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Abstract: Battery state of charge prediction is one of the most essential state quantities of a battery
management system. It is a prerequisite for the operation of a battery management system, but it
becomes difficult to make an exact prediction of its state due to its characteristics, which cannot
be measured directly. For the exact assessment of the Li-ion battery state of charge, the research
proposes an extreme learning machine algorithm based on the alternating factor multiplier method
with improved regularization. This method constructs a suitable online Li-ion battery state of charge
prediction model using the alternating factor multiplier method in gradient form. The experiment
demonstrates that the algorithm in the study has a reduction in the number of nodes in the implicit
layer relative to the traditional extreme learning machine algorithm. The error fluctuations of the
algorithm under two different excitation functions range from [−0.005, 0.005] and [0.082, 0.265]; The
root mean square error of the data set in which the algorithm performs well is 1.9516 and 0.6157,
respectively. The real simulation scenario created the predicted values of the state of charge in the
realistic simulation scenario that fit the real value curve by 99.99%. The average and maximum
errors of the proposed state of charge prediction model are the smallest compared to the long and
short-term memory networks and gated cyclic units, 0.58% and 2.97%, respectively. The experiment
demonstrates that the presented algorithm can reduce the computational burden while guaranteeing
the state of charge model prediction.

Keywords: SOC (State of Charge); extreme learning machine; alternating factor multiplier method;
regularization; root mean square error; lithium battery

1. Introduction

Automotive power comes from automotive batteries, which can be divided into tradi-
tional petroleum vehicles and new energy vehicles based on their different characteristics.
Lithium batteries have a higher energy density, a lighter weight, and a longer operating life
compared to conventional batteries, making them often used as batteries for new energy-
efficient vehicles. With the widespread use of new energy electric vehicles, the capacity,
safety, health status, and range of electric vehicle batteries have attracted widespread
attention. An accurate state of charge prediction can effectively avoid overcharging or dis-
charging, ensuring that the battery will not suffer irreversible damage. However, because
the state of charge of lithium batteries cannot be directly measured, precise measuring
instruments cannot be used to determine the value. How to accurately estimate the state of
charge of lithium batteries has become a focus of research. Currently, the commonly used
methods for estimating the state of charge are mainly split into three categories: traditional
methods, model-based methods, and intelligent algorithms [1–3]. Intelligent algorithms
are further split into three categories: neural networks, pattern logic control, and machine
learning. Extreme learning machines are a kind of machine learning method. Because of its
simple structure, fast running speed, and lack of need to adjust its advantages, it is widely
used in various fields, and can simplify the setting of learning parameters to improve
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learning efficiency. Because the state of charge of a lithium battery cannot be directly
predicted, the research is based on an extreme learning machine that directly generates
model parameters in the prediction process of a lithium battery to estimate the state of
charge. The entire process requires finding the optimal number of hidden layer nodes to
achieve high accuracy. The extreme learning process has the problem of insufficient or
overtraining training data in the practical operation process, as well as the related com-
putational complexity and operation involved. Based on this, a regularization extreme
learning machine learning algorithm based on the alternating direction multiplier methodis
proposed. By regularization, the corresponding parameters are limited, and additional
information is introduced to prevent the data from overfitting. The research is divided
into five parts. The first part is the introduction; The second part is to discuss the related
work in recent years; The third part is to build a sparse supervised learning neural network
model by combining the regularization algorithm with the recursive alternating direction
multiplier method; The fourth part evaluates the proposed algorithm model and the fifth
part draws research conclusions.

2. Related Work

The use of neural networks to estimate the state of charge of batteries has achieved
excellent performance. Li et al., proposed a new multi-step prediction method for battery
SOC (State of Charge) systems based on gated recurrent neural networks to more accu-
rately test the battery state of charge of electric vehicles and verified the effectiveness of
their proposed method through experiments [4]. Oyewole et al., proposed a controlled
transfer learning network for SOC prediction in the initial stages of degradation to solve
the problem of deep learning models ignoring the dynamic changes of batteries, and ex-
perimentally proved the effectiveness of the algorithm [5]. Cheng et al., proposed a ML
(Machine Learning)-based method for battery health evaluation by fusing relevant models
with a personalized prediction scheme and experimentally verifying the performance of
the algorithm [6]. Tian et al., proposed an Extreme Learning Machine (ETLM) method
with special embedding and clustering for solving the difficult data aggregation in non-
specific class domains, implementing feature learning and clustering in the same dataset [7].
Zhou et al., suggested an ETLM method based on ML for addressing the singularity and
overfitting issues exhibited when the training samples’ quantity was below the hidden
layer neurons (LN). For solving the singularity and overfitting issues when the training
samples were below the implicit LN, Zhou et al., proposed a special incremental ETLM
algorithm in view of stochastic reductions and verified the effectiveness of their algorithm
through comparative experiments [8]. Guo et al., proposed an ETLM with elastic regular-
ization for finding the minimum of the system optimization function and demonstrated
experimentally that the algorithm required less training time and had higher recognition
accuracy than a multilayer perceptron [9]. Chernozhukov et al., suggested an algorithm
that used regularization techniques to keep all variables constant, reducing the possibility
of overfitting a particular dataset, and verified the soundness of their algorithm exper-
imentally [10]. Yang et al., proposed an ETLM algorithm with a smoothing regularizer
for improving the compactness of the network and confirmed experimentally that the
proposed algorithm possessed better functions in prediction and network sparsity [11].
Fan et al., suggested a new efficient limit learning ML algorithm with smooth L-0 regular-
ization and experimentally demonstrated that the proposed algorithm had fewer hidden
nodes and better generalization performance [12]. Zhang et al., proposed a directional
algorithm for convex nonlinear second-order conic programming. The parallel inexact
alternating direction method was used for addressing the multi-block separable CQSOCP
(Command Query Second Order Cone Programming)subproblem, and the effectiveness
of the proposed algorithm was demonstrated experimentally [13]. Silva et al., proposed a
GOR-ETLM (Generalized Outlier Robustness-Extreme Learning Machine)algorithm and
extended it for dealing with multi-objective regression issues using the error l (2, 1) norm
and elastic net theory to produce a sparser network [14]. Zheng et al., proposed a new
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idea from the error analysis of SOC prediction in measurements, models, algorithms, and
state parameters [15]. Niu et al., provided a new approach for overcoming the problem
of convergence to local minima in traditional learning machines, and the proposed algo-
rithm was tested through experiments [16]. Yan et al., proposed an algorithm combining
images by Gaussian derivative models with ETLM for classification applications, and the
effectiveness of the algorithm was confirmed based on experimental results [17]. Zhou
et al., proposed a special particle swarm optimization-kernel ETLM method for landslide
prediction, and the experiment indicated that the proposed algorithm outperformed other
similar algorithms [18]. Wang et al., proposed a hybrid generalized maximum entropy
criterion to replace the MSE algorithm in ETLM, considering the problem of non-noise
interference, and established a novel robust ETLM model for improving the SOC prediction.
It was experimentally demonstrated that the proposed algorithmic model could reach
better predictions under various evaluation indexes relative to the traditional ETLM [19].

In conclusion, when estimating the state of charge of the battery, the extreme learning
machine has good performance and is easy to operate. However, the traditional Extreme
learning machine still has some shortcomings when applied to some specific fields. The SOC
algorithm proposed by Oyewole et al., has effectiveness in charging prediction performance,
but it still has overfitting issues [5]. The GOR-ETLM model proposed by Silva et al., has
advantages over other ETLM techniques in the statistical analysis of outlier pollution
data, but there is no improvement in other aspects of performance [14]. The feasible
direction algorithm proposed by Zhang et al., for Barzilai and Borwein regularization can
sparse the network structure and have better generalization performance [13]. However,
the network structure of this algorithm inevitably increases the model size and testing
time. The algorithm studied in this article utilizes the improvement work of extreme
learning machines in predicting charge states and analyzes the performance of sparse neural
networks and regularization in extreme learning machines. Finally, the regularization
algorithm is combined with sparse neural networks to reduce the computational burden
to a certain extent while ensuring the accuracy of the state of charge model estimation. In
order to better adapt to the online prediction of the state of charge of lithium batteries, an
improved regularized extreme learning machine algorithm is proposed to make up for the
blank in the online prediction of the state of charge of lithium batteries.

3. Battery State of Charge Prediction Based on Extreme Learning Machine Algorithm

This study focuses on constructing an improved regularized extreme learning ML
algorithm for battery SOC prediction. In this method, a sparse supervised neural network
is constructed to estimate the state of charge (LBSC) of lithium-ion batteries using the
recursive form of the alternating factor multiplier method.

3.1. Learning Algorithm for Regularized Extreme Learning Machine Based on Alternating
Direction Multiplier Method

In 2004, Huang et al., presented the ETLM method at the IEEE International Conference
on Interaction. ETLM improves the learning efficiency by improving the backpropagation
algorithm and simplifying the learning parameter settings [19]. ETLM is a class of feed-
forward neural networks based on Feedforward Neuron Networks, which is applicable to
both supervised and unsupervised learning issues. The network structure of the ETLM is
shown in Figure 1.

ETLM is utilized in various fields because of its simple structure and fast operation
without the need for tuning. However, in practice, there is a problem of insufficient training
data or overtraining. The regularization method introduces additional information in the
original to prevent overfitting of the data and improve the generalization of the model [20].
This leads to the introduction of a regularized extreme learning machine approach, which
reduces the risk of structural generalization of the model by restricting certain parameters
through regularization. A common regularization method is usually to set the parameter
l1, l2. In the regression model, the introduced parameter l1 is called Lasso regression,
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which belongs to the non-integrable convex function (CF). The expression is showcased in
Equation (1).

l1 = J0 + λ||w||1 (1)
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Figure 1. Extreme learning machine network structure schematic. 
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Figure 1. Extreme learning machine network structure schematic.

In Equation (1), J0 serves as the root mean square error (RMSE) of the original loss
function; λ serves as the regularization penalty factor; w is the model parameter. Parameter
l2 regularization, also known as Ridge Regression (RR), is a continuously derivable CF that
prevents overfitting and decreases the computational burden by constraining the parameter
parametrization, thus enhancing the generalization ability. The functional expression of the
parameter l2 is shown in Equation (2).

l2 = J0 + λ||w||2 (2)

Alternate Direction Method of Multipliers (ADMM) is a computational framework
for solving convex optimization with separability, which is a combination of the pairwise
decomposition method and the generalized Lagrange multiplier method. It has good
decomposition, good convergence, and a fast-processing speed. Distributed convex opti-
mization problems, mainly applied in the case of large solution space sizes, can be solved
in blocks, and the absolute accuracy of the solution is required to be reasonable.

In the pairwise decomposition method, the expression of the Lagrangian function
(Lagrangian; L) that optimizes is demonstrated in Equation (3).

L(x, y) = f (x) + yT(Ax− b) (3)

In Equation (3), y denotes the Lagrange multiplier; T is the transpose matrix of the
matrix m ∗ n; x is the variable and x ∈ Rn; R serves as the set of real numbers; A is the
matrix and A ∈ Rn∗m. The pairwise form of L(x, y) is shown in Equation (4).

g(y) = inf
x

L(x, y) = − f ∗(−ATy)− bTy (4)

In Equation (4), y ∈ Rm serves as the parameter of the dual problem (DP); f ∗() serves
as the conjugate CF of f (). If the strong duality holds, the optimal solution (OS) of the
original function and the OS function of the dual function are shown in Equation (5).

x∗ = arg
x

minL(x, y∗) (5)
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Assuming that g(y) is continuously differentiable, then∇g(y) = A
∼
x− b. The gradient

ascent method is used for solving the pairwise issue, and the pairwise ascent algorithm is
iteratively updated as shown in Equation (6).{

xk+1 = arg
x

minL(x, yk)

yk+1 = yk + αk(Axk+1 − b)
(6)

In Equation (6), αk is the iteration step, and αk > 0; k is the iterations’ quantity. Reaching
the OS requires ensuring the initial conditions and achieving pairwise feasibility. The
related functional expression is shown in Equation (7).

Ax∗ − b = 0,∇ f (x∗) + ATy∗ = 0 (7)

Since the number of implied nodes in ETLM needs to be measured repeatedly to
be obtained, and the requirement for the number of implied nodes is stricter, too much
or too little number is not conducive to the accuracy of the ETLM model. To address
the issue that the number of ETLM implied nodes is difficult to determine, the study
proposes an alternating direction method of multipliers based ETLM (ADMM-regularized
ETLM, ADMM-ETLM), which is in view of the alternating direction multipliers method.
The generalization of the network is enhanced by diminishing the parametric quantity of
output parameters, which in turn produces a sparse model with stable performance. The
functional expression of ADMM-ETLM is shown in Equation (8).

min
β

1
2
||Hβ− h||22 + λ||β||1 (8)

In Equation (8), H serves as the output matrix of the implied node; β serves as the
output authority; λ serves as the regularization penalty factor of l1. Generally, the value of
λ is small because the larger the λ is, the stronger the regularization sparsity of l1. For the
desired output, the OS expression for the output authority is shown in Equation (9).

∧
β = arg min

β

{
1
2
||Hβ− h||22 + λ||β||1

}
(9)

Using AMDD to solve the constructed (9) regularized integrability problem, the
obtained augmented Lagrangian function is shown in Equation (10).

lε(x, z, u) = f (x) + g(z) + uT(x− u) +
ε

2
||x− z||22 (10)

In Equation (10), u is a proportional pairwise function; ε is a penalty factor and ε > 0.
x and z are the decomposition terms of the output authority β, which satisfies x + z = β,
f (x) and g(z) are CF. The expression of the function to solve the convex rule using ADMM
is shown in Equation (11). 

xk+1 = arg min
x

lε(x, zk, uk)

zk+1 = arg min
z

lε(xk+1, z, uk)

uk+1 = uk + ε(xk+1 − zk+1)

(11)

In Equation (11), k serves as the iterations’ quantity, and the values of zk and xk

gradually converge with the increase of k. The above Equation (11) can solve the OS of z
and x; While the iterative update of u ensures the further convergence of the OS of z and x.
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The ADMM proximity algorithm is used to solve the arg minLε(.) function to obtain the
corresponding x, z, u function, as shown in Equation (12).

xk+1 = proxη f (zk − uk)
zk+1 = proxλg(xk+1 + uk)
uk+1 = uk + xk+1 − zk+1

(12)

3.2. Recursive ADMM-Based Sparse Simple Learning Model for State of Charge Prediction

The SOC of lithium batteries indicates a state after some time of use or after a long
time of remaining capacity to its fully charged state, commonly used as a percentage SOC
in the range of [0, 1]. As SOC = 0, it depicts the battery as completely discharged; As
SOC = 1, it depicts the battery as fully charged. Since the cycle life of lithium batteries
is affected by various factors such as positive and negative electrode materials, battery
design, and battery production, the model established by conventional experiments cannot
be used as a general battery SOC prediction model. The current state of charge assessment
models built by ML algorithms is generally based on offline mode, and then there is a
possibility that real-time parameter changes cannot be accurately captured, thus reducing
the prediction model’s precision. Based on this, the study considers the construction
of a sparse supervised model for online real-time data processing to solve the above
problem. Based on the regularized extreme learning machine method constructed in the
previous paper, combined with the ADMM algorithm transformed into recursive form,
the convergence of regularization is optimized and the computational complexity of input
data in the algorithm model is reduced, so as to better serve the online SOC prediction of
lithium batteries. FNN (Feedforward Neuron Network) embodies a brief structure and is
extensively utilized, which can fit any continuous function with arbitrary accuracy and a
square productable function. From the perspective of the system point, the feedforward
network is a static nonlinear mapping. The complex nonlinear processing capability can
be obtained through the relevant mapping. From the perspective of the computational
point, it shortens rich dynamical behavior. Most feedforward networks’ classification and
recognition generally exceed those of feedback networks. Since ETLM is an improvement
of FNN and its back propagation algorithm, it can be regarded as a special kind of FNN.
Figure 2 indicates the sparse role of regularization in FNN.
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The expression of the OS of the objective function after adding regularization to the
forward neural network is shown in Equation (13).

∧
β = arg min

β

{
1
2
||H ∗ β− h||22 + λ||β||1

}
(13)

The output of the implicit layer node H is adjusted, and the corresponding function
expression is shown in Equation (14).G(a1, b1, x1) · · · G(a1, b1, x1)

... · · ·
...

G(a1, b1, x1) · · · G(a1, b1, x1)


N∗L

(14)

In Equation (14), x serves as the input data; a is the input authority and a ∈ (−1, 1);
b is the input threshold; and b ∈ (0, 1); G(x) serves as the excitation function. As the
excitation function is Gaussian, the function expression is shown in Equation (15).

G(a, b, x) = exp
{
−b
∣∣∣∣∣∣x− a

∣∣∣∣∣∣22} (15)

When the excitation function is Sigmoid, the expression of the function is shown in
Equation (16).

G(a, b, x) =
1

1 + exp{−aTx + b}
(16)

The relevant expression for the objective function is Equation (17).

Lε(x, z, u) = f (x) + g(z) + uT(x− z) +
ε

2
||x− z||2 (17)

In Equation (17), u is the pairwise variable for scaling. The rest of the parameters have
the same meaning as above.

The corresponding OS of x, z, u is obtained and expressed using Equation (18).
xk+1 = arg min

x
Lε(x, zk, uk)

zk+1 = arg min
z

Lε(xk+1, z, uk)

uk+1 = uk + ε(xk+1 − zk+1)

(18)

Using the proxη f (x) function for solving the argminLε(x) function, the function ex-
pression of proxη f (x) is obtained as shown in Equation (19).

proxη f (x) =
1

(HT H + εI)
(HTY + εxk) (19)

Similarly, for the results obtained proxλg(z) as shown in Equation (20).

(proxλg(z))i =


zi − λ, zi ≥ λ
0, |zi|≤ λ
zi + λ, zi ≤ −λ

(20)

The sparse model and the sparse output weights obtained by the improved regularized
learning machine method can be used to build a certain SOC model. But the corresponding
algorithm complexity is set to O(n3) due to the existence of matrix inversion in the iterative
formula of the input data x. The algorithm complexity can be reduced to O(n2) when
solving the regularization problem using the recursive form of ADMM, thus satisfying the
need for online learning of the evaluation model. The purpose of learning only the newly
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added training data without relearning all the training data is achieved. The flow of the
involved neural network sparse supervised learning algorithm is shown in Figure 3.
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Figure 3 showcases the algorithm, which first needs to input the quantity of nodes in
the hidden layer (HL), set t← 1 by initializing the x0, z0, u0 parameter, and cycle through
the corresponding Q(t), F(t) values. Set the regularization parameters of the model to 10−9,
wherein the number of hidden nodes L is set to 50; The value of iteration number k is 1000;
F(t) is the new hidden layer output of input data under the number of t; and Q(t) is the
Convex function solution function under the Identity matrix I. The functional expressions
for F(t) and Q(t) are given in Equation (21).{

F(t) = HT
t Yt

Q(t) = (HT
t Ht + εI)−1

(21)

In Equation (21), H is the output of the hidden node; Y is the expected value, and the
range of expected values set in the study is [0.4, 1.4].

4. ADMM-ETLM Performance and Results Analysis of Sparse Neural Networks in
Lithium Battery SOC Prediction

For testing the proposed algorithm, experiments were designed to perform simulation
analysis on the Mackey-Glass time series system (the simulation experiment software
package used is MackeyGlass_ T17). The Benchmark database was selected. 1902 sets of
sample data were randomly selected to train the test network, of which 1000 sets were
utilized to train and the remaining 902 sets were utilized to test, and the outcomes are
depicted in Figure 4.
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The figure showcases that the predicted output value (POV) changes with time. The
POV and the actual output value curves can fit well. Both the predicted and actual output
values show fluctuations across a wide range with time, and the fluctuation value range
takes the value of [0.4, 1.38]. Setting the nodes’ quantity in the implied layer to 50, the
useful weight output obtained under the same time series system is shown in Figure 5.
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Figure 5 demonstrates that the useful output values tend to stabilize as the number of
nodes in the HL increases. The number of nodes that are not zero is 23 in total, which is
a decrease of 17 compared to the original nodes’ quantity set in the HL, greatly reducing
the computational burden. Also in the figure, when the number of iterations is updated
by 10 steps, it produces a value that converges to a constant and is stable, indicating that
the study of the regularization mentioned above has a certain degree of convergence. The
algorithm proposed in the study also achieves a stable result and maintains a small compu-
tational effort when setting a small value for the iterations’ quantity, further indicating the
validity of the algorithm for regularization. For validating the sparse neural network (SNN)
model in the study, the selection of the UCI (University of California, Irvine) database
as the regression experimental test dataset and online regression experimental analysis
experiments are designed to test the algorithm model.

A randomly selected UCI dataset aggregated 998 sets of sample data, of which 700 sets
were used for the training of the neural network, and the remaining 298 sets were utilized
as test data. The relationship between the SNN model in the study and the nodes’ quantity
in the HL L and the 2-regularization penalty factor is experimentally verified, and Figure 6
indicates the results.
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Figure 6a represents the relation between the regularization penalty factor and the
RMSE of the test under the Gaussian excitation function. From Figure 6a, it can be seen
that with the same logarithm of the regularization penalty factor, the RMSE shows an
overall decreasing trend as the nodes’ quantity in the HL increases. The largest decrease
is log(C) = −5, and the RMSE decreases from 0.0433 to 0.008; the smallest decrease is
log(C) = −8, and the RMSE decreases from 0.0218 to 0.003. When the nodes’ quantity in
the HL is certain, with the increase of log(C), the RMSE shows an increasing trend. The rise
ranges from [0.003, 0.0008] to [0.0218, 0.0433]. Figure 6b represents the relationship between
the regularization penalty factor and the RMSE of the test under the Sigmoid excitation
function. Compared with Figure 6a, the fluctuation of the relationship between the quantity
of implied nodes and RMSE shows an obvious “rising before falling” small steep slope
for a certain logarithm of the positive penalty factor. From Figure 6b, the overall RMSE
increases with the growth of the regularization penalty factor, ranging from [0.0025, 0.0039]
to [0.0058, 0.0074]. The RMSE decreases with the growth of the nodes’ quantity in the HL,
ranging from [0.0025, 0.0039] to [0.0039, 0.0074]. Figure 6 illustrates that the quantity of HL
and the positive penalty factor have some influence on RMSE within a certain range, but
the magnitude of their influence does not show an order of magnitude change. According
to the figure, the optimal combination of parameters (C, L) for different functions can be
selected, indicating the effective sparse effect of the SNN model presented in the study. The
performance of the online ADMM neural network sparse supervised learning algorithm
was tested using a multi-step prediction method. Experiments were designed with 286
steps of prediction, and the prediction results and the test errors corresponding to each step
are shown in Figures 7 and 8.
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Figure 7. Multi-step prediction results with different excitation functions.

From Figure 7a, under the Gaussian excitation function, the output expected value
curves of the predicted results and the true values show a consistent trend, and there is
a good fitting effect between the two predicted curves. In Figure 7b, the predicted result
curve obtained from the s-type excitation function is completely consistent with the true
value prediction curve.
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In Figure 8a, the online multi-step test error shows a regular fluctuation with the
increase in test time in the range of [−0.005, 0.005] under the Gaussian excitation function.
Under the Sigmoid excitation function, the online multi-step error tends to decrease with
time. In addition to the initial 20 s, when the test error is larger in the range of [0.082, 0.265],
after which the test error is basically 0. This indicates that the online learning method
proposed in the study has good stability, and it further indicates that the sparse supervised
learning algorithm of the neural network constructed in the study is well nonlinear. The
dynamic prediction performance is good. Four sets of regression data originated from the
real world in the UCI database were downloaded, including four types of data names, the
quantity of data features, the quantity of training data samples, and the quantity of test
data, as shown in Table 1.

Table 1. Details of the data downloaded from the UCI dataset.

Name Feature Data Number of Training
Samples

Test Data Sample
Size

Wine quality white 11 3000 1898

Parkinsons
Telemonitoring 22 2875 3000

Abalone 8 2784 1393

Servo 4 110 57

The experiments are designed to compare the presented algorithms with ETLM,
Optimally Pruned ETLM (OP-ETLM), Ridge Regression Pruned ETLM (RRETLM), and
Lasso Ridge Regression Pruned ETLM (L1-L2-ETLM) in regression analysis experiments.
Learning Machine (L2-ETLM) and Lasso Ridge Regression Pruned ETLM (L1-L2-ETLM) in
regression analysis experiments, and the performance metrics are expressed as the RMSE
of the test set. Figure 9 showcases the outcomes.
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Figure 9. Performance comparison of four algorithms in regression experiments. 
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Figure 9. Performance comparison of four algorithms in regression experiments.

Figure 9 indicates the L2-ETLM algorithm performs best in the Wine Quality White
and Parkinson’s Telemonitoring datasets, with RMSEs of 0.1241 and 0.0564, respectively.
The ADMM-LI-ETLM algorithm performs best in the Abalone and Servo datasets. The
difference in the square root of ADMM-LI-ETLM under different excitation functions is
small, ranging from 0.00669 to 0.225. There is no difference in the order of magnitude,
indicating that the prediction values of ADMM-LI-ETLM with different excitation functions
are less different and the performance is stable.

After testing the presented algorithm and the online evaluation model, the next step is
the practical testing of the model applied to lithium batteries. The study uses a Sony VCT4
model 18650 battery as the experimental object. The algorithm is verified for the real-case
Li-ion battery SOC prediction. The prediction results with errors at the 100th cycle are
scaled up, and the outcomes are demonstrated in Figure 10.
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In Figure 11a, all three algorithms are able to fit the real SOC prediction curve well 
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Figure 10. Experimental results in the real situation.

Figure 10a showcases that the SOC prediction reduces as the cycle’s quantity increases,
which is in line with reality. The curves of the actual SOC value and the forecasting SOC
value fit well, and the curve of the predicted SOC value will be a little below the real
SOC value at some moments. It can be considered that it is possible to make an accurate
prediction of the SOC state of the Li-ion battery in the real situation and at the same
time play a certain protective role. The error results for the 100th cycle are showcased in
Figure 10b, which shows that the error value fluctuates with time from 0 to 0.037. The
average error (AE) in the 100th cycle is 0.67%, indicating that the SOC evaluation model
proposed in the study is good. For validating the model, the Sony VCT4 18650 battery was
also used as the experimental object. Compared with the commonly used battery SOC
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prediction models with good performance, like the Long Short-Term Memory (LSTM) and
Gated Recurrent Neural (GRN), the outcomes are demonstrated in Figure 11.
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In Figure 11a, all three algorithms are able to fit the real SOC prediction curve well
and present a realistic response to the SOC prediction with time change. Comparing the
SOC prediction errors of the three SOC prediction models, Figure 11b indicates that the
relative errors of the SOC prediction models proposed in the study are all below the LSTM
and GRN. For the AE, the SNN model is 0.58%, the LSTM is 0.87%, and the GRN is 1.05%.
The maximum error is 2.97% for the SNN model, 4.93% for the LSTM, and 4.08% for the
GRU. The experiment demonstrates that the improved SNN SOC evaluation model of
the study has better stability and accuracy compared with the single neural network SOC
prediction model.

5. Conclusions

To achieve online prediction of the SOC of lithium batteries and guarantee the cor-
responding prediction accuracy, the study proposes an L1 regularized extreme learning
machine method based on the alternating factor multiplier method. In this paper, some
parameters are restricted by regularization to enhance generalization, and an online LBSC
prediction model is constructed by converting the alternating factor multiplier method into
recursive form. Experiments are conducted to verify the ADMM-LI-ETLM in the study. The
nodes’ quantity of the implied layer obtained is 23, which decreases by 17 compared with
the nodes’ quantity of the implied layer in the original setup. The multi-step prediction
method is used for verifying the sparse supervised learning model proposed in the study,
and the number of experimental steps is 286. The results show that the prediction results
and the true values are identical under both Gaussian and Sigmoid excitation functions,
and the fit between the prediction curve and the original curve is perfect. The test error
is [−0.005, 0.005] for the Gaussian excitation function and [0.082, 0.265] for the Sigmoid
excitation function. Comparing the performance of ADMM-L1-ETLM and LSM, L2-ETLM,
and LI-L2-ETLM in regression experiments, the outcomes showcase that the RMSE values
of ADMM-L1-ETLM fluctuate from 0.3599 to 1.9517. The Sony VCT4 model 18650 battery
is applied as the experimental object to simulate the SOC prediction of Li-ion batteries in
real-world situations. The outcomes indicate that the AE of the SOC prediction for the
100th cycle was 0.67%. The function of the sparse neural model and the LSTM and GRN
models on the SOC prediction of Li-battery is compared under the same experimental
environment and object. The results show that all three algorithm models can fit the real
SOC curve well: the sparse neural model has the smallest SOC error, the AE is 0.58%, and
the maximum error is 2.97%. The above outcomes showcase that the ADMM-L1-ETLM
proposed in the study can reduce the computational burden, and the SNN model has better
prediction accuracy and smoothness. It can further achieve online, real-time evaluation
of the nuclear power status of new energy vehicles equipped with lithium-ion batteries,
effectively extending battery life. Since the neural network used in the research is anextreme
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learning machine, the performance of online algorithms in other neural networks has not
been taken into account. At the same time, the research only predicted the online state of
charge of lithium batteries. Later, the performance of online algorithms proposed by the
research will be considered on more experimental objects. Finally, from the comprehensive
performance of the experimental results, it can be seen that the online algorithm proposed
by the research has a good performance in high-dimensional data classification, which can
be applied to speech recognition, image classification, and natural language processing.
However, the data selected in the study are difficult to cover in various fields in the real
world, and there is still room for improvement.
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