

(25)

For the design of fuzzy control, seven conditions are considered for fuzzification.
The linguistic variables of the input and output variables are classified as negative big
(NB), negative middle (NM), negative small (NS), zero (ZO), positive small (PS), positive
middle (PM), and positive big (PB). The vehicle is tested in Carsim with a safety range
from 0 to 120 m. The basic theoretical domain for the error is [−6, 6]. Additionally, the
same quantization objective is applied in the establishment of trigonometric membership
functions and setting the theoretical domains for input and output variables as [−6, 6].
The initial values for Kp, Ki, and Kd are 1, 0.001, and 0.1, respectively. The fundamental
theoretical ranges for ∆Kp, ∆Ki, and ∆Kd are [1, 10], [0.001, 0.01], and [0, 2], respectively.
Figure 10 shows the membership functions of the input/output variables.
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Figure 10. Membership functions for FCC in fuzzy control: (a) input variables of e/ec; (b) output
variables of ∆Kp/∆Ki/∆Kd.

Fuzzy rules must consider both dynamic error and overshoot. When the relative
distance error is minimal, prompt deviation reduction is imperative to ensure that the
vehicle attains a safe distance expeditiously. The fuzzy rules are given in Table 2.

3.4. PCAC by PFC, ARS, and FCC

The detailed personalized collision avoidance control scheme for IV integrated with
PFC, ARS, and FCC is designed in Figure 11.
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Table 2. Fuzzy rules.

∆Kp/∆Ki/∆Kd
e/ec

NB NM NS ZO PS PM PB

NB PB/NB/PS PB/NB/NS PM/NM/NB PM/NM/NB PS/NS/NB ZO/ZO/NM ZO/ZO/PS
NM PB/NB/PS PB/NB/NS PM/NM/NB PS/NS/NM PS/NS/NM ZO/ZO/NS NS/ZO/ZO
NS PM/NB/ZO PM/NM/NS PM/NS/NM PS/NS/NM ZO/ZO/NS NS/PS/NS NS/PS/ZO
ZO PM/NM/ZO PM/NM/NS PS/NS/NS ZO/ZO/NS NS/PS/NS NM/PM/NS NM/PM/ZO
PS PS/NM/ZO PS/NS/ZO ZO/ZO/ZO NS/PS/ZO NS/PS/ZO NM/PM/ZO NM/PB/ZO
PM PS/ZO/PB ZO/ZO/NS NS/PS/PS NM/PS/PS NM/PM/PS NM/PB/PS NB/PB/PB
PB ZO/ZO/PB ZO/ZO/PM NM/PS/PM NM/PM/PM NM/PM/PS NB/PB/PS NB/PB/PB
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Figure 11. Detailed PCAC scheme.

The decision layer must be supported by ADAS sensors, reference data, and recognized
driving characteristics. The control layer is operated by the decision layer. The PCAC is
being integrated with FPC via LAC, ARS through AMPC, and FCC means of fuzzy-PID.
Table 3 illustrates the PCAC strategy.

Table 3. Personalized collision avoidance control strategy.

Control Model Selection Conditions FPC ARS FCC

1 ∆γ < ∆γs, ay < ays, DC∈{general radical, radical} Open Close Close
2 ∆γ < ∆γs, ay < ays, DC∈{steady, general} Open Close Open
3 ∆γ > ∆γs, ay < ays, DC∈{general radical, radical} Open Open Close
4 ∆γ > ∆γs, ay < ays, DC∈{steady, general} Open Open Open
5 ∆γ > ∆γs, ay > ays, DC∈{steady, general} Open Open Open
6 ∆γ > ∆γs, ay > ays, DC∈{general radical, radical} Open Open Close

FPC: preview-follower control; ARS: active rear steering; FCC: forward collision control.
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4. Results and Discussion

To validate the proposed PCAC for IV, the DC will first be evaluated through a driving
simulator, followed by an assessment of the PCAC strategy using virtual simulations. The
CarSim vehicle model is utilized for test IV, which involves double lane change (DLC)
maneuvers at speeds of 80, 100, and 120 km/h. The virtual simulation parameters are
presented in Table 4.

Table 4. Simulation parameters.

Parameter Description Value/Unit

m Vehicle mass 2370 kg
ms Sprung mass 2100 kg
muf, mur Front, rear unsprung mass 120, 150 kg
lf, lr Front, rear axle distance to CG 1.180, 1.695 m
twf, twr Wheel track width of front, rear axle 1.655, 1.650 m
kf Front axle cornering stiffnesses 110,367 N/rad
kr Rear axle cornering stiffnesses 70,287 N/rad
h CG height to ground 0.720 m
hs Height of CG from roll center 0.340 m
rw Wheel roll radius 0.390 m
Iz, Iy, Ix Yaw, pitch, roll moment of inertia 2687, 2687, 894.4 kg·m2

g Acceleration due to gravity 9.81 m/s2

µ Road adhesion coefficient 0.85

4.1. DC Evaluated by Driving Simulation Platform

In this section, the DC is assessed using a sample of 16 subjects in the selected
test scenario.

4.1.1. Typical Traffic Scenarios Design

The designed scenario for the DC evaluation is illustrated in Figure 12, comprising
five distinct test scenarios: road construction, bus station, crossing pedestrians, opposite
lane motorcade, and stopped taxi, respectively.
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• Road construction scenario

Drivers should change lanes to navigate through the construction area. Drivers with
steady characteristics will anticipate the situation ahead of time, heed deceleration signs,
and reduce speed for a smooth transition. Conversely, radical drivers may attempt to pass
at high speeds or make sudden decelerations. The road construction scenario is shown in
Figure 13a;
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• Bus station scenario

The traffic characteristics of city buses involve frequent personnel embarkation and
disembarkation during their start and stop operations. When a bus is parked at a station
with a crosswalk in front, the steady characteristics drivers will anticipate its presence and
reduce speed accordingly to ensure smooth operation. Conversely, radical drivers may
abruptly decelerate or recklessly pass the bus at high speeds. The bus station scenario is
shown in Figure 13b;

• Crossing pedestrians scenario

On a residential road, be cautious of pedestrian crossings that may pose traffic hazards.
Vehicles must come to a stop at zebra crossings when pedestrians are present for safe
driving. The crossing pedestrians scenario is shown in Figure 13c;

• Opposite lane motorcade scenario

Motorcades traveling in the opposite lane are a common occurrence on urban roads.
Conservative drivers should reduce their speed, while radical drivers typically take no
action. The opposite lane motorcade scenario is shown in Figure 13d;
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• Stopped taxi scenario

In this scenario, the taxi comes to a halt at the roadside. Drivers with steady character-
istics will decelerate in advance, maintain adequate distance, and endeavor to avoid abrupt
braking. The scenario is shown in Figure 13e.

4.1.2. Driving Data Collection

To obtain the driver’s data for DC identification, a vehicle–road cooperative test and
simulation platform is utilized, as depicted in Figure 14. A total of 16 drivers (14 male and
2 female) were selected, and their detailed information can be found in Table 5.
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Table 5. Basic driver information.

Driver No. Sex Age Driving Years Testing No. Driver No.

D01 male 38 10 1 D01
D02 male 40 8 2 D02
D03 male 46 11 3 D03
D04 male 32 10 4 D04
D05 male 36 8 5 D05
D06 male 28 8 6 D06
D07 male 29 3 7 D07
D08 male 31 2 8 D08
D09 female 44 18 9 D09
D10 male 46 20 10 D10
D11 female 46 5 11 D11
D12 male 34 12 12 D12
D13 male 27 7 13 D13
D14 male 40 8 14 D14
D15 male 43 8 15 D15
D16 male 39 4 16 D16

The maximum deceleration, maximum, and minimum longitudinal speed of 16 drivers’
testing data under the same bus station scenario are collected in Figure 15.

It can be seen from Figure 15 that the 16 drivers have different handling characteristics
in the same condition, and the outputs of vehicle state response are also varied greatly.

4.1.3. DC Classification by K-Means Clustering

The four cluster centers of DC are the steady type (0.02, 1.28, 1.20), the general type
(0.07, 0.55, 2.63), the general radical type (0.17, 1.30, 5.24), and the radical type (0.18, 4.35,
12.30). The results of K-means clustering are shown in Figure 16.
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The classification results of the criterion layer parameters B1, B2, and B3 from the five
scenarios are shown in Figure 17.
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4.1.4. DC Identification by AHP

The index weights for the criterion and solution layers, as determined by AHP, are
presented in Table 6.
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Table 6. Evaluated index weights of criterion and solution layer.

A Bi bi Cij cij Weights

DC

B1 0.293

C11 0.198 0.058

C12 0.212 0.062

C13 0.208 0.061

C14 0.231 0.067

C15 0.151 0.045

B2 0.267

C21 0.238 0.064

C22 0.183 0.049

C23 0.179 0.048

C24 0.265 0.070

C25 0.135 0.036

B3 0.248

C32 0.336 0.083

C33 0.312 0.078

C34 0.352 0.087

B4 0.192
C41 0.534 0.103

C45 0.466 0.089

The identification results of the driver’s DC based on the AHP method are shown in
Table 7.

Table 7. DC identification results.

DC Types Identified by AHP Identified by Expert System

Steady No.3 No.3
General No.7, 9, 10, 12, 13, 15 No.7, 9, 10, 12, 13

General radical No.4, 5, 8, 11, 16 No.4, 8, 11
Radical No.6 No.5, 6, 16

It can be observed that the prediction accuracy by AHP is high compared with an
expert system [34]. Therefore, it concluded that the DC identification model demonstrates
strong efficacy.

4.2. PCAC by PFC, ARS, and FCC

In this section, the performance of the designed PCAC will be evaluated numerically
through simulations utilizing various methods.

4.2.1. PFC with Different DC

For PFC simulation, the target path is defined as a known volume, which can be
referred to as Li [35]. DLC maneuvers are employed to validate the proposed PFC. Four test
cases were designed with identical initial conditions but varying DC, where ∆dsafe = 30 m,
and ψs = {0.6, 0.8, 1, 1.2} = {radical, general radical, general, steady}. The outputs with
different DC are shown in Figure 18.

Figure 18 illustrates that the steering and evaluation index outputs of PFC exhibit
smaller magnitudes, greater stability, and earlier initiation by steady and general drivers in
comparison to radical drivers.
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4.2.2. PFC + ARS with Different Methods

For steady and general drivers, the acceptance of the CAC is still limited by PFC due
to lateral acceleration exceeding 4 m/s2. Therefore, an integrated CAC with PFC and ARS
has been developed, with a steady level set for PFC. The comparison of path tracking, rear
wheel steer angle, and evaluation index by ARS is illustrated in Figure 19.
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As shown in Figure 19, the lateral acceleration has decreased by 11% of PFC + ARS at
3.2 s compared to PFC alone. Furthermore, the reduction in the yaw rate surpasses 30%.
This indicates that ARS can restrain lateral response and enhance comfort for steady drivers.

4.2.3. PFC + FCC with Different DC

To assess the CAC by FCC, the DLC maneuvers in different DC are performed. Set
TSC = 2.4 s, ∆v = 75 km/h, ζs = 1, ∆d = 50 m. Three DC levels (radical, general, and steady)
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are utilized for analyzing the impact of DC on the FCC. The values of ζs set at {0.8,1,1.2},
while vx0 = 110 km/h. The vehicle speed, forward distance, path tracking, and yaw rate
response under different DC conditions are illustrated in Figure 20, and the variation of
brake moment by FCC with different DC is shown in Figure 21.
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Figure 21. Brake moment by FCC with different DC (‘L1’, ‘R1’, ‘L2’, and ‘R2’ denote the front left
wheel, front right wheel, rear left wheel, and rear right wheel, respectively): (a) L1; (b) R1; (c) L2;
(d) R2.

Figures 20 and 21 demonstrate that the FCC applied braking at 0.5 s (with a forward
collision distance ∆d = 60 m) for a steady driver, resulting in a reduction of vehicle speed to
40 km/h. This is in line with the habits of steady drivers. However, for a radical driver,
it was found that applying brakes at 1.5 s (with a forward collision distance ∆d = 40 m)
would be more appropriate.

4.2.4. PCAC with Different Methods

To verify the efficacy of PCAC by PFC + ARS + FCC, the DC of integrated CAC is
maintained at a steady level with vx0 = 110 km/h. Figure 22 illustrates output comparisons
for path tracking, rear wheel steer angle, and driver acceptance index under different
control methods.
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The results in Figure 22a indicate that the path tracking by the integrated CAC is more
accurate than PFC and ARS. As shown in Figure 22c, PFC yields a lateral acceleration of up
to 6 m/s2, rendering it unsuitable for general drivers. However, the vehicle controlled by the
integrated CAC comprising PFC + ARS + FCC can significantly reduce lateral acceleration
by over 30% compared to that achieved by PFC alone. In addition, as shown in Figure 22b,d,
the yaw rate of the vehicle equipped with PFC + ARS and PFC + ARS + FCC is reduced by
over 30% compared to those with CAC by PFC. The personalized CAC enhances acceptance
among steady and general drivers, especially in high-speed obstacle-avoidance scenarios.

5. Conclusions

The designed novel personalized collision avoidance control (PCAC) strategy for
intelligent vehicles (IV) based on driving characteristics (DC) can not only improve driving
stability but also improve driver adaptability. The PCAC consists of a decision part and
a control part. Specifically, the CAC is integrated with preview-follower control (PFC),
active rear steering (ARS), and forward collision control (FCC). As a result, we came to the
following conclusions:

The DC of 16 drivers can be classified into four types: steady, general, general rad-
ical, and radical. The analytic hierarchy process (AHP) can be used to recognize the
DC accurately.

The PFC model with different DC based on lateral acceleration feedback (LAC) shows
that the evaluation indexes are smaller, more stable, and steering earlier by steady and
general drivers compared with radical drivers, which can meet individual requirements.

For steady and general drivers, the acceptance of the PCAC by PFC remains inade-
quate due to lateral acceleration surpassing its threshold. However, when combined with
PFC+ARS, PCAC demonstrates an 11% reduction in lateral acceleration compared to PFC
alone. Additionally, the peak value reduction of the yaw rate exceeds 30%.

The PCAC integrated with PFC, ARS, and FCC significantly reduces lateral acceler-
ation and yaw rate, resulting in an improved acceptance index of over 30% compared
to the PCAC with only PFC. This proposed system effectively enhances driving sta-
bility and acceptance for both steady and general drivers, particularly in high-speed
obstacle-avoidance scenarios.

Future work will focus on drivers’ DC recolonization based on deep reinforcement
learning (DRL).
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List of Symbols

Symbol Description
m, ms Vehicle, sprung mass,
vx, vy Longitudinal, lateral velocity
ay, ay Longitudinal, lateral acceleration
a*y Ideal lateral acceleration
muf, mur Front, rear unsprung mass
lf, lr Front, rear axle distance to CG
δf, δr Front, rear-wheel steering angle
X, Y Distance in global coordinates x, y-axis
x, y Distance in vehicle coordinates x, y-axis
twf, twr Wheel track width of front, rear axle
kf, kr Front, rear axle cornering stiffnesses
Fyf, Fyr Lateral forces of front, rear axle
h, hs CG height to ground, roll center
∆d, ∆v Relative distance, speed between vehicle and obstacle
∆dp Preview distance
ψ, γ Yaw angle, rate
Tsc Safe collision time
T Preview time
∆T Discretization time
Tb Braking moment
ζs Collision risk coefficient
γref Reference value of yaw rate
rw Wheel roll radius
Iz, Iy, Ix Yaw, pitch, roll moment of inertia
g Acceleration due to gravity
µ Road adhesion coefficient
Ak Target element of AHP
Bi Selected criteria of AHP
bij Priority score given to each criterion
φi Eigenvectors of the judgment matrix
λmax Largest matrix eigenvalue
PCR Consistency ratio
Np, Nc Predictive, control step length
P States of the future
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Abbreviations

IV Intelligent vehicles
CAC Collision avoidance control
PCAC Personalized collision avoidance control
DC Driving characteristics
ADAS Advanced driving assistant systems
AHP Analytic hierarchy process
PFC Preview-follower control
ARS Active rear steering
DLC Double lane change
FCC Forward collision control
LAC Lateral acceleration feedback
AMPC Adaptive model-predictive control
FCW Forward collision warning
AEB Active emergency brake
ACC Adaptive cruise control
AFS Active front steering
SD Standard deviation
4WIS Four-wheel independent steering
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