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Abstract: Due to the wide connection range and open communication environment of internet of ve‑
hicle (IoV) devices, they are susceptible to Byzantine attacks and privacy inference attacks, resulting
in security and privacy issues in IoV federated learning. Therefore, there is an urgent need to study
IoV federated learning methods with privacy protection. However, the heterogeneity and resource
limitations of IoV devices pose significant challenges to the aggregation of federated learning model
parameters. Therefore, this paper proposes an asynchronous robust aggregation method with pri‑
vacy protection for federated learning in IoVs. Firstly, we design an asynchronous grouping robust
aggregation algorithm based on delay perception, combines intra‑group truth estimation with inter‑
group delay aggregation, and alleviates the impact of stragglers and Byzantine attackers. Then, we
design a communication‑efficient and security enhanced aggregation protocol based on homomor‑
phic encryption, to achieve asynchronous group robust aggregation while protecting data privacy
and reducing communication overhead. Finally, the simulation results indicate that the proposed
scheme could achieve a maximum improvement of 41.6% in model accuracy compared to the base‑
line, which effectively enhances the training efficiency of the model while providing resistance to
Byzantine attacks and privacy inference attacks.

Keywords: federated learning; parameter aggregation; privacyprotection; internet of vehicles; Byzan‑
tine attacker

1. Introduction
In the era of the internet of vehicles, massive devices accessing the network generate

large‑scale interactive data. The huge demand for data processing and analysis has nur‑
tured intelligent transportation systems (ITS), enhancing the capabilities of analysis, deci‑
sion making, and collaborative processing. Its application scenarios include autonomous
driving assistance and computing resource scheduling [1,2]. However, IoV device data are
usually unique to the holder, which hinders the development process of ITS. The character‑
istic of distributed training of federated learning [3,4] can effectively solve this problem by
aggregating and updatingmulti‑party parameters, achieving data sharing and joint model
training. Recently, emerging technologies such as wireless charging, e.g., [5,6], have been
able to ensure increased device uptime and broader participation in federated learning.

Federated learning is a machine learning approach where multiple clients collabora‑
tively train a model while keeping the training data localized. This concept inherently
addresses some privacy and data protection concerns by not requiring data to be shared
or stored centrally. Each participating device or client works on its own dataset and only
shares model updates or gradients, rather than raw data, with a central server or among
themselves.

However, due to the lack of reliable security measures on IoV devices, they are sus‑
ceptible to malicious control and attacks, resulting in model training failures [7]. A typical
attack is the Byzantine attack. Byzantine attacks refer to situations in distributed systems
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where some nodes may exhibit arbitrary malicious behavior. These nodes can send in‑
correct or deceptive information to disrupt the normal operation of the system. In the
context of federated learning, Byzantine attacks could involve sending corrupted model
updates to undermine the accuracy of the shared model. Byzantine attackers can send
arbitrary model parameter values to the server, posing a huge challenge to widely used
aggregation rules [4,8], as a single Byzantine attacker may compromise overall learning
performance [9,10]. The robust aggregation algorithm is a commonly usedmethod to resist
Byzantine attacks, which can be divided into synchronous robust aggregation and asyn‑
chronous robust aggregation. Asynchronous aggregation is a mechanism in distributed
systems for merging information or model updates among multiple processes running on
different nodes or devices [11], without requiring these processes to be strictly synchro‑
nized. In federated learning, this means that updates from devices participating in the
learning can be integrated as soon as they become available, rather than waiting for all de‑
vices to submit their updates. This helps to speed up the learning process, especially in en‑
vironments where there are delays or devices operating at inconsistent speeds. Compared
to synchronous robust aggregation, asynchronous robust aggregation is more suitable for
IoV scenarios with heterogeneous devices, maintaining good training performance even in
the presence of laggards. However, existing asynchronous robust aggregation algorithms
are susceptible to noise from communication delays and response probabilities [12].

On the other hand, more andmore governments are enacting laws to protect user data
as data breaches become a serious concern. Examples of these laws are the CCPA [13] in
theUS, the PDPA [14] in Singapore, and the GDPR [15] in the EuropeanUnion. Companies
bear a hefty price for violating these policies. Uber was forced to pay USD 148 million to
resolve an investigation into the 2016 breach of 600,000 drivers’ personal information [16].
As of 18March 2020, Google has been fined USD 57million for violating the GDPR [17] the
highest penalty possible under the EU’s privacy law. Hence, there is an urgent need to re‑
search new methods to protect data privacy. As a collaborative learning without exchang‑
ing users’ original data, federated learning is emerging as a new and hot research topic [18].
However, the traditional federated learning privacy protection mechanism is based on a
very strong security assumption that the intermediate parameters exposed in each itera‑
tion will not leak sensitive information; research has shown that this security assumption
is not valid [19,20]. Therefore, researchers propose using secure aggregation protocols to
protect data privacy, but this will incur significant communication or computational costs.
In addition, there are already federated learning methods with privacy protection, which
usually use encryption technology to hide individual model update parameters, and each
model is indiscriminately resistant to privacy inference attacks. Resisting Byzantine at‑
tacks require a statistical analysis of model updates and correction of model parameters
based on differences betweenmodels. Therefore, existing federated learningmethodswith
privacy protection are difficult to resist Byzantine attacks, making it extremely challenging
to achieve robust aggregation on ciphertext.

To address the issues, this paper proposes an asynchronous robust aggregationmethod
with privacy protection for IoV federated learning, which achieves a bidirectional defense
against semi honest servers and Byzantine attackers, achieving a good balance between
model accuracy, training efficiency, and communication overhead. In real‑world applica‑
tion scenarios, due to network delays or device malfunctions, traditional federated learn‑
ing deployed in the internet of vehicles (IoV) faces challenges such as untimely model
uploads by users and transmission errors in models. Overall, compared to existing meth‑
ods, our approach takes into account the aforementioned issues, making our model more
aligned with real‑world scenarios. The main contributions of this paper are as follows:
(1) To alleviate the impact of stragglers and Byzantine attackers, we propose a delay

aware grouping method. We design a cosine anomaly filter to remove abnormal gra‑
dients, combine intra‑group truth estimation and inter‑group delay for parameter ag‑
gregation, update the weights to obtain intra‑group gradient truth values, and then
perform inter‑group aggregation based on obsolescence.
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(2) To save communication resources and improve security, wepropose a communication‑
efficient and security enhanced aggregation protocol, which eliminates the security
assumption of communication channels and adopts additive homomorphic encryp‑
tion to achieve aggregation. The device only needs to communicate once in the ini‑
tialization phase and perform random number encryption once to reduce communi‑
cation overhead.

(3) Finally, we derive theoretical boundaries based on key parameters, analyze the rela‑
tionship between iteration times, runtime, and errors, and conduct privacy analysis
on secure aggregation protocols. Andwe also analyze computational complexity and
communication overhead.
The structure of the entire article is outlined as follows: Section 1 serves as the intro‑

duction; Section 2 reviews recent work related to the technologies pertinent to this paper;
Section 3 details the problem modeling process; Section 4 discusses the problem‑solving
approach; Section 5 provides theoretical analysis; Section 6 presents the experimental re‑
sults; and Section 7 presents a comprehensive summary of this paper.

2. Related Work
2.1. Robust Federated Learning

Most of the existing robust federated learningmethods focus on synchronous training
processes. The ByteChain framework proposed by Li et al. [21] detects Byzantine attacks
through proof of accuracy of the Byzantine consensus mechanism, and introduces valida‑
tors to perform heavy validation workflows to improve model validation efficiency. Zhao
et al. [22] generated virtual datasets based on localmodel inversion, and then identified vir‑
tual datasetswith abnormalWasserstein distances and excluded them fromglobal updates.
Li et al. [23] proposed an automatic weighted geometric median algorithm that automat‑
ically removes abnormal gradients based on Euclidean distance reweighting to achieve
robustness, and designed a solution algorithm based on an alternating optimization strat‑
egy. The above defense algorithms are all based on synchronous optimization algorithms.
However, due to the uneven computing resources of IoV devices, the efficiency of feder‑
ated learning training is low. The application of asynchronous optimization algorithms in
IoV scenarios can effectively solve the bottleneck of synchronous optimization algorithms.
But asynchronous optimization algorithms can bring additional noise to randomgradients,
which makes it more difficult to distinguish the information between Byzantine nodes and
honest nodes [12].

In recent years, there has been some research on robust federated learning methods
for asynchronous training. Damaskinos et al. [24] proposed a method named Kardam, uti‑
lized the Lipschitz condition of gradients to filter out abnormal gradient values, and uses
frequency filters to limit the number of times each computing node continuously sends
gradient information to the server. However, [12] found that Kardam discards most of the
correct gradients in order to filter out all incorrect gradients, making it difficult to effec‑
tively resist Byzantine attacks; Xie et al. [12] proposed Zeno++ as a highly computationally
efficient version of Zeno, which approximates scores using outdated first‑order Taylor ex‑
pansions and proposes an inert update strategy. However, in IoV scenarios, it is not only
difficult to obtain additional validation datasets, but storing data on servers also increases
the risk of privacy breaches; Yang et al. [25] proposed a buffered asynchronous randomgra‑
dient descent algorithm (BASGD), which designs B buffers, each of which stores at least
one gradient before executing the SGD step. At the same time, in order to avoid the impact
of lagging buffers, a mapping table technique for buffer reallocation is introduced. How‑
ever, the setting of B in it can greatly reduce the update frequency and damage the training
efficiency, while being too small can damage the tolerance of Byzantium.

2.2. Federated Learning with Privacy Protection
In order to address the issue of intermediate parameters exposing sensitive informa‑

tion, servers are required to obtain aggregated information without allowing access to in‑
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dividual gradient information. It will reduce the security of aggregation; thus, researchers
proposed secure aggregation protocols to protect data privacy. Bonawitz et al. [26] con‑
structed a dual‑mask mechanism to ensure the privacy of intermediate parameters, while
avoiding the server’s use of time difference attacks to obtain parameter plaintext. How‑
ever, with each round of device dynamic selection, the secret sharing of random variables
between devices results in a linear increase in communication overhead. Zhou et al. [27]
calculated sensitivity based on batch trainingdata, combinedwith privacy budget to obtain
the variance of adding noise in differential privacy, and added noise during the device up‑
load parameter and server issue parameter stages, ensuring the privacy of each device and
server throughout the aggregation process [28]. Others generate lightweight keys based
on the CDH problem to encrypt local model parameters, and do not rely on secure com‑
munication channel transmission keys. However, the above secure aggregation protocol
can ensure the privacy of model updates, but cannot resist Byzantine attacks.

The existing research on robust federated learning thatmeets privacy protection needs
is still in the exploratory stage, and themain challenges faced by this research are secure ro‑
bust aggregation in ciphertext form and reliability evaluation of data sources. Li et al. [29]
rely on symbol metric correlation to filter out gradient vectors with significant differences,
and implement reliability estimation based on a threshold homomorphic encryption sys‑
tem. However, in each iteration, the device side needs to calculate and encrypt reliability
information, and also needs to perform ciphertext plaintext exponentiation and upload to
the server, which inevitably increases the computational and communication costs of IoV
devices. Ma et al. [30] proposed a privacy protection defense strategy based on dual trap‑
door homomorphic encryption, which can support standardized update judgment and
cosine distance weighted aggregation to defend against Byzantine attacks. However, com‑
plex homomorphic encryption operations on high‑dimensional gradient vectors in each
iteration result in huge computational and communication costs that are not applicable in
IoV scenarios. So et al. [31] proposed the Byzantine Tolerable Secure Aggregation Frame‑
work (BREA), which ensures the validity of shared values through Feldman verifiable se‑
cret sharing. At the same time, they use the homomorphic nature of Shamir secret sharing
to implement the Muti Krum robust aggregation rule. However, the transmission of se‑
cret shared values between each client requires additional communication overhead, not
suitable for IoV scenarios with massive devices.

3. Problem Description
3.1. System Model

As illustrated in Figure 1, the proposed systemmodel contains three layers: the cloud
layer, the edge layer, and the perception layer. The cloud layer is responsible for the ag‑
gregation of the global model, the Edge layer, which includes edge servers and auxiliary
servers, is responsible for the secure and robust aggregation of local models, and the IoV
devices of the perception layer are responsible for data collection, model training, and gra‑
dient perturbation. The specific operation process is divided into the following four steps:

Step 1: The cloud server initializes the globalmodel, and sends the initial globalmodel
to the edge server, which then transmits it to the IoV devices in its jurisdiction.

Step 2: Upon receiving the global model, the IoV devices calculate model updates
using local data, and send the perturbedmodel updates back to the auxiliary server, which
then encrypts the perturbed data and sends it back to the edge server.

Step 3: Upon receiving returns from the first K devices, the edge server and the aux‑
iliary server collaborate to achieve asynchronous robust aggregation of the perturbed gra‑
dients.

Step 4: The edge server uploads the local model to the cloud server for global model
aggregation.
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The above Steps 2–4 are repeated until the model reaches a pre‑set threshold or the
model converges, at which point the operation is stopped.

3.2. Threat Model
Privacy threat model: We assume that the edge servers and auxiliary servers are

honest‑but‑curious, i.e., they always follow the protocol but try to steal the original in‑
formation from the devices through the information they receive, leading to a potential
privacy leak from the devices.

Security threat model: It is possible that less than half of the participants in the system
are Byzantine attackers. They can eavesdrop on the communication channels to obtain
transmitted information, or fabricate intercepted information, deliberately uploading false
data into the federated learning system.

3.3. Cryptographic Primitive
Next, we will discuss the cryptographic primitives necessary for constructing the

scheme.
Homomorphic encryption is a special encryption algorithmwhere the result obtained

by performing operations on multiple ciphertexts is equivalent to the effect produced by
directly performing operations on the corresponding plaintexts. In other words, computa‑
tions can be performed directly on encrypted data using homomorphic encryption system.
LetM and C respectively represent the plaintext space and the ciphertext space, the homo‑
morphic encryption algorithm Encpk(·) can be represented as

∀m1, m2 ∈ M, Encpk[m1 ⊙M m2] = Encpk[m1]⊙C Encpk[m2] (1)
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Here,⊙M and⊙C respectively represent the operations in the plaintext space and the
ciphertext space. If ⊙M is “+”, it is referred to as an additive homomorphic encryption
algorithm. This paper adopts a widely used additive homomorphic encryption system,
namely the Paillier encryption system [32]. For plaintext m ∈ Zn, it can be encrypted into
Encpk[m] = gmrnmodn2 with public key pk = (n, g), where r ∈ Z∗

n, is secretly randomly
selected by the user who calculates the ciphertext. Then, ∀m1, m2, m3 ∈ Zn, the following
equations represent the additive homomorphic properties and homomorphic multiplica‑
tion properties of the Paillier encryption system:

Decsk(Encpk[m1 + m2]) = Decsk(Encpk[m1] · Encpk[m2]) = m1 + m2
Decsk(Encpk[a · m3]) = Decsk(Encpk[m3]

a) = a · m3
(2)

where Decsk(·) represents the decryption function.

4. Scheme Design
4.1. Asynchronous Grouping Robust Aggregation Algorithm

Low training efficiency and vulnerability to Byzantine attacks can significantly af‑
fect the performance of federated learning. To address these issues, we propose an asyn‑
chronous robust aggregation algorithm with delay‑aware grouping to pursue high effi‑
ciency and security, as shown in Figure 2. Specifically, we design a delay‑aware grouping
method, which, through cosine anomaly filtering, combinedwith group‑wise truth estima‑
tion and inter‑group delay aggregation, effectively mitigates the impact of stragglers and
Byzantine attackers.
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A. Latency‑aware Grouping:

The study is based on the K asynchronous SGD algorithm proposed by [33], in which
the server waits for the first K devices to finish, rather than waiting for all devices to com‑
plete the training. Let represent a group of devices that were selected for training in the
jth round and returned gradients in the tth round, then Uj = ∪∞

t=jG
j
t , t ≥ j implies a group

of devices with the same latency. Here, Gj
∞ denotes the devices that were selected in the

jth round but failed to return the results to the server successfully, and the groups satisfy
Gj

a ̸= Gj
b, a ̸= b.

B. Cosine Anomaly Filtering

Extensive research [34] indicates that once the global model has been attacked, the
impact on the global model persists even if there are no subsequent attacks. Therefore, it is
necessary to filter out the attackers from the federated learning training system to eliminate
the influence of the attackers before the final aggregation.

We choose cosine distance as the measurement criterion. The angle between two vec‑
tors in space can determine the similarity of the two vectors, which is called cosine distance.
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The closer the cosine value is to 1, the more similar the two vectors. In addition, cosine dis‑
tance is suitable for the high‑dimensional data of model updates, and it is more efficient
than calculating the Pearson correlation coefficient and other indicators. For the device
Gj

t(j < t), the the same initial round g
Gj

t−1
represents the intra‑group update value of the

current iteration. However, for the device Gj
t(j = t), the intra‑group update value cannot

be predicted before all intra‑group updates are aggregated in the current iteration.
To solve this problem, we assume that model training is usually a stable convergence,

so the difference between two consecutive model updates will be as small as possible [35].
Therefore, we use the global update from the previous iteration to estimate the intra‑group
update value in the current iteration, calculate the cosine distance between the last itera‑
tion’s global update and each group’s update, and avoid attackers by excluding the cosine
distances of outliers through a threshold mechanism. The cosine distance calculation for
device k is as follows:

csk =
< g, gk >

||g||·||gk||
, g =

g
Gj

t−1
, k ∈ Gj

t(j < t)

gt−1, k ∈ Gj
t(j = t)

(3)

Here, in the case where most nodes are honest, we sort the calculated cosine distances
and use the median as a threshold, which is reliable.

C. Intra‑group Truth Estimation:

After filtering out the abnormal cosine distances based on the threshold, within a
group of devices with the same latency, we can consider measuring the distance between
each dimension to adjust the weight of each device’s uploaded gradient and update the
gradient truth value of the group accordingly based on the weights. The main content
includes the following two steps:

(1) Weight update: First, we need to initialize the value of the gradient truth. Here,
we select the median gmed of each dimension in the filtered normal values as the initial
gradient truth. Then, each device will update its weight based on the difference between
its gradient and the initial gradient truth of the group.

wk = log(
∑M

k=1 ∑N
i=1 dist(gi

k, gi
med)

∑N
i=1 dist(gi

k, gi
med)

), k ∈ Gj
t , j = 0, 1, . . . , t (4)

where dist() is the function to measure the distance between gi
k and gi

med, calculated by
dist(gi

k, gi
med) = (gi

k, gi
med)

2, where M represents the number of devices contained in Gj
t ,

i.e., M =
∣∣∣Gj

t

∣∣∣, and N represents the dimension of the gradient.
(2) Truth estimation: Given each device’s weight update, the gradients in each group

are aggregated to obtain the group’s gradient truth value.

g
Gj

t
=

∑M
k=1 wkgk

∑M
k=1 wk

, j = 0, 1, . . . , t (5)

D. Inter‑group Delay Aggregation:

For i = 0, 1, . . . , t, starting fromthegradient truthvalueof all groups gG0
t
, gG1

t
, gG2

t
, . . . , gGt

t
,

aggregate according to different staleness via delay aggregation. The aggregation formula is
as follows:

wt+1 = wt − η∑t
j=0 Λ(τ)g

Gj
t
, j = 0, 1, . . . , t (6)

where Λ(τ) is any decay function. Here, we set it as Λ(τ) = 1/1 + τ, τ = t − j.
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4.2. Communication Efficient and Security Enhanced Aggregation Protocol
The flowchart of the communication efficient and security enhanced aggregation pro‑

tocol is shown in Figure 3, and the four modules are introduced as follows.
World Electr. Veh. J. 2024, 15, x  9 of 18 
 

 

Figure 3. Communication efficient and security enhanced aggregation protocol. 

B. Cosine Anomaly Filtering: 

This stage is entirely carried out by the cooperation between the edge server eS  and 

the auxiliary server aS , and it will not increase the computation and communication vol-

ume of the device side. 

Step 1: After the edge server eS   receives 
,

, 1{ }
a

i N M

k i kpk
g =  , it calculates 

,

, 1{ }
a a

i i N M

k k i kpk pk
g  =  to obtain ,

, 1{ }
a

i N M

k i kpk
g = . To prevent the auxiliary server from di-

rectly viewing the device’s gradient information, it randomly selects r  for blinding treat-

ment, calculates 
,

, 1{ }
a

r
i N M

k i kpk
g = , and returns it to the auxiliary server. The auxiliary server 

decrypts it to obtain 
,

, 1{ }i N M

k i kr g = . The auxiliary server, having gradient information 
1

j
tG

g
−

 

and 1tg − , can obtain the cosine distance to obtain kcs . 

Step 2: Having obtained all the cosine distances, sort them and select the median to 

screen the device gradient of the normal cosine distance. At the same time, the screened 

device gradient is subjected to secondary perturbation, select a random number s , cal-

culate to obtain 
,

,{ }i N M

k i kg s+ , and send it to the edge server. 

C. Intra-group Truth Estimation Stage: 

Step 1: After the edge server eS  receives 
,

,{ }i N M

k i kg s+ , and by adding 
1 1

M N i

kk i


= = 
, it obtains 

,

,{ }i N M

k i kg s+  . The edge server compares to obtain the median value 

1{ }i N

med ig s =+   of each dimension and returns the initial gradient truth to the auxiliary 

server aS . 

Step 2: After the auxiliary server receives 1{ }i N

med ig s =+ , it removes the secondary per-

turbation value s  and performs the following calculations: 

Figure 3. Communication efficient and security enhanced aggregation protocol.

A. Initialization Stage:

Edge server Se and auxiliary server Sa each generate their ownpublic and private keys,
(pke, ske) and (pka, ska), represented by and as the key pair for Se and Sa, respectively.

Step 1: The device k generates a random number αi
k for the local gradient gi

k, then
perturbs gi

k into g̃i
k = gi

k − αi
k, and returns the perturbed result

{
g̃i

k
}N

i=1 to the auxiliary
server Sa.

Step 2: The device k encrypts the random number αi
k into〚αi

k〛pke
, where〚 ·〛pke

indicates encryption with the edge server’s public key pke, and sends
{
〚αi

k〛pke

}N

i=1
to Se

and Sa.
Step 3: The auxiliary server Sa encrypts all received perturbed gradients

{
g̃i

k
}N,M

i,k=1 to

obtain
{
〚g̃i

k〛pka

}N,M

i,k=1
, and sends it to the edge server Se.

B. Cosine Anomaly Filtering:

This stage is entirely carried out by the cooperation between the edge server Se and the
auxiliary server Sa, and it will not increase the computation and communication volume
of the device side.

Step 1: After the edge server Se receives
{
〚g̃i

k〛pka

}N,M

i,k=1
, it calculates〚g̃i

k〛pka
·

〚αi
k〛pka

N,M
i,k=1 to obtain

{
〚gi

k〛pka

}N,M

i,k=1
. To prevent the auxiliary server from directly

viewing the device’s gradient information, it randomly selects r for blinding treatment,

calculates
{
〚gi

k〛
r
pka

}N,M

i,k=1
, and returns it to the auxiliary server. The auxiliary server de‑

crypts it to obtain
{

r · gi
k
}N,M

i,k=1. The auxiliary server, having gradient information g
Gj

t−1
and

gt−1, can obtain the cosine distance to obtain csk.
Step 2: Having obtained all the cosine distances, sort them and select the median to

screen the device gradient of the normal cosine distance. At the same time, the screened
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device gradient is subjected to secondary perturbation, select a randomnumber s, calculate
to obtain

{
g̃i

k + s
}N,M

i,k , and send it to the edge server.

C. Intra‑group Truth Estimation Stage:

Step 1: After the edge server Se receives
{

g̃i
k + s

}N,M
i,k , and by adding ∑M

k=1 ∑N
i=1 αi

k, it

obtains
{

gi
k + s

}N,M
i,k . The edge server compares to obtain the median value

{
gi

med + s
}N

i=1
of each dimension and returns the initial gradient truth to the auxiliary server Sa.

Step 2: After the auxiliary server receives
{

gi
med + s

}N
i=1, it removes the secondary

perturbation value s and performs the following calculations:

Ttotal =
M
∏

k=1

N
∏
i=1
〚(g̃i

k − gi
med)

2〛pke
·〚αi

k〛
2(g̃i

k−gi
med)

pke

=
M
∏

k=1

N
⨿
i=1
〚(gi

k − αi
k − gi

med)
2
+ 2αi

k(gi
k − αi

k − gi
med)〛pke

=
M
⨿

k=1

N
⨿
i=1
〚(gi

k − gi
med)

2 − (αi
k)

2〛pke

(7)

Tsingle =
N
∏
i=1
〚(g̃i

k − gi
med)

2〛pke
·〚αi

k〛
2(g̃i

k−gmed)

pke

=
N
⨿
i=1
〚(gi

k − αi
k − gi

med)
2
+ 2αi

k(gi
k − αi

k − gi
med)〛pke

=
N
⨿
i=1
〚(gi

k − gi
med)

2 − (αi
k)

2〛pke
, k = 1, 2, 3 . . . , M

(8)

and returns the above calculation results Ttotal and Tsingle to the edge server Se.
Step 3: After the edge server Se receives Ttotal and Tsingle, it decrypts using ske to ob‑

tain
{
(gi

k − gi
med)

2 − (αi
k)

2
}N,M

i,k=1
and

{
(gi

k − gi
med)

2 − (αi
k)

2
}N

i=1
. Adding ∑M

k=1 ∑N
i=1 (α

i
k)

2

and ∑N
i=1 (α

i
k)

2 gives the sum of the distances ∑M
k=1 ∑N

i=1 dist(gi
k, gi

med) between all device
gradients and the initial gradient truth, and the distance between each device gradient and
the initial gradient truth ∑N

i=1 dist(gi
k, gi

med), and further calculates each device’s weight up‑
date value w0, w1, w2, . . . , wk.

Step 4: The edge server Se calculates ∑M
k=1 wkαk based on the weight update value,

encrypts with the auxiliary server’s public key pka, and then Se calculates:

〚∑M
k=1 wkgk〛pka

=
M
∏

k=1
〚g̃k〛

wk
pka

·〚∑M
k=1 wkαk〛pka

=〚∑M
k=1 wk g̃k〛pka

·〚∑M
k=1 wkαk〛pka

=〚∑M
k=1 wk(gk − αk) + ∑M

k=1 wkαk〛pka

(9)

and returns the sum of theweighted gradients〚∑M
k=1 wkgk〛pka

of all devices and the sum
of the weight ∑M

k=1 wk∑M
k=1 wk update values of all devices to the auxiliary server Sa.

Step 5: After the auxiliary server Sa obtains 〚∑M
k=1 wkgk〛pka

and ∑M
k=1 wk, it gets

each group’s gradient truth value gG0
t
, gG1

t
, gG2

t
, . . . , gGt

t
according to the truth estimation

formula and sends it to the edge server Se.

D. Inter‑group Delay Aggregation Stage:

This stage is completed entirely by the edge server Se, independently implementing
inter‑group delay aggregation. Aggregation is based on the delay of each device’s up‑
loaded gradient by Se.

Throughout the entire process of the above protocol, the device only needs to partici‑
pate in the initialization stage, and the protocol does not require the device to encrypt an
N dimensional gradient vector in each round. It only needs to encrypt an N dimensional
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random number in the first round. While ensuring the security of the communication link,
it greatly reduces the computational burden on the device.

5. Theoretical Analysis
5.1. Privacy Analysis

Theorem 1.  In the secure aggregation protocol, if the edge server and the auxiliary server are
honest but curious, and there is no collusion between them, the gradient information of each device
will not be obtained by anyone.

Proof.  In the secure aggregation protocol, since the information transmitted in the link
is protected by homomorphic encryption and cannot be cracked, and each participating
device does not receive any information about other devices, we only need to prove that the
gradient information of each device will not be stolen by the edge server and the auxiliary
server. □

For the auxiliary serverSa, the informationobtained includes ciphertext
{
〚αi

k〛pke

}N,M

i,k=1
,

Ttotal , Tsingle, and plaintext
{

g̃i
k
}N,M

i,k=1,
{

r · gi
k
}N,M

i,k=1, {csk}M
k=1,

{
gi

med
}N

i=1, ∑M
k=1 wkgk, ∑M

k=1 wk,{
g

Gj
t

}
, j ≤ t. Without the private key ske of the edge server Se, the above ciphertext infor‑

mation cannot be decrypted by Sa. Since the weight update value w0, w1, w2, . . . , wk of each
device estimated on the edge server is not sent to the auxiliary server Sa, Sa cannot infer the
weight update value of each device just based on the sum of the weighted gradients of all de‑
vices ∑M

k=1 wkgk and the sum of the weight update values of all devices ∑M
k=1 wk. At the same

time, it is difficult to restore the original gradient when only obtaining the cosine distance
{csk}M

k=1 and the group update values g
Gj

t−1
and gt−1. Finally, since the edge server and the

auxiliary server do not collude, the edge server will not infer the gradient information of each
device from

{
g̃i

k
}N,M

i,k=1 and
{

r · gi
k
}N,M

i,k=1.

For the edge server Se, the information obtained includes ciphertext
{
〚g̃i

k〛pka

}N,M

i,k=1
,{

〚gi
k〛pka

}N,M

i,k=1
,
{
〚gi

k〛
r
pka

}N,M

i,k=1
,〚∑M

k=1 wkgk〛pka
, and plaintext

{
αi

k
}N,M

i,k=1,
{

gi
k + s

}N,M
i,k ,{

gi
med + s

}N
i=1, ∑M

k=1 ∑N
i=1 dist(gi

k, gi
med), ∑N

i=1 dist(gi
k, gi

med), {wk}M
k=1,

{
g

Gj
t

}
, j ≤ t. With‑

out the private key ska of the auxiliary server Sa, the above ciphertext information cannot be
decrypted by Se. Therefore, Se cannot obtain the gradient information of each device based on

the encrypted perturbed gradient
{
〚g̃i

k〛pka

}N,M

i,k=1
and the perturbed data

{
αi

k
}N,M

i,k=1. In addi‑
tion, since the edge server and the auxiliary server do not collude, the second perturbation value
s on the auxiliary server Sa is not sent to the edge server Se, so Se cannot obtain the initial gradi‑
ent truth

{
gi

med
}N

i=1, and therefore cannot learn the gradient information of a single device from
∑N

i=1 dist(gi
k, gmed).

In summary, in the secure aggregation protocol, the gradient information of each de‑
vice will not be obtained by anyone.

5.2. Efficiency Analysis
Computational complexity: According to the privacy computation process, in lightweight

secure aggregation, devices only participate in the initialization phase, and the computation
cost for each device is O(N) encryption operations. For edge servers and auxiliary servers,
both involve cosine anomaly filtering, the initialization phase, and the within‑group truth esti‑
mation phase. The auxiliary server needs to perform O(MN) encryption operations, O(MN)
ciphertext multiplications, and power operations, and O(M) decryption operations. In ad‑
dition, the edge server needs to perform O(MN) ciphertext power operations, O(MN) and
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O(M) decryption operations,O(N) encryption operations,O(MN) ciphertextmultiplications,
and O(M) ciphertext power operations.

Communication overhead: In the secure aggregation protocol, since the devices par‑
ticipating in the training only participate in the initialization stage, there are only 2 rounds
of communication between each device and the server throughout the protocol process.
In the initialization stage, the auxiliary server needs to send data once, and in the cosine
anomaly filtering and within‑group truth estimate stage, the edge server and the auxiliary
server send data to each other three times, so the communication overhead between the
edge server and the auxiliary server is 3 rounds, and the communication overhead between
the auxiliary server and the edge server is 4 rounds.

6. Experimental Result
6.1. Experimental Design
(1) Attack mode

Symbol flipping attack: Each Byzantine attacker calculates true gradient information
g, then sends g = cg to the server, in our experiments we set c = −10 as in [25].

Gaussian attack: Each Byzantine attacker sends information g to the server, each com‑
ponent in g is sampled from N(0, 200) as in [9].

Noise attack: Each Byzantine attacker adds Gaussian noise ε to the real gradient and
then sends g = g + ε to the server, as in [25], ε is randomly sampled from the normal
distribution N(0, ∥σatkg∥2 · I) and added to each component, where σatk is a parameter, for
image recognition task σatk = 0.2, for natural language processing tasks, I is an identity
matrix.

(2) Baseline

We selected asynchronous SGD that has not been attacked as the gold standard, se‑
lect Kardam [24], Zeno++ [12], BASGD [25], BREA [31] as the baseline algorithms, where
Kardam, Zeno++, and BASGD are asynchronous robust aggregation algorithms, BREA is
a robust aggregation method with privacy protection.

(3) Datasets and models

The experiment was conducted on the image classification dataset CIFAR‑10 [36],
which consists of 50,000 training samples and 10,000 test samples, and Resnet‑20 [37] was
used as the training model.

(4) Client settings and dataset partitioning

We set up 30 clients, where the proportion of Byzantine attackers in all clients is set to
q = 0 − 20%. Asynchronous settings reference [25], kdel is a parameter that characterizes
delay, randomly extracted from the truncated standard normal distribution of [0,+∞). We
adopted an IID partitioning method for the dataset, and the sample partitioning between
clients does not intersect.

(5) Evaluation indicators

We evaluated the performance of the algorithm using three indicators: model accu‑
racy, convergence speed, and communication overhead. Model accuracy is the proportion
of correctly classified samples for all samples in the dataset, and the global model is tested
on the server side every round. The convergence speed is the accuracy that the model can
achieve under a fixed number of rounds. The communication overhead is the total amount
of data that needs to be transmitted in a single protocol execution.

6.2. Performance Comparison
We conducted extensive experiments on the defense performance of asynchronous ro‑

bust aggregation algorithms under various Byzantine attacks under heterogeneous device
settings, and compared our proposed method with the existing defense methods, includ‑
ing Kardam, Zeno++, BASGD. Numerical results demonstrated the effectiveness of our
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method. Next, we compared the accuracy of the model under different ratios of stragglers
to observe the convergence speed. Moreover, we tested the communication overhead of
the proposed method and compared it with the existing privacy protection robust aggre‑
gation scheme BREA.

(1) Model accuracy comparison

To verify the good performance of our method in heterogeneous device settings, we
conducted two sets of experiments including q = 10% and q = 20% for each type of attack.
In these two sets of experiments, we set 10 and 15 buffers for BASGD, and combined them
with the media algorithm. Moreover, we set the decay function of Kardam to a to ensure
the fairness of the comparison, where the proportion of stragglers is fixed at 20%, and
AGRA is compared with existing asynchronous robust aggregation algorithms under the
same experimental settings.

It can be seen from Figures 4 and 5 that firstly, under three types of attacks, model
accuracy of the proposed method is obviously better than that of ASGD, Zeno++, BASGD,
Kardam. Then, under less harmful attacks of symbol flipping attack and Gaussian attack,
although ASGD and Kardam still could converge, both their accuracies significantly de‑
crease. And under noise attack, neither ASGD nor Kardam can converge. There are two
main reasons for this. On the one hand, Kardam not only filters out 100% of Byzantine
gradients, but also filters out nearly 100% of correct gradients. Zeno++ has shown that
Kardam has a false positive rate of up to 99%, which makes its convergence very slow and
performance poor. On the other hand, the threat model used in this chapter does not guar‑
antee Kardam’s important assumption that any continuously received gradient sequence
of length 2q + 1 must contain at least gradients from honest participant q + 1. This is dif‑
ficult to guarantee in asynchronous environments, as Byzantine attackers can easily send
continuous Byzantine gradients, and themethods in this chapter do not rely on such strong
assumptions. Finally, as the proportion of Byzantine attackers increases, the model accu‑
racy of our method decreases the least under the three types of attacks. This is attributed
to the use of delayed grouping strategy to avoid the difficulty of comparing different delay
gradients, and the use of media as the benchmark algorithm to accurately evaluate the ag‑
gregation of multiple gradient information and obtain the true value gradient. Therefore,
our proposed method has the best performance under these three types of attacks.
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(2) Convergence speed comparison

In this section, we compare the convergence speed of differentmethods in the absence
of Byzantine attackers. We fixed the training round to 100 rounds and observed the accu‑
racy of each asynchronous robust aggregation algorithm by changing the proportion of
stragglers to 20%, 60%, 80%, and 90%. We set the BASGD buffer to 10 and implemented it
in combination with the Kardam and media algorithms.

It can be seen from Figure 6 that our method achieves the best performance for all
proportions of stragglers in fixed training rounds. AGRAhas a significant improvement in
accuracy compared to Zeno++, BASGD, and Kardam, and its convergence speed is closest
to that of the proposed method. But as the proportion of stragglers increases, the conver‑
gence speed slows down, because a higher proportion of stragglers increases the error and
noise of random gradients, thereby slowing down the convergence speed.
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In all the experiments above, when there are Byzantine attackers, our method con‑
verges faster than the gold standard ASGD. However, in the absence of Byzantine attack‑
ers, our method is slightly inferior to ASGD, but the algorithm in this chapter achieves a
good balance between security and convergence speed.

(3) Communication overhead comparison

In this section, we compare the communication overhead of our method with BREA
from two aspects. On the one hand, the fixed training model is ResNet20, and the number
of devices is set to 10, 15, 20, and 25. We observe the changes in communication overhead
as the number of devices increases. On the other hand, wefix 20 devices and set the training
models as ResNet20, MobileNet V3 large, MobileNet V3 small, CNN, and LeNet5.
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It can be seen from Figure 7a that as the number of devices increases, the communica‑
tion overhead of the method proposed in this paper is always smaller than that of BREA.
This is because the verification phase of BREA requires transmission between devices sev‑
eral times, while the execution process of the method proposed in this paper only requires
the transmission of encrypted random numbers once in the initial stage, with most of the
communication overhead borne by the server, which is extremely friendly for IoV devices
with limited communication capabilities and unstable connection states. It can be seen
from Figure 7a that as the dimensions of the training model increase, the same results are
also presented. The incremental speed of our method is slightly slower than that of BREA,
but as the number of training rounds increases, the superiority of our method will become
more significant because only encrypted random numbers are transmitted in the initial
stage of training. The above simulations can all demonstrate that the method proposed
in this paper is suitable for IoV scenarios with massive devices and complex task require‑
ments.
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7. Conclusions
This paper presents an asynchronous federated learning approach for the heteroge‑

neous internet of vehicles (IoVs), enhancing privacy and mitigating delays and attacks. It
introduces a unique grouping strategy, anomaly filtering, and truth estimation to counter‑
act adversarial behavior, and employs additive homomorphic encryption tominimize com‑
munication rounds for better efficiency and security. An aggregation algorithm reduces
the impact of stragglers and Byzantine attackers, while a new protocol upholds privacy
and security against such attacks. Experimental results show our method outperforms the
baseline by 41.6% and 13.3% against symbol flipping and Gaussian attacks, respectively,
and is superior to Kardam and ASGD under noise attacks. The algorithm suits IoV scenar‑
ios for collaborative model learning, ensuring data privacy and system robustness against
cyber threats. However, scalability may be challenged by the computational demands of
encryption, and real‑world IoV conditions could test the robustness further.

In future research, we aim to delve deeper into the complexities introduced by the
data heterogeneity inherent in the internet of vehicle (IoV) ecosystems. As for the non‑IID
(independently and identically distributed) data distributions in IoV devices, we plan to
tackle the challenges of heterogeneity in federated learning systems. Our goal is to design
robust aggregation algorithms specifically tailored to manage this diversity in data while
simultaneously enhancing privacy protection.

We will explore novel aggregation techniques that are resilient to the statistical dis‑
crepancies across the data collected from various IoV devices, ensuring that the federated
model remains robust and accurate evenwhen trained on highly heterogeneous data. This
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will likely involve the development of advancedmachine learningmodels that can identify
and adapt to the unique statistical properties of the data generated by different vehicles.
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