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Abstract: The rapid growth of electric vehicles (EVs) necessitates efficient management of dynamic
EV charging networks to optimize resource utilization and enhance service reliability. This paper
explores the application of adaptive multi-agent reinforcement learning (MARL) to address the
complexities of EV charging infrastructure in Thailand. By employing MARL, multiple autonomous
agents learn to optimize charging strategies based on real-time data by adapting to fluctuating
demand and varying electricity prices. Building upon previous research that applied MARL to static
network configurations, this study extends the application to dynamic and real-world scenarios,
integrating real-time data to refine agent learning processes and also evaluating the effectiveness of
adaptive MARL in maximizing rewards and improving operational efficiency compared to traditional
methods. Experimental results indicate that MARL-based strategies increased efficiency by 20%
and reduced energy costs by 15% relative to conventional algorithms. Key findings demonstrate
the potential of extending MARL in transforming EV charging network management, highlighting
its benefits for stakeholders, including EV owners, operators, and utility providers. This research
contributes insights into advancing electric mobility and energy management in Thailand through
innovative AI-driven approaches. The implications of this study include significant improvements in
the reliability and cost-effectiveness of EV charging networks, fostering greater adoption of electric
vehicles and supporting sustainable energy initiatives. Future research directions include enhancing
MARL adaptability and scalability as well as integrating predictive analytics for proactive network
optimization and sustainability. These advancements promise to further refine the efficacy of EV
charging networks, ensuring that they meet the growing demands of Thailand’s evolving electric
mobility landscape.

Keywords: reinforcement learning; adaptive multi-agent systems; electric vehicle charging; dy-
namic optimization

1. Introduction
1.1. Background and Motivation

In recent times, electric vehicles (EVs) have captured considerable attention and are
being widely endorsed by various nations as an environmentally friendly transportation al-
ternative [1,2]. The primary appeal of EVs is their zero-emission feature, which significantly
aids in promoting environmental sustainability [3]. Besides their ecological benefits, EVs
are economically advantageous, offering notable cost savings over conventional gasoline
engines. They are also celebrated for their seamless, intuitive driving experience [4]. The
emission-free operation of EVs makes them a preferred choice for environmentally con-
scious individuals. Furthermore, the lower operational expenses compared to traditional
gasoline vehicles, combined with their ease of use, further contributes to their growing
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popularity [5]. The rapid adoption of electric vehicles (EVs) globally has necessitated
advancements in the management of EV charging networks to enhance efficiency and
reliability [6]. As the demand for EVs increases, so does the need for intelligent solutions
to manage the dynamic nature of EV charging infrastructure [7]. Traditional methods
of EV charging management often fall short in addressing the complexities arising from
fluctuating demand and varying electricity prices [8].

In response to these challenges, recent research has explored the application of ad-
vanced artificial intelligence (AI) [9,10] techniques, particularly multi-agent reinforcement
learning (MARL), to optimize EV charging strategies [11,12]. MARL involves multiple
autonomous agents that learn to optimize their actions through interactions with the en-
vironment and each other. This approach is particularly suited for dynamic and complex
systems like EV charging networks, where agents can adapt to real-time data and evolving
conditions [13].

Previous studies have demonstrated the potential of MARL in improving the man-
agement of EV charging infrastructure. For instance, Chen et al. [14] highlighted how
MARL can maximize rewards for both EV owners and operators by optimizing charging
schedules based on real-time data. Moreover, Sun et al. [15,16] emphasized the scalability
of MARL in handling large-scale EV charging networks, showcasing its applicability in
diverse settings. Additionally, Suanpang and Jamjuntr [1,3] proposed a novel approach for
recommending EV charging stations in smart cities using MARL algorithms. Their study
compared several popular algorithms, including the deep deterministic policy gradient,
deep Q-network, and multi-agent DDPG (MADDPG), demonstrating that MADDPG out-
performed other algorithms in terms of Mean Charge Waiting Time, Charge Flow Time
(CFT), and Total Saving Fee. This research highlighted the collaborative and communicative
nature of the MADDPG algorithm, indicating its superiority in addressing the EV charging
station problem in a multi-agent setting and providing a better user experience, thereby
contributing to the development of more efficient and sustainable transportation systems
in smart cities [2,3,13,17,18].

Our original research [1,2] laid the groundwork for applying MARL in the context of
smart city environments. This current study extends our previous work by focusing on
the specific challenges and opportunities present in Thailand’s EV charging infrastructure.
Building upon the foundational principles established in our earlier research, we aim to
adapt MARL techniques to effectively manage the dynamic and diverse charging network
landscape in Thailand [19]. By leveraging the insights gained from previous experiments
and advancements in MARL algorithms, we seek to enhance the adaptability and efficiency
of EV charging strategies [2,3]. Our research explores novel approaches to address real-
world complexities, including fluctuating electricity prices, varying EV user behaviors,
and evolving regulatory environments. Through empirical validation and comparative
analysis, we aim to quantify the performance improvements that are achievable with
adaptive MARL, thereby contributing to the body of knowledge on sustainable urban
mobility solutions.

1.2. Problem Statement
1.2.1. Research Problem

EVs are rapidly gaining popularity worldwide, leading to increased demand for the
efficient management of EV charging networks. However, traditional methods of EV
charging management often struggle to adapt to the dynamic nature of EV usage patterns,
fluctuating electricity prices, and evolving user behaviors [20,21]. This creates inefficiencies
in resource utilization and reliability, posing challenges for both EV owners and charging
infrastructure operators.

1.2.2. Thailand’s EV Industry

In Thailand, the growth of EVs has outpaced the development of robust charging
infrastructure management systems [19]. Existing approaches primarily rely on static
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scheduling and pricing strategies, which do not effectively optimize charging operations
in response to real-time data and varying conditions [1,2]. This gap highlights the critical
need for adaptive solutions that can dynamically adjust charging strategies to maximize
efficiency and user satisfaction while minimizing operational costs.

The research problem addressed in this study revolves around developing and eval-
uating an adaptive MARL framework tailored to the specific challenges of managing
EV charging networks in Thailand [1,3,4]. By harnessing the collective intelligence of
autonomous agents, MARL offers a promising approach to optimizing charging sched-
ules, balancing load distribution, and responding intelligently to fluctuating demand and
electricity prices. In addition, the effectiveness of such an approach is assessed through em-
pirical analysis, comparing the performances of MARL-based strategies against traditional
methods [3].

In the context of Thailand, where the EV market is rapidly growing, the implemen-
tation of adaptive MARL presents a promising solution for enhancing the operational
efficiency of charging networks. Figure 1 illustrates Thailand’s EV charging context. Thai-
land presents a unique context for the deployment of EV charging networks due to several
factors [3,14,20]:

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW  3  of  33 
 

 

1.2.2. Thailand’s�EV Industry�

In Thailand,  the growth of EVs has outpaced  the development of robust charging 

infrastructure management  systems  [19].  Existing  approaches  primarily  rely  on  static 

scheduling and pricing strategies, which do not effectively optimize charging operations 

in response to real-time data and varying conditions [1,2]. This gap highlights the critical 

need for adaptive solutions that can dynamically adjust charging strategies to maximize 

efficiency and user satisfaction while minimizing operational costs. 

The research problem addressed in this study revolves around developing and eval-

uating an adaptive MARL framework tailored to the specific challenges of managing EV 

charging networks in Thailand [1,3,4]. By harnessing the collective intelligence of autono-

mous agents, MARL offers a promising approach to optimizing charging schedules, bal-

ancing load distribution, and responding intelligently to fluctuating demand and electric-

ity prices. In addition, the effectiveness of such an approach is assessed through empirical 

analysis, comparing the performances of MARL-based strategies against traditional meth-

ods [3]. 

In the context of Thailand, where the EV market is rapidly growing, the implemen-

tation of adaptive MARL presents a promising solution for enhancing the operational ef-

ficiency of charging networks. Figure 1 illustrates Thailand’s EV charging context. Thai-

land presents a unique context for the deployment of EV charging networks due to several 

factors [3,14,20]: 

 

Figure 1. Thailand EV charging context. 

•  Current State of EV Adoption: The adoption of EVs in Thailand is growing, driven 

by government incentives and increasing consumer awareness. This has caused the 

market estimates of Thailand’s prospects of selling EVs to be revised and the burden 

to increase significantly primarily because of better sales growth achieved in the first 

half of 2024 than expected. In this period, a total of 49,319 EVs were sold, which is 

above  the  original  estimate  for  the  sales  of  the whole  year.  Therefore,  the  sales 

Figure 1. Thailand EV charging context.

• Current State of EV Adoption: The adoption of EVs in Thailand is growing, driven
by government incentives and increasing consumer awareness. This has caused the
market estimates of Thailand’s prospects of selling EVs to be revised and the burden to
increase significantly primarily because of better sales growth achieved in the first half
of 2024 than expected. In this period, a total of 49,319 EVs were sold, which is above
the original estimate for the sales of the whole year. Therefore, the sales forecasts
have been revised to reflect sales of 80,700 units, with an increase of 151% compared
to 20.7% estimated last time. Even though most of the forecasts expect an overall
contraction in total vehicle sales, it is anticipated that there will be a surge in sales of
EVs because of the attractive subsidies that will maintain high demand for them [22].
The dominance of specific EV brands and charging point manufacturers shapes the
infrastructure landscape.

• Electricity Pricing Structures: Thailand’s electricity pricing includes potential for
time-of-use tariffs, which can influence charging behaviors and grid load manage-
ment strategies.
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• Geographic Distribution: The distribution of charging stations and the user base across
urban and rural areas presents unique challenges in ensuring equitable access and
efficient utilization.

• Grid Constraints: Integrating a large number of EVs into the power grid can lead to
overloads and inefficiencies if not managed properly.

• Fair Resource Allocation: Ensuring that charging resources are allocated fairly among
users will help to prevent bottlenecks and long waiting times.

Addressing these challenges requires innovative solutions that can adapt to changing
conditions in real time, optimize resource allocation, and enhance the overall efficiency of
the EV charging network [3,20].

1.3. Managing Dynamic EV Charging Demands Presents Several Challenges

The management of dynamic EV charging demands poses significant challenges due
to the variability influenced by factors such as time of day, location, and user behavior [21].
During peak hours, particularly in the mornings and evenings, there is a surge in charging
demand as commuters charge their vehicles before and after work, while business districts
and shopping centers experience heightened demand during the day compared to residen-
tial areas. The effective management of these fluctuations is crucial to prevent grid overload,
minimize waiting times, and ensure the equitable distribution of charging resources [1,3,22].
The impact of these demand fluctuations extends to grid stability, operational efficiency,
and user convenience, necessitating advanced technological solutions like smart charg-
ing technologies, demand response systems, and predictive analytics. These innovations
enable charging stations to adjust operations in real time based on electricity prices, grid
capacity, and user preferences, thereby improving overall system reliability [23,24]. Policy
frameworks supporting smart grid investments, charging protocol standardization, and
incentives for off-peak charging are essential to the mitigation of peak demand spikes
and the fostering of sustainable growth in EV infrastructure. This research endeavors to
implement an adaptive multi-agent reinforcement learning (MARL) framework tailored to
Thailand’s specific challenges by integrating data analytics, smart grid technologies, and
policy insights to optimize charging operations and enhance grid resilience in Thailand’s
evolving EV ecosystem [20].

This research thus tailors the MARL framework to consider these Thailand-specific
factors, aiming to enhance the effectiveness and applicability of the proposed solution in
the Thai context. By addressing local challenges and leveraging opportunities, the adaptive
MARL approach can better meet the needs of Thailand’s EV charging infrastructure.

1.4. Research Objectives

This paper explores the use of adaptive MARL as a promising approach to managing
dynamic EV charging networks. MARL involves multiple autonomous agents that learn
to make decisions through interactions with their environment and with each other. By
leveraging MARL, we aim to achieve the following objectives:

– Dynamic Adaptation: Develop an adaptive MARL framework capable of responding
to real-time fluctuations in charging demand and supply.

– Efficiency and Fairness: Optimize the allocation of charging resources in order to
maximize overall network efficiency while ensuring fair access for all users.

– Scalability: Design a scalable solution that can be applied to large and complex EV
charging networks.

Moreover, building upon this foundation, the present study aims to extend the appli-
cation of adaptive MARL to the specific context of Thailand’s EV charging networks. By
integrating real-time data on electricity prices and demand fluctuations, this research seeks
to enhance the adaptability and efficiency of EV charging management [1,3]. This study
also explores future research directions, including the integration of predictive analytics for
proactive network optimization and sustainability [20–26].
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1.5. Contributions

This study makes several significant contributions to the field of EV charging network
management by extending adaptive multi-agent reinforcement learning (MARL) to address
dynamic EV charging networks in Thailand [3]. The aim of this paper is to provide a
comprehensive analysis of how adaptive MARL can be leveraged to address the challenges
of dynamic EV charging networks, thereby contributing to the advancement of sustainable
and efficient transportation solutions [19,26].

First, an innovative application of MARL tailored to the specific conditions and re-
quirements of Thailand’s EV charging infrastructure is introduced [19,26]. By utilizing
multiple autonomous agents that learn and adapt to real-time data, this study demon-
strates how MARL can optimize charging strategies in response to fluctuating demand and
varying electricity prices. This approach provides a robust framework for managing the
complexities of EV charging networks, enhancing both efficiency and reliability [27–32].

Second, the research provides empirical evidence of the effectiveness of adaptive
MARL in maximizing rewards and improving operational efficiency compared to tradi-
tional methods. This study’s findings highlight the potential for significant improvements
in the management of EV charging networks, offering a viable solution for stakeholders,
including EV owners, operators, and utility providers, to enhance service reliability and
resource utilization [33–38].

Third, this study addresses the scalability and adaptability of MARL in large-scale, real-
world applications. By integrating real-time data from various sources, such as electricity
prices, grid status, and user demand, the research showcases how MARL can dynamically
adjust charging strategies to optimize outcomes. This adaptability is crucial for ensuring the
sustainable growth of EV infrastructure in rapidly developing markets like Thailand [39].

Lastly, this paper outlines future research directions, emphasizing the integration of
predictive analytics and the enhancement of MARL’s adaptability and scalability. By explor-
ing these areas, this study sets the stage for further advancements in the field, contributing
to the ongoing development of intelligent, AI-driven approaches to EV charging network
management [1,3,39].

Moreover, this paper has been split into various essential parts to provide for a
thorough understanding of the research process, starting with the Introduction, which
specifies the Background and Motivation, Problem Statement, Challenge, and Objectives.
Next is the Literature Review, where the relevant materials are critiqued and gaps in the
prior scholarship that the current study seeks to fill are described. The Methodology
Section outlines the research framework, research designs, materials, and methods, which
are vital for the reproducibility of this study. The Simulation and Results Section examines
the data, presenting the results derived from the analysis. In the Discussion Section,
evaluative assessments of the findings are offered with an additional evaluation of how
such findings relate to established works and their implications. Finally, the Conclusions
Section provides a summary of the significant outcomes of the research endeavor, together
with the recommendations for further study.

2. Literature Review
2.1. Overview of EV Charging Networks

The rapid proliferation of EVs has led to the development of extensive EV charging
networks. These networks are crucial for supporting the growing number of EVs on the
road, ensuring that drivers have access to reliable and efficient charging infrastructure.
However, several challenges persist in the current state of EV charging networks, including
the uneven distribution of charging stations, long wait times during peak hours, and
the integration of renewable energy sources into the charging grid [40,41]. Additionally,
managing the dynamic nature of EV charging demand, influenced by factors such as time
of day and geographic location, remains a significant challenge [42,43].

Key Components and Challenges: EV charging networks consist of various com-
ponents, including charging stations, power grid connections, and software systems for
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managing charging operations. One of the primary challenges in developing these net-
works is ensuring adequate coverage and accessibility to meet the needs of diverse user
groups. For instance, urban areas typically have higher densities of charging stations
compared to rural areas, which can lead to disparities in access [41].

Technological Advancements: Recent technological advancements have significantly
improved the efficiency and convenience of EV charging networks. The integration of smart
grid technologies and Internet of Things (IoT) devices allows for the real-time monitoring
and management of charging activities. These technologies enable dynamic load balancing
and demand response, which are essential for optimizing the use of existing infrastructure
and preventing grid overloads [27,44]. The application of artificial intelligence (AI) and
multi-agent systems in EV charging networks is an emerging area of research [39–41]. Multi-
agent systems can manage complex interactions between numerous charging stations and
EVs, optimizing charging schedules and reducing waiting times [1,44]. For example, multi-
agent reinforcement learning (MARL) has shown promise in improving the operational
efficiency of EV charging networks by allowing autonomous agents to learn and adapt to
real-time data [32,35,41,42].

Policy and Incentives: Government policies and incentives play a crucial role in
promoting the development and adoption of EV charging networks. Financial incentives
such as subsidies, tax breaks, and grants encourage both consumers and businesses to
invest in EVs and charging infrastructure. Moreover, regulatory frameworks that support
the integration of renewable energy sources into EV charging networks contribute to the
sustainability of these systems [15,45].

Future Directions: Future research on EV charging networks is expected to focus on
enhancing the scalability and interoperability of charging systems. The integration of pre-
dictive analytics and machine learning algorithms can further optimize charging operations
by predicting user demand and adjusting charging strategies accordingly. Additionally,
advancements in battery technology and wireless charging may lead to new models of EV
charging that are more efficient and user-friendly [46–48].

2.2. EV Charging Networks in Thailand

The expansion of electric vehicle (EV) charging networks in Thailand is a critical
aspect of the country’s strategy to promote electric mobility and reduce greenhouse gas
emissions. The development and management of these networks are influenced by various
factors, including technological advancements, policy frameworks, and market dynam-
ics [1,3,4,20,28–31].

Key Components and Challenges: The EV charging infrastructure in Thailand consists
of numerous charging stations, power grid connections, and software systems designed
to manage charging operations. A significant challenge in the country is ensuring the
equitable distribution of charging stations between urban and rural areas. Urban areas,
particularly Bangkok, have a higher density of charging stations, which provides better
access for EV users. In contrast, rural areas face a scarcity of charging infrastructure,
creating barriers to EV adoption outside major cities [1,3,28].

Technological Advancements: Technological advancements have played a pivotal role
in enhancing the efficiency and reliability of EV charging networks in Thailand [3,29–31].
The integration of smart grid technologies and Internet of Things (IoT) devices has enabled
the real-time monitoring and dynamic management of the charging infrastructure [28–31].
These technologies facilitate load balancing and demand response, which are essential for
optimizing the use of the power grid and preventing overloads [29].

Multi-Agent Systems and AI: The application of AI and multi-agent systems is an
emerging trend in the management of EV charging networks in Thailand. Multi-agent
systems, particularly those using reinforcement learning algorithms, can manage the
complex interactions between numerous charging stations and EVs [40–42]. These systems
help to optimize charging schedules and reduce waiting times by allowing autonomous
agents to learn from real-time data and adapt their strategies accordingly [49].
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Policy and Incentives: Government policies and incentives are crucial drivers of the
development of EV charging networks in Thailand. The Thai government has implemented
various measures to support the growth of EV infrastructure, including financial incen-
tives such as subsidies and tax breaks for both consumers and businesses. Additionally,
regulatory frameworks that encourage the use of renewable energy sources in EV charging
stations contribute to the sustainability of the infrastructure [30,50].

Future Directions: Future research and development in EV charging networks in
Thailand are expected to focus on improving scalability and interoperability. Enhancements
in predictive analytics and machine learning can further optimize charging operations by
predicting user demand and adjusting strategies accordingly. Additionally, advancements
in battery technology and the development of wireless charging solutions may lead to more
efficient and user-friendly EV charging models [3,31].

2.3. Traditional Approaches to EV Charging Management

Traditional methods for managing EV charging networks can be broadly categorized
into centralized and decentralized approaches.

Centralized Methods: Centralized approaches involve a central authority that makes
all the decisions regarding charging station operations. While this method can optimize the
use of resources and ensure a uniform service level, it often suffers from scalability issues
and a lack of responsiveness to real-time changes in demand [32,35,40,41,47,51].

Decentralized Methods: Decentralized approaches empower individual charging
stations or regions to make their own decisions. This can lead to more responsive and flexi-
ble management but may also result in suboptimal resource utilization and coordination
challenges [46,51].

The limitations of these traditional approaches highlight the need for more advanced
and adaptive solutions. Centralized systems often cannot scale effectively to accommodate
the increasing number of EVs, while decentralized systems struggle with coordination and
optimization across the network [34–36].

2.4. Multi-Agent Reinforcement Learning

Basic Concepts of MARL: Multi-agent reinforcement learning (MARL) involves mul-
tiple agents that learn to make decisions by interacting with their environment and each
other. Each agent seeks to maximize its own rewards while considering the actions and
strategies of other agents. Figure 2 illustrates the MARL interaction. This approach is
particularly well suited for complex and dynamic systems where centralized control is
impractical [38,52].
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Applications of MARL in Various Domains: MARL has been successfully applied
in various fields, including robotics, traffic management, and smart grids. In traffic man-
agement, for example, MARL has been used to optimize traffic signal timings, leading to
reduced congestion and improved traffic flow [39,53]. In smart grids, MARL helps with
managing the distribution of energy resources by balancing supply and demand in real
time [54,55].

2.5. Adaptive Techniques in MARL

Importance and Benefits of Adaptability: Adaptability is a critical feature of MARL,
enabling agents to continuously update their strategies based on new information and
changing conditions. This is particularly important in dynamic environments like EV
charging networks, where demand and supply can fluctuate rapidly [26,46].

Figure 3 illustrates the critical role of adaptability in MARL, emphasizing continuous
strategy updates in dynamic environments like EV charging networks.
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Previous Studies on Adaptive MARL in Dynamic Environments: Several studies have
explored the use of adaptive MARL techniques in dynamic settings. For instance, Lee
et al. (2020) demonstrated how adaptive MARL could be used to manage dynamic traffic
signals, resulting in significant improvements in traffic flow. Similarly, in the context of
smart grids, adaptive MARL has been shown to enhance the management of distributed
energy resources, leading to more stable and efficient grid operations [12,49].

Recent research has specifically focused on the application of adaptive MARL in
EV charging networks. For example, Zhang et al. [55,56] proposed an adaptive MARL
framework for optimizing the placement and operation of EV charging stations, achieving
better performance compared to static methods. Additionally, a study conducted by Liu
et al. [57] highlighted the benefits of using adaptive MARL for dynamic pricing in EV
charging networks, which helped with balancing the load and reducing peak demand [58].

In summary, the adaptability of MARL makes it a promising approach for managing
dynamic EV charging networks. By continuously learning and adapting to new information,
MARL can help with optimizing resource allocation, enhancing efficiency, and ensuring
fairness in EV charging networks [55,58–62].

2.6. Related Study

In our prior study, “Optimizing Electric Vehicle Charging Recommendation in Smart
Cities: A Multi-Agent Reinforcement Learning Approach” [3], we explored the application
of multi-agent reinforcement learning (MARL) to enhance electric vehicle (EV) charging
recommendations within smart city environments. This study addressed the pressing need
for efficient charging infrastructure by leveraging MARL’s ability to coordinate multiple
charging stations autonomously [1,3,4]. Key contributions included the development and
implementation of a MARL framework specifically designed for managing EV charging,
which enables charging stations to adapt their own strategies in real time based on user
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demand and system conditions. The results demonstrated significant improvements in
charging efficiency, a reduction in waiting times, and enhanced resource management
through collaborative agent interactions. The study underscored the scalability and practi-
cal feasibility of MARL in optimizing EV charging operations in urban settings, paving the
way for future enhancements in dynamic pricing integration, renewable energy utilization,
and user interface improvements for seamless charging experiences. Moreover, in the
research study “An Integrated Analysis of Electric Battery Charging Station Selection—
Thailand Inspired” [63], the authors discussed the problem of finding appropriate places
for the location of EV charging stations in Thailand. The study presented a thorough
analysis consisting of geographic, demographic, technical, and economic aspects that are
vital in the selection process. The research adopted a quantitative approach whereby data
were collected from 300 entrepreneurs within the EV charging station industry by use of
a questionnaire. The key findings from the study noted that technical and infrastructure
factors were key drivers of the economic and financial implications of the location and
selection of the charging station, which comes last in the chain. In addition, the research
reiterated the role of geographic and demographic characteristics in economic outcomes
and related strategic placement.

3. Methodology
3.1. Research Framework

Figure 4 illustrates the structured research framework used in this study. The frame-
work encompasses four main stages: the Literature Review, Methodology, Implementation,
and Evaluation. Each stage delineates specific tasks crucial for advancing the understand-
ing and application of adaptive MARL in optimizing EV charging infrastructure. The
framework guides the systematic investigation from the review of the existing literature
on MARL in EV charging to the design and development of a tailored MARL framework,
integrating it with real-world EV charging data and evaluating its performance against
traditional methods. This comprehensive approach aims to address the unique challenges
posed by Thailand’s dynamic EV landscape, offering insights into enhancing sustainability
and efficiency in urban transportation systems.
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3.2. MARL Framework for EV Charging Networks
Description of the Proposed MARL Framework

In this study, we proposed a multi-agent reinforcement learning (MARL) framework
tailored for electric vehicle (EV) charging networks. The aim of this framework was to
optimize charging station operations through collaborative learning among multiple agents.

Roles and Interactions of Agents in the Network: Agents in the network represented in-
dividual EV charging stations. They interacted by making decisions on charging operations
based on shared environmental feedback and local observations.

Environment Design: The environment design aimed to replicate the operational
complexity of real-world EV charging networks. It integrated dynamic variables such
as varying electricity demand across stations, fluctuating energy prices, and real-time
operational constraints. This setup enabled realistic simulations for testing and optimizing
MARL strategies tailored to enhance charging efficiency and user experience.

Simulation Environment and Assumptions:

• EVChargingEnv: This environment simulated a multi-station EV charging network
where each station could independently decide its charging actions;

• Assumptions: The environment assumed dynamic factors such as varying demand
patterns across stations and fluctuating energy prices.

Dynamic Factors Considered:

• Varying Demand: Each station faced varying levels of incoming EVs for charging;
• Changing Prices: Energy prices fluctuated based on external factors and demand-

supply dynamics;
• Renewable Energy Availability: The incorporation of renewable energy sources with

variable availability impacting charging decisions;
• Grid Constraints: The consideration of grid capacity and peak load times to avoid

overloading the power grid.

Agent Architecture: Agent Types and Their Roles:

• Charging Stations: Agents represented individual charging stations;
• Coordinator Agent: A centralized or decentralized coordination agent for communica-

tion and policy enforcement.

Communication and Coordination Mechanisms:

• Decentralized: Stations communicated through shared environmental states and
possibly local agreements;

• Centralized: The coordinator agent facilitated global coordination and policy enforcement.

Action Space and State Representation (Definition of Actions and States for Each Agent):

• Action Space: Each charging station agent selected actions to charge (1) or not charge
(0) EVs, as well as to adjust charging rates and prioritize certain EVs based on prede-
fined criteria;

• State Variables: States included current charge levels (Ci), queue lengths (Qi) energy
prices, renewable energy availability, and grid constraints for each station (i).

State Variables and Their Significance:

• Charge Levels (Ci): Indicated current availability for charging;
• Queue Lengths (Qi): Reflected pending charging requests, affecting station load

management;
• Energy Prices: Dynamic pricing information influencing cost-effective charging decisions;
• Renewable Energy Availability: Data on renewable energy sources affecting green

charging strategies;
• Grid Constraints: Information on grid capacity and peak load times to ensure stable

grid operation.

Reward Function Design:
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Efficiency: Reward for successful charging completion:

Rcharge(s, a) = ∑N
i=1 ri (1)

ri =

{
1 i f ai = 1 and Ci < max_capacity

−1 otherwise
(2)

where (N) is the number of stations, (s) is the current state, (a) is the action vector, and (ai)
denotes the action for station (i).

Fairness: Penalty for overcharging or underutilization to balance station workload:

Rfair(s, a) = −λ∑N
i=1

∣∣Qi −Qtarget
∣∣ (3)

where λ is a fairness coefficient, Qi is the queue length of station (i), and Qtarget is the target
queue length.

Reward Functions
Cost Minimization: Reward for minimizing energy costs:

Rcost(s, a) = −β∑N
i=1 pi · ei (4)

where β is a cost sensitivity coefficient, pi is the energy price at the station (i), and ei is the
energy consumed by the station (i).

Grid Stability: Reward for maintaining grid stability:

Rgrid(s, a) = −γ
(
∑N

i=1 loadi − grid_limit
)2

(5)

where γ is a stability coefficient, loadi is the load at the station (i), and (grid_limit) is the
maximum allowable load on the grid.

Balancing Efficiency, Fairness, Cost, and Grid Stability
Total Reward: Combination of all reward components:

Rtotal(s, a) = αRcharge(s, a) + λRfair(s, a) + βRcost(s, a) + γRgrid(s, a) (6)

where (α, λ, β, γ) are weighting factors to balance the different objectives.
Learning Algorithm
The multi-agent reinforcement learning (MARL) algorithm employed in this study

enabled multiple autonomous agents to collaboratively optimize EV charging network
management. The algorithm used was Deep Q-Learning (DQN), where agents utilize deep
neural networks to approximate Q-values, which enables learning of optimal charging
strategies through trial and error. Below is a detailed description of the algorithm and
its components:

Figure 5 illustrates the Deep Q-Learning (DQN) algorithm used in this study to manage
the EV charging network through multiple autonomous agents representing charging
stations. The diagram showcases the interactions between the various components of
the DQN algorithm. The agents (charging stations) received the current system status
(state) and, using the Q-Network (deep neural network), determined the optimal charging
decisions (actions). The environment (EV charging network) provided immediate feedback
(rewards) based on these actions. The Q-values were updated based on this feedback,
refining the policy (action selection strategy) and enabling agents to improve their decisions
over time by learning from experience. This cyclical process continued, aiming to optimize
the overall efficiency and reliability of the EV charging network.
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Deep Q-Learning (DQN): Agents employ deep neural networks to approximate Q-
values for high-dimensional state and action spaces, facilitating optimal charging strategy
learning through iterative trials.

Experience Replay: This technique stores past experiences in a replay buffer and sam-
ples random mini-batches during training. This approach breaks the correlation between
consecutive experiences, leading to stable and efficient learning.

Target Network: A separate target network maintains stable target Q-values for
training. It is updated less frequently than the main network, preventing oscillations and
ensuring convergence in the learning process.

Epsilon-Greedy Exploration: Balancing exploration and exploitation, this strategy ran-
domly selects actions with probability epsilon and chooses the best-known action otherwise.
Epsilon decays over time, shifting from exploration to exploitation as learning progresses.

Neural Network Architecture: The Q-function is approximated using a multi-layer per-
ceptron (MLP) with two hidden layers. This architecture effectively handles the complexity
of the EV charging environment’s state and action spaces.

This approach ensures robust and efficient learning in complex environments, specif-
ically tailored for optimizing EV charging network management through collaborative
agent interactions.

3.3. Algorithm Design

In this work, we applied an adaptive multi-agent reinforcement learning (MARL)
approach to optimize dynamic EV charging operations across multiple stations. Each charg-
ing station was represented by an independent agent utilizing the Deep Q-Learning (DQN)
algorithm, allowing decentralized and adaptive decision-making. Below, we provide a
detailed breakdown of the key components, hyperparameter settings, and optimization
strategies employed.

3.3.1. Hyperparameters

Learning Rate (α): The selected value for the learning rate was 0.001 since this is an
appropriate trade-off in optimum training time and convergence. Reducing the learning
rate would imply reduced learning, while increasing the rate may induce incoherence
in learning.
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Discount Factor (γ): It was decided to adopt γ = 0.99 as this enabled the agents to
look towards future benefits instead of taking benefits in the present. It enhanced the
management of resources in the long run and helped to secure the grid.

Epsilon Decay: The exploration center (ϵ) was initialized to 1.0 and reached a minimum
of 0.01 towards the end of the 10,000 episodes. This is because it enabled agents to try
learning new behaviors in the beginning before, afterward, inducing the agents to stop
doing so and utilize the policies they have acquired.

Minimum Epsilon (ε_min): It was taken as 0.01 so that active learning did not vanish
fully even in adverse training policies, and the heuristic search was not stifled altogether
by the deployment of the trained agents.

Batch Size (B): The selected batch size of 64 was considered ideal given the current
and the anticipated volume of training data relative to the computational efficiency.

Size of Internal Memory M: The size of the replay memory was set to 50,000 transitions
in order to allow agents to learn from many different past experiences while avoiding
excessive memory use.

3.3.2. Optimization Strategy

Exploration–Exploitation Balance: The epsilon-greedy was employed by the agents
to select an action, where a random action was selected with probability (ϵ); otherwise,
the action which had the maximum Q-value was chosen. This balance helped the agents
with simple exploration at first and then, in the later stages, with using this knowledge
to exploit.

Reward Shaping: The agents were rewarded for behaving adaptively by penalizing
low charging efficiency and rewarding low penalty for behaviors such as idling or grid
resource overconsumption. The efficiency of charging and stability of grids are positively
reinforced, while the wastage of resources incurs negative reinforcement.

Target Networks and Gradient Descent: Training was made more stable by introducing
another set of Q-networks referred to as target networks, Q′i, whose parameters were
changed after every C steps. The minimization of the loss function (y − Qi(s, a))2 was
carried out by applying the gradient descent method, and the target value y is given by:

y =

{
r i f done f lag is true

r + γmax
a′

Q′i(s
′, a′) otherwise (7)

Replay Buffers: Each agent stored transitions
(
st, ai

t, ri
t, st+1, dt

)
in its replay buffer and

sampled a mini-batch to update its Q-network. This technique greatly enhanced efficiency
by letting agents acquire valuable lessons learned in previous tasks.

3.3.3. Simulation Parameters

Number of Charging Stations: Filtration agents’ parameters were varied in many
scenarios for the scalability testing of the approach.

EV Arrival Rates: Different scenarios were engineered, where the agents faced varying
demand by modifying the arrival rate aspects.

Dynamic Pricing Models: The models integrated a dynamic pricing mechanism for
energy usage and investigated charging stations’ behavior in changing energy pricing.

3.3.4. Evaluation Metrics

Charging Ratio: The percentage of the EVs charged, among those that could be
charged, in a fixed amount of time.

Equal Distribution Index: A figure that showed in what way the available charging
resources were shared by the stations to guarantee fairness.

Reduction in Energy Expenses: The opportunity for energy expense reduction due to
the better configuration of the charging time.
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Stability of Load Demand for the Grid: The extent to which charging activities
contributed to the stability and reliability of the power grid or other aspects during
busy periods.

3.4. Algorithm: Adaptive Multi-Agent Reinforcement Learning for Dynamic EV
Charging Networks

Algorithm 1 illustrate the adaptive MARL for dynamic EV charging networks.

Algorithm 1. Adaptive Multi-Agent Reinforcement Learning for Dynamic EV Charging
Networks.

1 1. Initialization
2 1.1 Set hyperparameters:
3 Number of agents: (N);
4 Number of episodes: (E);
5 Maximum steps per episode: (T);
6 Learning rate (α);
7 Discount factor: (γ);
8 Exploration rate: (ϵ);
9 Minimum exploration rate: (ϵmin)—Exploration decay rate: ϵdecay;
10 Batch size: (B);
11 Replay memory size: (M).
12 1.2 Initialize the environment:
13 Observation space: (S);
14 Action space: (A).
15 1.3 Initialize agents (

{
Agenti

}N
i=1) with the following.

16 Q-networks (Qi) and target Q-networks (Q′i);
17 Replay buffers (Di);
18 2. Training
19 2.1 For each episode (e ∈ {1, 2, . . . , E}):
20 2.1.1 Reset the environment to reach the initial state (s0).
21 2.1.2 For each step (t ∈ {0, 1, . . . , T − 1}) :
22 2.1.2.1 For each agent (i ∈ {1, 2, . . . , N}) :
23 Select action (ai

t) using (ϵ)-greedy policy:

24 ai
t =

{
random action if random(0, 1) < ϵ

arg maxaQi(st, a) otherwise
(8)

25 Execute action (ai
t) in the environment;

26 Observe next state (St+1), reward (ri
t), and the done flag (dt);

27 Store transition
(

st, ai
t, ri

t, st+1, dt

)
in a replay buffer (Di).

28 2.1.2.2 If Di contains at least B transitions:
29 Sample mini-batch of B transitions from Di ;
30 For each transition (s, a, r, s′, d):

31 y =

{
r i f d
r + γmax

a′
Q′i(s

′, a′) otherwise (9)

32 Perform a gradient descent step on (y−Qi(s, a))2 to update Qi
33 2.1.2.3 Every C step, update the target network:

34 Q′i ← Qi (10)

35 2.1.3 Update the exploration rate (ϵ):

36 ϵ← max
(

ϵ · ϵdecay, ϵmin

)
(11)
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3.5. Evaluation

The process of evaluating the performances of the agents after training:

Run the environment without exploration (i.e., ϵ = 0);
Collect and analyze metrics such as cumulative rewards, charging efficiency, and net-
work stability.

This algorithm outlined the adaptive multi-agent reinforcement learning framework
for optimizing dynamic EV charging networks, ensuring both individual learning and
collaborative performance improvement.

Figure 6 illustrates the workflow of the adaptive multi-agent reinforcement learning
(MARL) algorithm designed for dynamic EV charging networks. The process began with
initializing the parameters, environment, and agents. Each episode involved resetting the
environment and running through a series of steps where agents selected actions, interacted
with the environment, observed the results, and stored their experiences in a replay buffer.
When sufficient experiences were collected, agents sampled mini-batches from the replay
buffer to update their Q-networks using gradient descent. Periodically, the target networks
were updated to stabilize training. The exploration rate was decayed after each episode
in order to balance exploration and exploitation. Finally, the agents were evaluated after
all episodes were completed in order to assess their performance. The flowchart provides
a comprehensive view of the iterative learning and decision-making process within the
MARL framework for optimizing dynamic EV charging operations.
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4. Simulation and Results
4.1. Simulation Setup
Parameters and Configurations

Table 1 illustrates a description of test scenarios: The simulation emulates an electric
vehicle (EV) charging network environment. Agents make decisions (charge, discharge,
idle) based on real-time demand, charge levels, and electricity prices. They interact to
optimize rewards (minimize costs) across episodes.

Table 1. Description of test scenarios.

Parameter Value Description

Number of Agents 5 Number of independent agents in the environment
Number of Episodes 100 Total number of training episodes
Max Steps per Episode 200 Maximum number of steps allowed in each episode

Learning Rate 0.001 Controls how quickly the agent updates its policy
based on new experiences

Discount Factor (Gamma) 0.99 Importance of future rewards compared to
immediate rewards

Initial Exploration Rate (Epsilon) 1 Probability of taking a random action during
training (exploration)

Epsilon Decay Rate 0.995 Rate at which epsilon decreases over time
(encourages exploitation)

Minimum Exploration Rate 0.01 Lower bound for epsilon to ensure some level of
exploration

Batch Size 64 Number of experiences sampled from the replay
memory for training updates

Replay Memory Size 10,000 Maximum number of experiences stored in the
replay memory

Performance Metrics (Criteria for Evaluating the System):

• Average Reward: Cumulative rewards per episode, indicating system efficiency;
• Convergence Time: Time to optimal or near-optimal behavior;
• Exploration vs. Exploitation Trade-off: Analysis of epsilon decay to balance explo-

ration of new strategies with exploiting profitable actions.

Metrics Used for Comparison:

• Training Rewards: Average reward per episode to measure learning progress;
• Epsilon Decay Curve: Exploration–exploitation balance over time;
• Episode Times: Computational efficiency and convergence speed.

4.2. Experimental Results
4.2.1. Presentation of Results for Different Scenarios

Agents achieved an average reward of 85.6 after training, demonstrating effective
learning and optimization. Epsilon decay stabilized at 0.05 after 80 episodes, indicating a
balanced exploration–exploitation strategy. Agents reached near-optimal behavior within
60 episodes, highlighting faster convergence compared to traditional methods.

Analysis of the Effectiveness of the Adaptive MARL Approach: Adaptive MARL
effectively adapts to dynamic EV charging network conditions. Comparison with non-
adaptive MARL approaches shows superior performance in reward maximization and
convergence speed.

Figure 7 illustrates a comparative analysis between adaptive and non-adaptive multi-
agent reinforcement learning (MARL) approaches in optimizing dynamic EV charging
networks. The graph showcases two key metrics: reward maximization and convergence
speed. Each metric is represented by bar charts, with ‘Non-adaptive MARL’ and ‘Adaptive
MARL’ approaches depicted in blue and green, respectively. Higher scores indicate supe-
rior performance in both reward maximization and convergence speed for the adaptive
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MARL approach compared to the non-adaptive approach. This analysis underscores the
effectiveness of the adaptive MARL approach in responding to dynamic conditions, lead-
ing to achievement of higher rewards and faster convergence in managing electric vehicle
charging networks.
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4.2.2. Quantitative Results

Average Reward: The adaptive MARL approach achieved an average reward of 85.6
after training, indicating effective learning and optimization.

Convergence Time: The adaptive MARL approach demonstrated a significant im-
provement in convergence time compared to traditional methods. Specifically, the system
required fewer episodes to reach a stable policy, thereby reducing computational overhead
and enabling faster deployment in real-world scenarios. This efficiency was attributed to
the dynamic adjustment of learning parameters and effective coordination among agents,
which facilitated quicker learning and adaptation to the environment.

Exploration vs. Exploitation Trade-off: The adaptive MARL framework effectively
managed the exploration vs. exploitation trade-off, ensuring that agents explored the
environment sufficiently to discover optimal strategies while exploiting known informa-
tion to maximize rewards. The use of techniques such as epsilon-greedy policies, where
the exploration rate decreases over time, allowed the system to balance exploration and
exploitation dynamically. This balance was crucial for avoiding local optima and ensur-
ing comprehensive learning, which resulted in robust policy development and improved
overall performance.

4.3. Comparison Details

Figure 8 plots the average reward obtained by the agents per episode with a line
indicating the convergence point where the rewards stabilize. This illustrates both the
average reward and the convergence time.
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Figure 9 shows the decay of epsilon over the episodes, representing the exploration vs.
exploitation trade-off. As epsilon decreases, agents exploit more and explore less.
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Comparative figures with non-adaptive MARL approaches illustrate the superiority
of adaptive methods.

Figure 10 shows the comparison of average rewards over episodes between adaptive
and non-adaptive MARL. The adaptive MARL method generally performs better, as in-
dicated by higher average rewards in blue compared to the non-adaptive MARL method
shown in green.
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Figure 10. Average reward comparison between adaptive and non-adaptive MARL.

Interpretation of the Results: Adaptive MARL enhances decision-making in dynamic
EV charging environments by learning optimal charging strategies. Epsilon decay anal-
ysis emphasizes the importance of balancing exploration and exploitation in reinforce-
ment learning.

Comparison with Traditional and Non-adaptive MARL Approaches: Traditional and
non-adaptive MARL approaches may struggle with dynamic environments compared to
adaptive strategies. Adaptive MARL proves effective in adapting to varying demand,
prices, and charge levels, highlighting its potential for real-world applications in EV charg-
ing networks.

Figure 11 shows the average rewards achieved during training episodes of the MARL
setup for dynamic EV charging networks. Each point represents the average reward
obtained by the agents across multiple episodes.
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Figure 12 illustrates the decay of the exploration parameter (epsilon) over the course
of training episodes. It demonstrates how the exploration–exploitation balance evolves as
the agents learn to optimize their behavior.
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Figure 13 depicts the time taken for each episode during training and thus provides
insights into the computational efficiency and scalability of the MARL approach in the
context of EV charging networks.
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Figure 13. Epsilon time.

Figure 14 presents the evolution of the state variables (demand, charge level, and price)
across episodes. It showcases how these variables converge or change over the training
period, reflecting the learning dynamics and adaptation of the agents.
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This section provides a comprehensive overview of the simulation setup, performance
evaluation metrics, experimental findings, and detailed comparisons with non-adaptive
MARL approaches. Each figure visually represents different aspects of the MARL train-
ing process, offering deeper insights into the behaviors and performances of the agents
over time.

Figure 15 illustrates a dynamic EV charging network using matplotlib, featuring four
charging stations and four electric vehicles. Each station is represented by a blue circle
indicating its capacity: Station A at (2, 2) with a capacity of 5, Station B at (5, 5) with a
capacity of 4, Station C at (8, 2) with a capacity of 6, and Station D at (6, 8) with a capacity
of 3. Electric vehicles are depicted as orange circles, sized according to their current battery
charge level: EV 1 at (1, 1) with a charge level of 0.3, EV 2 at (7, 3) with a charge level of 0.6,
EV 3 at (3, 7) with a charge level of 0.8, and EV 4 at (9, 7) with a charge level of 0.4. Arrows
denote potential charging paths from EVs to their nearest stations, and the circles detail
station capacities and EV charge levels, providing a comprehensive view of the dynamic
EV charging network scenario.

Figure 16 displays reward comparison per episode for different scenarios. These
graphs study average reward, convergence time, the exploration–exploitation balance, the
utilization of reward, demand change, and the efficiency of the computation, which are
among the most important performance measures. Each graph illustrates the benefits of
utilizing adaptive MARL to control changing strategies, such as an EV charging network,
which optimizes resource utilization and enhances learning efficiency. These visual aids
enable a more comprehensive comprehension of the benefits of using adaptive MARL over
non-adaptive approaches, as indicated by these results.
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Figure 16. Reward comparison per episode for different scenarios.

Figure 17 illustrates a line graph comparing the average reward per episode for two
scenarios: adaptive MARL and non-adaptive MARL. It highlights how each approach
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learns and performs across 100 episodes, allowing users to see how the adaptive approach
potentially achieves better rewards than the non-adaptive one over time.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW  24  of  33 
 

 

learns and performs across 100 episodes, allowing users to see how the adaptive approach 

potentially achieves better rewards than the non-adaptive one over time. 

 
Figure 17. Convergence time across scenarios. 

Figure 18 illustrates a bar chart representing the number of episodes it takes for the 

adaptive MARL and non-adaptive MARL systems  to converge. The height of each bar 

shows how quickly each system stabilizes in terms of performance. 

 
Figure 18. Exploration vs. exploitation analysis. 

Figure 19 illustrates the epsilon decay (exploration–exploitation trade-off) across ep-

isodes  for both adaptive and non-aMARL approaches. The declining  lines  indicate how 

exploration decreases over time as the models start exploiting learned strategies. 

Figure 17. Convergence time across scenarios.

Figure 18 illustrates a bar chart representing the number of episodes it takes for the
adaptive MARL and non-adaptive MARL systems to converge. The height of each bar
shows how quickly each system stabilizes in terms of performance.
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Figure 18. Exploration vs. exploitation analysis.

Figure 19 illustrates the epsilon decay (exploration–exploitation trade-off) across
episodes for both adaptive and non-aMARL approaches. The declining lines indicate how
exploration decreases over time as the models start exploiting learned strategies.
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Figure 20 illustrates a boxplot comparing the reward distributions of adaptive and non-
adaptive MARL approaches over time. The spread and median rewards of each approach
are shown, providing insights into each system’s consistency and overall performance.
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Figure 20. State variable evolution comparison.

Figure 21 illustrates a line graph that tracks the evolution of a state variable (e.g.,
demand) across episodes for both adaptive and non-adaptive MARL approaches. This
visualization demonstrates how state variables change over time for each approach. This
line graph shows the time taken per episode for both adaptive and non-adaptive MARL ap-
proaches, allowing for a comparison of computational efficiency between the two methods.
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5. Discussion
5.1. General Discussion of the Results

The results of this study demonstrate the significant potential of adaptive MARL in
optimizing EV charging networks. The findings align with and extend the current literature
on EV charging infrastructure and intelligent management systems. The use of adaptive
MARL in this study showed substantial improvements in operational efficiency, reflecting
the observations of previous studies [40,60]. By dynamically adjusting charging strategies
based on real-time data, the system was able to reduce charging times and minimize waiting
queues. This adaptability is crucial, as highlighted by Li et al. [10,17], for responding to
fluctuating demand patterns, ensuring that charging stations can meet user needs more
effectively [61–63].

Furthermore, the ability of adaptive MARL to predict future charging demands
and pre-emptively adjust resource allocation confirms the benefits noted by Suwannakij
et al. [29] and Wang and Li [15]. The continuous learning from interactions and histori-
cal data led to the improved utilization of charging infrastructure resources, enhancing
service reliability and reducing operational costs by optimizing energy distribution and
minimizing peak load stresses on the grid [27,64–66].

This study’s results also underscore the scalability and sustainability of EV infrastruc-
ture supported by adaptive MARL, aligning with the findings of Chen and Zhang [32]. The
efficient management of resource allocation by MARL algorithms allows for the integration
of a larger number of EVs into existing charging networks without compromising service
quality. This scalability is essential for urban areas experiencing growing demand for EV
charging services [67–70].

Overall, the results validate the transformative potential of adaptive MARL in EV
charging network management, corroborating previous research and providing a robust
foundation for future advancements in this field [71–75]. The integration of these algorithms
offers a data-driven approach to optimize operations, enhance reliability, and support
sustainable growth in EV infrastructure [76–80].

5.2. Advantages and Innovations of Adaptive MARL Methods

Adaptive MARL offers several key innovations that make it a superior approach
compared to traditional methods for managing EV charging networks. Its dynamic adapt-
ability allows it to continuously adjust strategies based on real-time data, making it more
responsive to sudden changes in demand and operational conditions. This leads to im-
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proved resource utilization, as it predicts future demand and adjusts charging strategies
accordingly, reducing waiting times and optimizing station capacities. Unlike traditional
static methods, adaptive MARL continuously learns from past interactions, refining its
policies autonomously, eliminating the need for manual adjustments, and enhancing per-
formance over time. Its scalability allows it to accommodate growing numbers of EVs
and charging stations without compromising efficiency. Additionally, adaptive MARL
optimizes energy distribution, minimizing peak load stresses on the grid, which results in
cost-effective energy management and greater system stability. Finally, it is better equipped
to handle real-world complexities such as varying demand patterns, different EV types,
and fluctuating electricity prices. These innovations collectively make adaptive MARL a
more effective solution for managing modern, dynamic EV charging networks.

5.3. Implications of the Findings
5.3.1. Impact on EV Charging Network Management

The findings underscore the transformative potential of adaptive MARL approaches
for revolutionizing EV charging network management. Recent studies [12,23,35,75,76,81]
highlight that adaptive MARL enables charging stations to dynamically adjust their opera-
tions based on real-time data. This capability enhances operational efficiency by optimizing
charging strategies in response to fluctuating demand patterns, thereby reducing charging
times and minimizing waiting queues [10,17,26,41,82–84].

Adaptive MARL algorithms leverage machine learning to predict future charging
demands and pre-emptively adjust resource allocation accordingly [10,17,26,29,41,85,86].
By continuously learning from interactions and historical data, these algorithms improve
over time, ensuring optimal utilization of charging infrastructure resources. This proactive
management not only enhances service reliability but also reduces operational costs by
optimizing energy distribution and minimizing peak load stresses on the grid [26,87].

Moreover, adaptive MARL contributes to the scalability and sustainability of EV in-
frastructure. By effectively managing resource allocation, these algorithms support the
integration of a larger number of EVs into existing charging networks without compromis-
ing service quality [32,88]. This scalability is crucial for meeting the growing demand for
EV charging services in urban areas and ensuring equitable access to charging facilities.

In conclusion, adaptive MARL represents a significant advancement in EV charging
network management, offering a data-driven approach to optimize operations, enhance
reliability, and support sustainable growth. The integration of these algorithms holds
promise for transforming how EVs are charged, making the process more efficient, cost-
effective, and environmentally sustainable in the long term [1,3,4,89].

5.3.2. Potential Benefits for Stakeholders

Stakeholders across the EV ecosystem stand to benefit significantly from the imple-
mentation of adaptive MARL. Recent studies highlight various advantages for different
stakeholders [10,17,26,41,90]. For EV owners, adaptive MARL reduces wait times and
enhances accessibility to charging stations, thereby improving the overall convenience and
usability of EVs. By optimizing charging station operations based on real-time demand
data, EV owners experience shorter queues and more reliable access to charging facilities,
which encourage increased EV adoption rates and foster greater public confidence in EV
infrastructure [29,60,69,90]. Charging station operators benefit from enhanced operational
efficiency and customer satisfaction, as adaptive MARL dynamically adjusts charging
schedules and resource allocation to better meet customer demands, reduce idle times,
and optimize revenue generation opportunities [61,91]. Improved service reliability and
efficiency contribute to maintaining competitive advantages in the rapidly growing EV mar-
ket [92–94]. Utility providers gain significant advantages in managing energy distribution
and grid stability through MARL integration into grid management strategies. Optimizing
load distribution across the grid helps to mitigate peak demand stresses, reduce energy
waste, and enhance overall grid reliability, thereby promoting balanced energy usage
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and reducing environmental impacts [95,96] (Garcia et al., 2022; Tran et al., 2023). This
proactive management improves operational efficiency and supports sustainable energy
practices [97–99]. In summary, adaptive MARL presents a transformative opportunity for
stakeholders in the EV ecosystem, offering tailored solutions to enhance user experience,
operational efficiency, and grid management. By leveraging advanced machine learning
techniques, stakeholders can address current challenges in EV charging infrastructure while
paving the way for future scalability and sustainability in electric mobility [1,3,4,97,100].

5.4. Challenges and Limitations
5.4.1. Discussion of Limitations in the Current Study

While the results are promising, the current study faces several limitations. These
include simplifications in modeling EV behavior, assumptions about charging station
dynamics, and the scalability of adaptive MARL to larger networks [1,3]. The simulation
environment may not fully capture real-world complexities, such as unpredictable user
behaviors and varying electricity prices. Future iterations could enhance the framework by
integrating more sophisticated models and leveraging real-world data.

5.4.2. Challenges Faced during Implementation

The implementation of adaptive MARL in EV charging network management has en-
countered several significant challenges [32,40,62,80]. Firstly, the computational complexity
required for training adaptive MARL models is substantial, demanding high-performance
servers or GPUs to handle real-time learning and decision-making, which poses deploy-
ment challenges in larger networks or resource-constrained settings [40]. Secondly, achiev-
ing optimal performance involves the labor-intensive and time-consuming fine-tuning of
numerous hyperparameters, such as learning rates, discount factors, and exploration strate-
gies, necessitating expertise in reinforcement learning and experimentation with different
configurations [56,75,76,79]. Additionally, effective implementation relies heavily on the
quality and quantity of real-time data streams from EVs, charging stations, and grid condi-
tions, presenting ongoing challenges in integrating diverse data sources and ensuring data
consistency and reliability, especially in dynamic urban environments [29,30]. Moreover,
translating adaptive MARL models from simulation to real-world deployment introduces
complexities related to operational variability, regulatory compliance, and stakeholder
acceptance, which require robust testing, validation, and stakeholder engagement to ensure
practical feasibility and alignment with operational goals [15–18,21,33,36,42,49,86,90]. Nav-
igating these challenges necessitates a multidisciplinary approach, combining expertise
in artificial intelligence, energy systems, and urban planning, to address computational
demands, optimize hyperparameters, refine data integration strategies, and validate per-
formance in real-world scenarios, thereby realizing the full potential of adaptive MARL in
transforming EV charging network management.

6. Conclusions

This study has demonstrated the efficacy of adaptive MARL in optimizing EV charging
networks in Thailand, aligning with findings from previous research [1,3,4,40,56,76–79].
By dynamically adjusting charging strategies based on real-time data, adaptive MARL
significantly enhances operational efficiency and resource utilization across diverse scenar-
ios [29,40,56,76–79].

The application of MARL algorithms has shown promising results in addressing the
key challenges of EV charging networks, such as reducing congestion at peak times and
optimizing energy usage [10,41]. EV owners benefit from reduced wait times and improved
accessibility to charging stations, enhancing overall user experience and adoption rates
(Jiang et al., 2023). Charging station operators experience enhanced profitability through
improved service efficiency and customer satisfaction [32,35,41,42].

Moreover, the integration of MARL into grid management strategies enhances grid
stability by balancing load distribution and mitigating peak demand issues [47]. This
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not only optimizes local grid operations but also supports broader sustainability goals by
promoting the use of renewable energy sources and reducing carbon footprints [29,99,100].

In conclusion, adaptive MARL represents a pivotal advancement in EV charging net-
work management, offering scalable solutions to address complex operational challenges.
Future research directions could focus on refining MARL algorithms, expanding their ap-
plicability to larger networks, and integrating more comprehensive data sources to further
enhance system efficiency and reliability [1,3,4].

Future research directions should include enhancing the adaptability and scalability
of MARL algorithms for larger and more complex EV networks. This involves refining
models to capture diverse EV behaviors, integrating real-time data streams for improved
decision-making, and exploring advanced MARL techniques for challenges such as grid
integration and dynamic pricing. Detailed simulations tailored to the Thai EV market can
further validate and optimize these proposed approaches [1,3,4,28–31].

Extensions could integrate predictive analytics and machine learning to forecast EV
demand patterns and pre-emptively optimize charging station operations. Moreover, in-
corporating renewable energy sources and storage solutions into MARL frameworks can
promote sustainability and grid stability in EV charging infrastructure. Exploring adaptive
MARL applications in vehicle-to-grid (V2G) interactions and smart grid management offers
comprehensive solutions for advancing electric mobility and energy management in Thai-
land and beyond [98–100]. Furthermore, subsequent studies should consider examining
the shift from ICE vehicles to EVs as an effective way to reduce carbon emissions in the
transport industry. Such a research activity should use in-depth data analysis focusing on
the environmental assessment, cost estimation, and technological aspects of this shift. It
ought to showcase the considerable prospects of EVs in mitigating greenhouse gas emis-
sions while tackling the obstacles of infrastructure, policy, and the awareness of people for
sustainable development [101]. In particular, future studies should propose a new method
of tracking control for nonlinear dynamic systems, which is enriched by neural network
(NN) and reinforcement learning (RL). This method solves the problems of tracking and
optimization simultaneously. The effectiveness of the approach is confirmed through nu-
merical simulations, which produce positive results and thus prove the effectiveness of the
method to optimize tracking control of nonlinear dynamic systems [102,103].
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