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Abstract: In this paper, an approach to quantify the area of influence of an intelligent longitudinally
controlled autonomous vehicle in an urban, mixed-traffic environment is proposed. The intelligent
vehicle is executed with a predictive longitudinal control, which anticipates the future traffic scenario
in order to reduce unnecessary acceleration. The shown investigations are conducted within a
simulated traffic environment of the city center of Darmstadt, Germany, which is carried out in the
traffic simulation software “Simulation of Urban Mobility” (SUMO). The longitudinal dynamics of
the not automated vehicles are considered with the Extended Intelligent Driver Model, which is an
approach to simulate real human driver behavior. The results show that, in addition to the energy
saving caused by a predictive longitudinal control of the ego vehicle, this system can also reduce the
consumption of surrounding traffic participants significantly. The area of influence can be quantified
to four vehicles and up to 250 m behind.

Keywords: longitudinal control; V2X; realistic microscopic traffic simulation; urban traffic; electric
vehicles; mixed traffic

1. Introduction

With the increase in computing power and major breakthroughs in the topic of au-
tonomous vehicles (AV), the path to fully and connected AVs is set [1]. The transformation
of traffic towards full autonomy results also in a change in traffic behavior. According
to [2] the transformation to fully autonomous traffic will have positive effects on traffic
flow and traffic capacity. However, the development of fully autonomous traffic will take a
significant amount of time and will involve mixed traffic scenarios. Also, it is expected that
the share of AVs in urban areas will increase slowly compared to highway situations due to
the more complex traffic situations in cities [3,4].

With the increasing efforts reducing the energy demand of the transportation sector,
and an expected increase in AVs in future traffic, also AVs must be designed as efficiently as
possible to fulfill this goal. One part of this task is a minimum energy consumption during
the production of the vehicles and an optimized drivetrain for the corresponding use case
[5]. Also, by an efficient drive strategy, AVs can save energy and emissions. This aspect is
mainly affected by the longitudinal motion of a vehicle. For the longitudinal control of AVs,
current research is mainly focused on maintaining safety [6] for all possible traffic situations
or improving the throughput [7], but also first approaches on increasing the efficiency of an
Intelligent Controlled automated Vehicle (ICV) within a chosen traffic scenario are made.

Karkan et al. [8] and Yang et al. [9] are considering a Cooperative Adaptive Cruise
Control system for an efficient longitudinal control. These contributions are both using
different types of Vehicle-to-everything (V2X)-information. In addition, Karkan et al. [8]
is also investigating the market share of V2X information available for an ICV but is not
including the surrounding vehicles’ consumption. Walz [10] and Morlock et al. [11] are
using MPC approaches for the control of the longitudinal motion of a vehicle, these are also

World Electr. Veh. J. 2024, 15, 448. https://doi.org/10.3390/wevj15100448 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj15100448
https://doi.org/10.3390/wevj15100448
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0001-8416-3197
https://orcid.org/0000-0001-5568-1649
https://doi.org/10.3390/wevj15100448
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj15100448?type=check_update&version=1


World Electr. Veh. J. 2024, 15, 448 2 of 11

showing potential for reducing the energy consumption of the ego vehicle but are inflicted
by a comparatively high required computing power.

Patella et al. [12] are focusing more on the environmental impact of the life cycle of
AVs. Even though no specific longitudinal control approach is shown in this work, a major
reduction in energy consumption within the operation phase is forecasted. Here, no mixed
traffic scenarios are investigated, but a lower energy consumption of the whole fleet is
projected due to more efficient traffic behavior.

Eichenlaub et al. [13,14] are using an intelligent, predictive longitudinal control
approach, which is based on state-of-the-art speed and headway control modes but extends
these by further elements, which are explained in detail in Section 2.

In the shown longitudinal control approaches, the main objective is the increased
energy efficiency of the ego vehicle, by maintaining safety. Additional to that, impacts
to other traffic participants, which are Human Controlled Vehicles (HCV), can also be
expected in mixed traffic scenarios. The extent of this impact has not yet been focused on in
previous research and is an additional positive effect on the evaluation of such intelligent,
predictive longitudinal control systems.

So far, the main focus of the investigations in mixed traffic scenarios is the view on
the marked share of AVs and following this, researchers are just taking into account the
consumption of the AVs, not referring to the consumption of the also operating HCV.
These results are additionally also very much dependent on the viewed traffic scenario.
To estimate the impact of an ICV on a not-specified traffic situation, the area of influence
around an ICV in an urban traffic environment to other HCVs is evaluated for urban traffic
in this paper. With the insight of this paper, the marked share behavior of ICV can be
explained and forecasted for different traffic scenarios, which was not possible for this
form before.

To investigate the potential of an ICV and its influence on other traffic participants
and also including connected infrastructure elements, which are not yet available in real
traffic environments, the following results are based on a simulative approach with a
co-simulation environment, which is described in Section 2.

This paper is organized as follows: as explained, Section 2 contains the co-simulation
environment and Section 3 explains the experimental approach. Section 4 concludes with
the results and Section 5 with the conclusion.

2. Co-Simulation Environment

The co-simulation environment includes two parts, which are shown in Figure 1.
The traffic simulation is executed with the traffic simulation software SUMO (version
1.19.0), which provides a microscopic, internal and multimodal, time-discrete traffic flow
platform [15]. SUMO provides the option to control and access the data of every vehicle
individually. This allows the interaction of a vehicle simulation with the traffic simulation.

Figure 1. Co-simulation environment with vehicle and traffic simulation.

For this paper, the SUMO simulation is executed with a street network of the city
center of Darmstadt, Germany, which is shown in Figure 2. The time step size is 0.2 s,
which allows a highly frequent data collection and, if executed, a small interval between
two speed-controlled points in time.
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Figure 2. Map of the traffic simulation environment (city center of Darmstadt, Germany) with traffic
scenario R.

To calculate the vehicles’ energy consumption, a backward-facing longitudinal dy-
namics model is used. The necessary energy is determined based on driving resistance
equations to provide the desired vehicle speed. To calculate the longitudinal behavior of
the shown vehicles, the dynamic system behavior of the drivetrain can, according to [16,17],
be taken into account with a first-order lag element, which is shown in Equation (1).

HFZ(s) =
a

aset
=

KFZ
τFZs + 1

(1)

Here, a is the executed acceleration and aset the desired acceleration according to the
longitudinal dynamics control, which is executed. The used approaches are shown in
Sections 2.1 and 2.2. The gain factor is chosen as KFZ = 1 and the time constant is chosen
as τFZ = 0.2. According to [18,19], these values characterize the dynamic behavior of an
electric powertrain sufficiently. With this, the necessary traction force Ftr can be calculated
with Equation (2)

Ftr = meffa +
1
2

cw AFzρv2 + crmg cos αs + mg sin αs (2)

In this Equation, the rotational inertia of the drivetrain is being neglected to simplify,
so meff = m. The value for ρ represents the air density and αs the current slope in the
direction of driving. The speed of the vehicle v is directly resulting from the previous
speed and the acceleration a. The values for the drag coefficient cw, the rolling resistance
coefficient cr and the frontal surface of the vehicle AFz and the vehicle mass m are shown
in Table 1.

Table 1. Main vehicle parameters.

Vehicle Parameters Vehicle

Vehicle mass m 1500 kg
Drag coefficient cw 0.3

frontal surface of the vehicle AFz 3.6 m3

Rolling resistance coefficient cr 0.0075
EM max. torque 350 Nm
EM max. speed 900 Nm

With this, the braking torque Tbr and the tire radius r, the resulting Moment of the
electric motors TEM can be calculated with Equation (3).
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TEM = Ftrr − Tbr (3)

The efficiency level of the powertrain depends on the current operation point. This
efficiency is also taken into account within the executed vehicle simulation and needs to be
included in TEM. Also, recuperation is implemented in the vehicle simulation. Only if the
desired torque for deceleration exceeds the maximal recuperation torque, the mechanical
brakes dissipate the excess energy with Tbr. Refer to Eßer et al. [20] for a more detailed
description of the powertrain model calculation. This approach is a common way to model
the consumption of electric vehicles as also used in [21].

For the investigation of this paper, a powertrain layout is chosen based on an exem-
plary design for an AV in urban areas. According to Kraus et al. [22], an all-wheel drive
wheel hub powertrain design is suitable for this use case. This type of drivetrain layout
is also discussed in [23,24] and is considered favorable in urban traffic. One example of
an AV, which is already constructed and operating for test use cases, is the EDAG CityBot
This vehicle is designed as a battery electric vehicle with wheel hub direct drive electric
machines (EM) in all four wheel hubs [24,25]. To maximize the overall efficiency of the
four EMs, an operational strategy is implemented that optimizes the use of each EM for
optimized vehicle efficiency. This powertrain design is used for both the ICV and HCV to
compare all vehicles’ consumption based on the driving behavior without being inflicted
by different vehicle and powertrain types and parameters.

To calculate the vehicle simulation, different parameters, which characterize the longi-
tudinal simulated motion of the vehicle, have to be set. Therefore, the vehicle and pow-
ertrain parameters shown in Table 1 are used, to replicate the consumption of the EDAG
CityBot. These parameters result in limitations for a maximum torque of M = 1400 Nm
and a maximum speed of v = 62.88 km/h before reaching the field weakening region. All
vehicles are executed to not exceed these values.

2.1. Intelligent Controlled Vehicle Modelling

For this paper, the approach by Eichenlaub et al. [13,14] is used. This approach uses
state-of-the-art speed and headway control modes with target speeds vmode1 and vmode2.
These target speeds are extended with an anticipatory speed mode vmode3. The speed
control mode is modeled for this approach with vmode1 = vallowed, with vallowed being the
allowed speed on the current lane of the ego vehicle. The headway control mode vmode2 is
executed as shown in Equation (4).

vmode2 = ve +
1
τv

(
vl − ve −

1
τd
(d0 + hsetve − dt)

)
(4)

Here, ve is the current speed of the ego vehicle and vl the actual speed of the leader
vehicle. Thus, τv and τd are the time constants that can be parametrized for the control
approach, d0 and dt are the actual and desired distance to the leading vehicle, hset the target
time gap.

Using V2X-information, an AI-based model, which is explained in detail in Eichenlaub
et al. [14], predicts the speed trajectory of the upcoming traffic situation. The target speed
for the anticipatory speed mode vmode3 is calculated by including the predicted information
as shown in Equation (5). The lowest target speed of the three-speed modes is used as the
target speed for the ego vehicle for the next time step.

vmode3 =


1

Npr
∑

t+Npr
j=t+∆t v̂l für dist. < 150 m

1
Npr

∑
t+Npr
j=t+∆t v̂e otherwise

(5)

Here, Npr are the steps of the prediction horizon and ∆t the step size of the prediction
horizon. The speed v̂ is the predicted speed for time step Npr.
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The chosen set speed is processed by a suitable PI controller, which is parameterized
to guarantee safety by also resulting in a favorable dynamic behavior.

To also take into account the dynamic behavior of an electric powertrain, a first-order
lag plant model is implemented with τ = 0.5 s.

The results in Eichenlaub et al. [13,14] show that this control approach reduces the
consumption of a vehicle in urban areas by up to 7.1% in comparison with not including
the anticipatory speed mode vmode3. It is also mentioned that the energy saving results not
from a reduced mean speed, but from anticipated early speed reduction and by avoiding
unnecessary acceleration.

In Figure 3 the control loop by Eichenlaub et. al. is displayed. The different types of
information are explained and processed in the prediction model. With this information,
the speed target vset is calculated according to Equations (4) and (5). With a standard
PI controller, the set acceleration aset is calculated, which is processed within the vehicle
model. This contains the vehicle dynamics and the powertrain model. The output of this
is the energy demand Econs and the applied vehicle speed vego. For more details refer to
Eichenlaub et al. [13,14].

Figure 3. Vehicle simulation for an ICV with control approach.

2.2. Human Controlled Vehicle Modelling

To imitate a human driver, the Enhanced Intelligent Driver Model (EIDM) is used [26].
It is based on a basic car following model, the Intelligent Driver Model (IDM) [27], but also
considers discontinuities like, for example, reaction times before braking or the different
driving behavior with smaller or bigger gaps between vehicles. The IDM calculates the
desired acceleration aIDM with Equation (6).

aIDM(t + ∆t) = amax

[
1 −

((
vn−1(t)

v0(t)

)δ

−
(

s∗n−1(t)
s(t)

)2)]
(6)

With amax being the maximum speed, s∗n−1(t) being the desired and s(t) the actual
gap between ego and leader vehicle. Also, δ shows the acceleration exponent, vn−1(t) the
actual velocity of the ego vehicle and v0 the desired velocity.

The EIDM also uses aIDM but additionally takes a Constant Acceleration Heuristic
aCAH(t) into account, which is shown in Equation (7).

aCAH(t) =


v2

n−1 ãn

v2
n−2s(t)ãn

vn(vn−1 − vn) ≤
− 2s(t)ãn

ãn − (vn−1−vn)2Θ
2s(t) otherwise

(7)

Θ =

{
0 vn−1 − vn < 0
1 vn−1 − vn ≥ 0

(8)
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ãn = min(an(t), amax) (9)

Here. vn is representing the velocity and an the acceleration of the leader vehicle.
Equations (8) and (9) form another acceleration option for the EIDM as shown in Equation (10).

aEIDM =(1 − cACC)aIDM + cACC[
aCAH + b tanh

(
aIDM − aCAH

b

)] (10)

The parameter cACC reflects the so-called coolness parameter, which sets the tendency
to drive at higher speeds and lower distances. The final set acceleration aACC is displayed
with aIDM if aIDM > aCAH otherwise aEIDM is selected.

In addition to this description of the longitudinal motion of the EIDM, there are
other minor enhancements in comparison to the IDM, which relate to reaction times,
reaction on changing speed limits and turning speeds for corners. These improvements
are accompanied by a further large number of variables, which can be set individually to
adapt the driving behavior of the simulated driver.

To imitate a broad variety of different driving styles by different drivers, some charac-
teristic parameters of the EIDM are chosen randomly out of a range of values. The varied
parameters represent the drivers’ imperfection σ related to the car following model, which
takes on values between 0.011 and 0.985, and the time headway τ representing the reaction
time of a driver, which takes on values between 0.54 and 1.128. All other variables are set
to the SUMO default values. This value selection results in a realistic traffic scenario as
shown in Eichenlaub et al. [14], by taking into account different driving styles.

The vehicle simulation for the HCV is shown in Figure 4.

Figure 4. Vehicle simulation for a HCV with EIDM.

3. Experimental Approach

Due to the high complexity of urban traffic, the impact of a vehicle on its surroundings
is difficult to quantify.

Urban traffic provides a lot of dynamic and complex traffic scenarios, which are pri-
marily defined by high traffic densities. These high traffic densities and the high percentage
of roads, where overtaking is not allowed or possible, form vehicle queues.

For a quantification approach to the impact of a vehicle on its surrounding traffic,
fixed system boundaries around the vehicle need to be set. In this paper, the following
system boundaries are determined.

It is assumed, that a vehicle just has a minor or no impact on the vehicles in front,
which sets the first boundary at its front end.

In real urban traffic, following vehicles change frequently within a driven route,
but in most situations, due to high traffic densities, at least one direct following vehicle is
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present. Therefore, urban traffic can be interpreted by vehicle queues forming due to vehicle
following situations. Even though, vehicles, their distances, and positions within the queue
change frequently. To simplify and summarize the impact of all different following vehicles
during a journey, in this paper, a fixed group of following vehicles is implemented. These
vehicles follow the leading vehicle during the whole route. This represents one possible
following situation in an urban traffic scenario.

Because it is assumed that the influence of the leader is getting smaller with an
increased distance backward, the second system boundary is set ten following vehicles
behind the leader vehicle. This assumption is confirmed within the results in Section 4.

Vehicle queues can be stopped, separated and changed in urban traffic scenarios by
right-of-way situations, other traffic-related situations, or traffic lights. These impacts
on the queue have similar effects on the vehicle queue’s behavior. These situations are
separating the vehicle queue at a certain point and will reduce the impact of a leading
vehicle to the following vehicles behind this point.

These situations can be summarized as general interrupting situations. In this paper,
these are only executed with traffic lights because they allow traffic situations that are
plannable and comprehensible. Therefore, all other traffic participants, which cause all
other interrupting situations, can be excluded from the following investigation.

Thus, the traffic scenario is reduced to the described vehicle queue. The vehicles
start 5 s after each other, to overcome the starting process of a vehicle’s trajectory. The
leader vehicle can be executed as ICV and HCV. All the following vehicles represent the
surrounding traffic and are executed as HCVs. The resulting traffic scenario with the
leading vehicle and the followers from i = 1 to i = 10 is shown in Figure 5.

Figure 5. Vehicle queue for car following scenario.

To avoid the influence of specific combinations of traffic light intervals that cause
certain queue interruption events, all investigations in this paper are executed 100 times
with a different start time of 3 s between each simulation. This number of simulations
tries to exclude the influence of outliers, which would result from specific traffic light
phase combinations.

To maintain an intact system with ten queued vehicles, overtaking is not possible, and
just one-lane roads are selected for the chosen scenario. This can be justified by considering
the share of one-lane roads within the shown traffic environment in Figure 2. In this traffic
scenario, the share of one-lane roads amounts to 80%, so the focus on this type of street
is reasonable.

For the investigation of the described system and the leading vehicle’s impact on the
followers, a one-lane route is selected as exemplary for typical urban traffic. The scenario
(R) is shown in Figure 2.

The scenario (R) has a distance of 1.20 km with three traffic lights at 0.13 km, 0.54 km
and 0.75 km. These have fixed but not equal light phases, which generate a multitude of
different combinations.

4. Results

The impact of the leader vehicle is evaluated by the position of the vehicle within the
vehicle queue and by the distance to the leader vehicle, regardless of the position within the
queue. These results, therefore, include both the impact caused by the distance to the leader
and caused by the vehicles between the leader vehicle and the specific follower HCV.
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4.1. Investigation by Number of Vehicles to Leader

In Figure 6a, the distribution of consumption of each vehicle within the vehicle queue
is shown. The red line is marking the median consumption of a HCV over the given
scenario (R) without being inflicted by an ICV.
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Figure 6. Consumption and mean speed for the ICV lead (vehicle L) vehicle queue with all HCV
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The leading vehicle, which is controlled as an ICV, shows a significant lower energy
consumption in all cases, compared to the median consumption of an HCV. This confirms
the results of Eichenlaub et al. [13,14].

Also, the following vehicles i = 1 to i = 4 are showing in most cases a lower consump-
tion, which can be interpreted as a verifiable positive impact in terms of consumption of the
leading vehicle to the first four following vehicles. The median consumption is showing a
reduction in consumption of 22% to 16% for this traffic scenario for vehicles i = 1 to i = 4
compared to the median consumption of an HDV. The occasionally measured values of
these vehicles, which are significantly above the median consumption of the vehicle under
consideration and also above the red marked median consumption, can be traced back to
situations where the vehicle queue is split up early during the route. In these cases, the
distances and the impact of the ICV leader are lowered.

From the following vehicles i = 5 to i = 10 the consumption converged to the median
consumption of an HCV on this route. This group of vehicles can be interpreted as the
vehicles, which the ICV leader has in most cases just minor influences on, due to larger
distances to the intelligent controlled vehicle.

The fluctuations in the values in the second group of follower vehicles, which include
vehicles i = 5 to i = 10, can be explained by two reasons. At first, the randomness in the
parametrization of the HCV, which results in a variety of driving styles, and therefore, also
in a variety of different consumption results. Also, different queuing situations could cause
this outcome. For example, the slightly lower consumption for vehicle i = 7 can appear
due to a specific combination of traffic light phases, which interrupts the vehicle queue at
this point.

It can be assumed, that with an even bigger number of simulations, the convergence
towards the red marked median value would be more obvious. Also, the focus on one
specific traffic scenario can cause these minor fluctuations for specific vehicles. Because in
this paper the fluctuations of the minor impacted vehicles is not relevant, the results for the
last six vehicles within the queue can nevertheless be categorized as unambiguous in order
to quantify the influence of a leader vehicle.

The mean speed for all vehicles within the described traffic scenario is shown in Figure 6b. It
is clear that the mean speed for all vehicles, regardless the control design, is very similar.
This indicates, that the energy savings, shown in Figure 6a are not expected to be caused by
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lower mean speeds but by less acceleration situations, caused by the predictive element
of the ICV. This behavior will be continued to the following vehicles, which will adapt
these actions.

4.2. Investigation by Distance to Leader

The previous results are an implication for a positive impact of the ICV to the surround-
ing traffic for at least four vehicles behind. As mentioned, the consumption is interfered
not only by the number of vehicles between itself and the leading vehicle but also by the
distance to the leading vehicle. To quantify the impact of the leading vehicle by distance,
in Figure 7, the appearances of consumption over the distance to the leading vehicles is
shown for both leading vehicle types, the HCV in Figure 7a and the ICV in Figure 7b. In
these Figures, the order of the vehicles is neglected.
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Figure 7. Heat map of the average consumption in scenario (R) for all executed simulations, with the
red marked average consumption for an HCV in this scenario. (a) leading vehicles HCV; (b) leading
vehicles ICV.

For the HCV leader in Figure 7a, the distribution of the consumption stays relatively
constant throughout the distance to the leader vehicle. In contrast to this, for the ICV
leader in Figure 7b the follower vehicles are showing a steady increase in consumption
with increased distance up to a distance of 250 m. This confirms and explains the results of
the consideration of the following vehicles in Figure 6a. After a distance of about, 250 m
the following vehicles reach the median consumption of an HCV vehicle for this route,
regardless of the leader vehicle. This distance can be stated as the maximum distance of
influence for this scenario.

For both types of leader vehicles, an interval of distance with a lower number of
drives with the corresponding consumption can be observed at a distance of approximately
200 m. This is more significant for the HCV leader vehicle but can also be seen for the ICV
leader. This gap can be caused by the chosen traffic scenario and could be a result of just
investigating one specific scenario. This could also be the reason for the fluctuations in
Figure 6a for later vehicles within the vehicle queue with the ICV leader. It is part of further
research to investigate more traffic scenarios to confirm this hypothesis.

5. Conclusions

In this work, the influence of an ICV on a mixed traffic scenario is quantified. Therefore,
a characteristic urban traffic scenario has been selected, and necessary assumptions were
formulated. Even though these results are just based on one exemplary scenario, the results
give an impression of the impact of an ICV on urban traffic.

The results, which depend on the models used for HCV and ICV, need to be interpreted
in this context. This is countered by the fact that a validated HCV model was used, which
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is based on real driving data and a state-of-the-art intelligent longitudinal control, which is
representative of such systems.

Even though the absolute values may differ with other models, the main objective,
which is a significant influence of ICVs in mixed traffic, can be seen as general for a wide
range of intelligent longitudinal control systems.

The results show that an efficiently controlled vehicle can have a significant area of
influence in relation to other traffic participants in a mixed-traffic environment. This can
be quantified by up to four follower vehicles or around 250 m behind the vehicle under
consideration. This could imply that with an increasing number of autonomous ICVs, the
energy consumption of a certain mixed vehicle fleet could be reduced even more than
just by the energy saving of the autonomous ICV but also by having a positive impact on
surrounding HCV traffic.

With the shown results, the energy saving of a vehicle fleet, which includes ICVs, can
be derived for other traffic situations.

In the future, these results have to be confirmed by further investigations, e.g., by
setting even bigger system boundaries, concerning a whole vehicle fleet or a part of a city,
where ICVs are operating in mixed traffic. Also, the impacted radius by increasing the
market share of ICV to mixed traffic is another topic that should be considered in future
investigations, to validate and extend the shown results.
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