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Abstract: The power split plug-in hybrid electric bus (PHEB) boasts the capability for concurrent
decoupling of rotation speed and torque, emerging as the key technology for energy conservation.
The optimization of energy management strategies (EMSs) and powertrain parameters for PHEB con-
tributes to bolstering vehicle performance and fuel economy. This paper revolves around optimizing
fuel economy in PHEBs by proposing an optimization algorithm for the combination of a multi-layer
rule-based energy management strategy (MRB-EMS) and powertrain parameters, with the former
incorporating intelligent algorithms alongside deterministic rules. It commences by establishing a
double-planetary-gear power split model for PHEBs, followed by parameter matching for powertrain
components in adherence to relevant standards. Moving on, this paper plunges into the operational
modes of the PHEB and assesses the system efficiency under each mode. The MRB-EMS is devised,
with the battery’s State of Charge (SOC) serving as the hard constraint in the outer layer and the
Charge Depletion and Charge Sustaining (CDCS) strategy forming the inner layer. To address the
issue of suboptimal adaptive performance within the inner layer, an enhancement is introduced
through the integration of optimization algorithms, culminating in the formulation of the enhanced
MRB (MRB-II)-EMS. The fuel consumption of MRB-II-EMS and CDCS, under China City Bus Circle
(CCBC) and synthetic driving cycle, decreased by 12.02% and 10.35% respectively, and the battery
life loss decreased by 33.33% and 31.64%, with significant effects. Subsequent to this, a combined
multi-layer powertrain optimization method based on Genetic Algorithm-Optimal Adaptive Control
of Motor Efficiency-Particle Swarm Optimization (GOP) is proposed. In parallel with solving the
optimal powertrain parameters, this method allows for the synchronous optimization of the Electric
Driving (ED) mode and the Shutdown Charge Hold (SCH) mode within the MRB strategy. As
evidenced by the results, the proposed optimization method is tailored for the EMSs and powertrain
parameters. After optimization, fuel consumption was reduced by 9.04% and 18.11%, and battery
life loss was decreased by 3.19% and 7.42% under the CCBC and synthetic driving cycle, which
demonstrates a substantial elevation in the fuel economy and battery protection capabilities of PHEB.

Keywords: automotive engineering; plug-in hybrid electric bus (PHEB); energy management strategy;
powertrain parameter optimization; system efficiency; GOP hierarchical method

1. Introduction

The poor adaptability of traditional fuel vehicles to driving cycles renders their fuel
economy and emission performance underperforming [1]. Investigating efficient, safe, and
environmentally friendly powertrains, alongside advanced energy-saving control technolo-
gies, has emerged as the most prevalent avenue in the transportation sector to address the
aforementioned issues. The powertrain of plug-in hybrid electric vehicles (PHEVs) stands
among the most efficient automotive power systems, offering a viable solution to chal-
lenges like energy crises and environmental pollution [2]. Optimizing energy management
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strategies (EMSs) and powertrain parameters in hybrid electric vehicles/PHEVs holds the
promise of significantly boosting vehicle performance and fuel economy [3].

EMSs allocate the power or torque of each power source contingent upon the vehicle
operation information as well as the vehicle power demand, manifesting a critical factor
in augmenting the economy of a hybrid vehicle [4]. The research on energy management
strategies and powertrain parameter optimization of plug-in hybrid buses is of great signifi-
cance for improving vehicle performance and reducing energy consumption and emissions
and is a hot topic in the research and development of new energy vehicle technologies.

Rule-based EMS typically hinges on expert experience or the steady-state characteristics
of hybrid powertrain components to dictate mode switching and power source allocation
among power sources [5]. These strategies, simple in their control approach, find extensive
application in the practical control of PHEVs. Among the most successful strategies com-
mercially deployed is the Charge Depletion and Charge Sustaining (CDCS) strategy [6,7],
capitalizing on the advantages of clean and cost-effective electric energy to the utmost extent.
The CDCS strategy adapts the powertrain’s operating modes based on changes in the power
battery’s state of charge (SOC), each mode offering distinct features [8,9]. In the Charge
Depletion (CD) mode, the power battery takes the lead as the main power source. As the
power battery’s SOC creases to a certain level, the engine ignites and takes over as the primary
power source, initiating the Charge Sustaining (CS) mode. With a view to improving the
control effect of the CDCS strategy, Pan et al. [10] optimized the SOC trajectory of power
batteries in plug-in series hybrid electric vehicles (HEVs) using fuzzy logic. This strategy
ensures the engine operates at its maximum fuel-efficiency range and is effective in preventing
battery over-discharge. Liu et al. [11] segmented vehicle operation modes into CD and CS
modes based on the power battery’s SOC thresholds. They utilized a multi-objective genetic
algorithm to optimize parameters within the CS mode. Ruan et al. [12] proposed a blended
rule-based EMS by integrating the driving information with the CD strategy, resulting in a
reduction of the engine startup/shutdown time. To address the efficiency oversight in hybrid
powertrains in the current CDCS control strategy, a multitude of scholars have proposed
schemes that factor in the efficiency adjustments of various components within the hybrid
powertrain for mode switching and energy allocation in HEVs [13,14]. For instance, Wang
et al. [15], targeting a parallel HEV, optimized the engine and motor output torque control for
each operating mode to achieve maximum efficiency across the system. This approach effec-
tively enhances system efficiency and overall vehicle fuel economy while ensuring prolonged
powertrain component lifespan.

Commercial CDCS control strategies allow for real-time optimization with high im-
plementation efficiency, providing a wide range of applications in passenger cars that
prioritize the use of electric energy. However, public transportation features fixed operating
routes and working mileage, and the strategy of prioritizing electric drive may fall short
of yielding a more optimal energy ratio after feeding the electric power. Therefore, the
CDCS strategy is improved and combined with other intelligent algorithms to realize the
improvement and enhancement of the PHEB control effect for urban public transportation.

Hybrid powertrain parameter optimization involves, upon meeting the requirements
for vehicle power performance and component capabilities in terms of system configuration
and type selection, the process of optimizing the parameters of powertrain components
(such as the engine, motor, battery, and coupling mechanism) with the goals of enhancing
overall vehicle fuel economy and power performance. Optimizing the power parameters of
hybrid powertrain systems wields a significant impact on an HEV’s power, efficiency, and
emissions, thereby enhancing the overall operational efficiency of the system [16,17]. Opti-
mization of parameters in hybrid powertrains typically involves methods like orthogonal
optimization algorithms, VisualDOC algorithms, and other optimization approaches.

Currently, driving cycle-based optimization and optimization algorithms are prevalent
methods for hybrid powertrain parameter optimization [18]. Lei et al. [19] put forth a method
to optimize the power source dimensions by using a combination of the Extra Urban Driving
Cycle (EUDC) and the Highway Fuel Economy Test (HWEFT), resulting in a remarkable
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optimization effect. Xue et al. [20] proposed a method to optimize HEV powertrain parameters
based on the New European Driving Cycle (NEDC), for which the findings shed light on
an enhancement of engine efficiency but lower matching efficiency. The Bees Algorithm,
Particle Swarm Optimization (PSO) Algorithm, Genetic Algorithm (GA), and Simulated
Annealing Algorithm find frequent utilization in HEV powertrain parameter optimization.
Aslan et al. [21] put forward an optimization approach aiming to minimize fuel consumption
and emissions by leveraging the Bees Algorithm to optimize critical powertrain parameters,
accompanied by an assessment of vehicle performance using three typical driving cycles.
Drallmeier et al. [22], targeting maximum fuel efficiency while satisfying critical performance
requirements, harnessed the PSO algorithm to optimize powertrain component dimensions.
This strategy improved fuel efficiency and reduced vehicle operational costs. Furthermore,
Quan et al. [23] took power and economy as the optimization objectives. They used a GA to
optimize characteristic parameters of the planetary gear and powertrain components in power-
split HEVs, leading to an enhancement of overall power and economy. Nonetheless, relying
solely on a single optimization algorithm raises issues such as insufficient local optimization
capability, low convergence efficiency, and lengthy optimization cycles, limiting the full
unleashing of PHEV’s fuel-saving potential.

In light of the drawbacks in the preceding studies, this paper plunges into research
on a specific PHEB with the objective of improving overall vehicle fuel economy and the
efficiency of individual components. The proposed approach involves a hybrid EMS based
on intelligent algorithms and CDCS control rules, as well as a layered optimization method
for powertrain parameters. It turns out to be viable to provide valuable insights for related
studies in the field.

This article is arranged in the following format. The second section of the article
describes the powertrain system model in detail. The MRB strategy for PHEB is presented
as a proposed strategy in Section 3. In Section 4, the GOP method of powertrain parameter
optimization is constructed. Section 5 outlines the results and discussion. In order to assess
the efficiency of the energy management strategy and powertrain parameters method,
Section 6 of the document is included.

2. Construction of an EMS Model and Parameter Matching for PHEB

Figure 1 [24] depicts the power-split PHEB structure researched in this paper. This system
configuration involves the engine connected to the ring of the front planetary gear (PG1) and
the carrier of the rear planetary gear (PG2). This design allows for the decoupling of the
engine speed from the vehicle speed, accommodating significant variations in driving cycles.
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2.1. Construction of a Full-Vehicle Model for PHEB
2.1.1. Longitudinal Dynamics Model of Vehicles

Based on the longitudinal kinematic equations of the vehicle, the expression for the
power required to satisfy the driving is given by the following equation:

Pdri(t) =
u(t)

3600·ηm
(Mg f cos θ +

ACDu(t)2

21.15
+ Mδ cos θ

du
dt

+ Mg sin θ) (1)

where Pdri denotes the driving power (kW); u denotes the vehicle speed (km/h); ηm
denotes the mechanical efficiency of the powertrain components; M denotes the full-vehicle
mass (kg); g denotes the gravitational acceleration (m/s2); f denotes the rolling resistance
coefficient; A denotes the windward area of the vehicle (m2); CD denotes the drag coefficient;
δ denotes the coefficient of rotational inertia; and θ denotes the angle of the ramp (◦).

Table 1 details the primary parameters for PHEB.

Table 1. Primary parameters for PHEB.

Parameter Value Unit

Full-vehicle mass 13,050 kg
Loaded mass 18,000 kg

Exterior dimension 12 × 2.55 × 3.2 m3

Windward area 6.00 m2

Drag coefficient 0.55 /
Rolling resistance coefficient 0.015~0.02 /

Wheelbase 6.05 m
Wheel rolling radius 0.512 m

2.1.2. Engine and Motor Models

For the engine and motor, the energy efficiencies based on steady-state experimental
data can be represented as a function of speed and torque. Figures 2 and 3 [24] display the
energy consumption maps for the engine and motor, respectively.
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Figure 2. Universal characteristics map of the engine, adapted with permission from Ref [24].
Copyright 2023 Elsevier.
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2.1.3. Double-Planetary-Gear Coupling Mechanism Model

Depending on the connection relationship between each power source of the double-
planetary-gear power-split PHEB and the double-planetary-gear mechanism, it is possible
to derive the relationship between the torque and speed of the system, as illustrated in the
following expression: 

Tout = Teng
α1

1+α1
+ Tmotor(1 + α2)

ωout =
ωmotor
1+α2

=
ωeng(1+α1)−ωgen

α1
α1 = (Rs1 + Rc1)/Rc1
α2 = (Rs2 + Rc2)/Rc2

(2)

where Tout and ωout represent the torque and speed output from the double-planetary-gear
coupling mechanism to the powertrain, respectively; Teng and ωeng represent the torque
and speed of the engine, respectively; Tmotor and ωmotor represent the torque and speed
output from the drive motor, respectively; ωgen represent the generator speed; α1, Rs1, and
Rc1 represent the characteristic parameter, the sun wheel, and the planetary wheel radius
of PG1, respectively; and α2, Rs2, and Rc2 represent the characteristic parameter, the sun
wheel, and the planetary wheel radius of PG2, respectively.

2.1.4. Power Battery Models

1. Rint model of power batteries

The lithium iron phosphate (LiFePO4) type, utilized as the power battery, employs
the Rint model, as depicted in Figure 4. This battery comprised 157 cells arranged in
series, with each cell boasting a capacity of 50 ampere-hours (A·h) and a voltage of 3.2 V.
Consequently, the total voltage of the battery pack amounts to 502.4 V.
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The SOC of the battery is calculated using the current integration method, represented
by the following expression:

SOC(t) = SOC(t0)− ηϑ
b (t)

∫ t f

t0

Ib(τ)

Qbat
dτ Ib(t) > 0 ϑ = −1; Ib(t) ≤ 0 ϑ = 1 (3)

where SOC(t) indicates the SOC value of the battery at time t; SOC(t0) indicates the SOC
value of the battery at the initial time; t0 and tf indicate start and end moments at the current
cycle; ηb(t) indicates the battery efficiency at time t; Ib(t) indicates the battery current at time
t; Qbat indicates the battery capacity; and ϑ indicates the index, with its value signifying
charging and discharging, respectively.

2. Life model of power batteries

The cycling life of power batteries is a crucial factor influencing the operational costs
of HEVs. Factors such as design, manufacturing processes, and operating environments
all contribute to battery longevity. Prolonged battery life is advantageous for conserving
societal resources and mitigating environmental pollution. This study zeroes solely on the
battery’s degradation process during use, discharge current, and ambient temperature,
employing a semi-empirical battery aging model to construct a battery life degradation
model. The maximum temperature of the battery is set at 35 ◦C. The model is expressed
as follows:

Qloss = B exp(
−Ea

R(T + 273.15)
)(Ah)z (4)

where Qloss represents the percentage of battery capacity loss; B is the pre-exponential factor
with a value of 31,630; Ea denotes the activation energy; R is the universal gas constant with
a value of 8.314 J/(mol·K); T represents the temperature in Kelvin; z is the power-exponent
factor with a value of 0.57; and Ah signifies the total ampere-hour throughput.

To enhance the accuracy of the power battery’s life model and its applicability in opti-
mal control, parameter identification is performed using Equation (4) using experimental
battery life data, yielding the refined battery capacity loss model expressed as follows:

Qloss = (αSOC + β) exp(
−31700 + 163.3C

R(T + 273.15)
)(Ah)z (5)

where α and β are constant terms, with their values specified in Equation (6), and C
represents the battery discharge rate.

α =

{
1287.6 SOC ≤ 0.45;
1385.5 SOC > 0.45,

β =

{
6356.3 SOC ≤ 0.45;
4193.2 SOC > 0.45.

(6)

An aging factor, σ, is introduced to quantify the degree of battery aging under actual
operating conditions compared to standard conditions. The expression for σ is given
as follows:

σ(I, θ, SOC) =
Γreal
Γnom

=

∫ EOL
0 |Ireal(t)|dt∫ EOL
0 |Inom(t)|dt

(7)

To quantify the capacity degradation during battery charging and discharging, the
expression for ampere-hour throughput, Ah, is formulated as follows:

Ah =
∫ t f

to
σ(Ib, T, SOC)|Ib(t)|dt (8)
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2.2. Powertrain Parameter Matching in PHEB

This paper references standards such as the General Technical Requirements for
Public City Bus [25] to match powertrain parameters based on CCBC, a typical urban bus
driving cycle in China. The preliminary matching of power performance requirements and
powertrain parameters for PHEB is outlined in Table 2.

Table 2. Power performance and powertrain parameters of PHEB.

Component Parameter

Engine Maximum power: 102 kW; Number of cylinders: 4;
Cylinder diameter × cylinder stroke: 105 mm × 120 mm;

Drive motor Rated power: 68 kW; Peak power: 106 kW; Peak torque:
620 N·m; Voltage platform: 600 V

Generator Rated power: 60 kW; Peak power: 105 kW; Peak torque:
268 N·m; Voltage platform: 600 V

Double-planetary-
gear coupling mechanism and

powertrain

Characteristic parameters of PG1 and PG2: 2.6 and 2.6;
Final drive ratio: 3.41

Power battery
Individual nominal capacity: 50 Ah; Rated voltage: 3.2 V;

Continuous discharge capacity: 3 C; Instantaneous
discharge: 10 C

Power battery pack Voltage: 502.4 V; Number of batteries in series: 157;
Number of batteries in parallel: 1

2.3. Experimental Conditions

This study takes a specific bus route in Xi’an City as a case study, with the tested route
illustrated in Figure 5.
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Figure 5. Tested bus route.

This route serves as a pivotal connection between the northeastern and southern out-
skirts of Xi’an, comprehensively covering congested urban segments, low-speed secondary
roads, and medium-speed main arterials, thereby exhibiting a degree of representativeness.
A comprehensive dataset of 3,608,753 valid speed records spanning 30 days was collected,
from which 14 evaluative characteristic parameters, including peak speed, average speed,
and speed standard deviation, were extracted. Subsequently, utilizing the Markov Chain
Monte Carlo (MCMC) methodology, the operational condition of this route was synthesized,
as depicted in Figure 6a, henceforth referred to as the synthetic driving cycle.
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Figure 6. Experimental conditions. (a) Synthetic driving cycle; (b) CCBC.

To validate the adaptability of our research approach, a composite scenario, integrating
nine CCBC profiles, was constructed for comparative analysis, as presented in Figure 6b.

2.4. Model Verification

After the establishment of each component, the functional coordination and correctness
of each module of the model are verified through simulation. The mathematical model of
the whole vehicle is validated using synthetic working conditions.

As shown in Figure 7, under a synthetic driving cycle, the drive motor, generator, and
engine work normally within the parameter range, and the torque outputs are also within
the reasonable range; the power battery model also normally expresses the SOC changes of
the charging and discharging state of the power battery.
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3. Study on Rule-Based EMS for PHEBs
3.1. Analysis of Operating Modes and System Efficiency of PHEBs

PHEB’s operating modes determine the energy flow of various power sources in
the hybrid powertrain and the operational status of its components. The vehicle state is
defined as driving, idling, and braking. Based on engine operation and power battery
charging/discharging states, PHEB’s operating modes are categorized as Start (STA), Power
Split (PS), Electric Driving (ED), Energy Recovery Charging (ERC), Mechanical Braking,
and Shutdown Charging Hold (SCH) modes. Since this study revolves around energy
allocation during PHEB driving, the charging mode from an external power grid and
the complete shutdown mode are disregarded. Table 3 outlines the characteristics and
efficiency of PHEB’s operating modes.

Table 3. Characteristics and efficiency of PHEB’s operating modes.

Vehicle State Main Mode Sub-State Engine State SOC Efficiency Expression

Driving

Start (STA) Startup Discharge Psta =
∆ωeng ·Ieng ·ωeng_sta

573000·ηgen

Power Split (PS)

Charge
Depletion (CD) Startup Discharge ηPS-CD(t) =

Pmotor(t)+Peng_dir(t)
Peng(t)/ηeng(t)+Pb(t)

Charge
Sustaining (CS) Startup — ηPS_CS(t) = ηeng(t)

Pmotor(t)+Peng_dir(t)
Peng(t)

Charge
Replenishment

(CR)
Startup Charge ηPS_CR(t) = ηeng(t)×

Pmotor(t)+Peng_dir(t)+Pb(t)
Peng(t)

Electric Driving
(ED)

Charge
Depletion (CD) Shutdown Discharge ηhm(t) =

Pmotor(t)+Pgen(t)
Pb(t)

Braking
Energy Recovery
Charging (ERC)

Startup or
Shutdown Charge ηrec(t) =

Pb(t)
Pmotor(t)

Mechanical
Braking

Startup or
Shutdown —

Idling
Shutdown

Charging Hold
(SCH)

Startup Charge ηsch =
Pb(t)·ηeng(t)

Peng(t)

where Psta denotes the startup power; Ieng denotes the rotational inertia of the engine; ωeng_sta denotes the startup
speed of the engine; Pmotor(t), Peng_dir(t), Peng(t), Pgen(t), and Pb(t) denote the drive motor power, the driving power
output via the engine, the engine power, the generator power, and the battery power at time t, respectively;
ηgen denotes the generator efficiency; ηPS_CD(t), ηPS_CS(t), ηPS_CR(t), ηhm(t), ηrec(t), and ηsch(t) denote the system
efficiencies under PS-CD, PS-CS, PS-CR, ED, ERC, and SCH modes at time t, respectively.
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3.2. Multi-Layer Rule-Based Energy Management Strategy

This paper designs a multi-layer rule-based energy management strategy (MRB-EMS)
capitalizing on the battery’s SOC and its varying range. The fundamental control concept
is to minimize the engine’s fuel consumption under the current power conditions.

3.2.1. Design Concepts for the MRB Strategy

For a PHEB operating on a fixed route, ensuring sufficient SOC throughout its opera-
tion is crucial to meet the strategy’s demands for energy. Therefore, in the design phase,
after completing the final transport task, the power battery’s charge is depleted to the
lowest SOC. The expected target state of charge SOCtar for the power battery is expressed
as a function related to driving mileage, as shown in Equation (9).

SOCtar = SOC(t0)−
SOCallow

Scyc_d
·
∫ t f

t0

v(τ)dτ (9)

where SOCallow indicates the permissible discharge interval of the power battery and Scyc-d
indicates the operating route distance.

The principle underlying the MRB strategy revolves around confining the current
SOC as closely as possible to a predefined SOCtar trajectory. This control strategy maintains
the SOC within a corridor defined by an upper limit (SOCmax) and a lower limit (SOCmin)
centered around the SOCtar. Within this corridor, the CDCS strategy is employed. Specifi-
cally, when the SOC reaches the lower limit (SOCmin), the system transitions to a CS phase,
where the vehicle is powered by the engine, enabling the SOC to disengage from the lower
limit and ascend towards SOCmax. Conversely, upon reaching SOCmax, the system enters
the CD phase, during which the SOC descends from the upper limit until it again reaches
SOCmin, thereby maintaining a cyclical operation.

In summary, the MRB-EMS employs hard-switching rules at the outer layer that rely
on the current battery SOC range to dictate operational modes. The inner layer, on the
other hand, utilizes the CDCS strategy, which autonomously selects modes with SOCtar as
the control target.

As depicted in Figure 8, the CDCS strategy (represented by the red curve) prioritizes
electric drive, resulting in a rapid decline in the SOC of the power battery. Upon reaching the
lower SOC limit, the system transitions to the CS mode. In contrast, the MRB strategy (blue
curve) features a function of the driving distance (SOCtar), ensuring that the SOC reaches
its lower limit upon completion of the operational task. The MRB strategy effectively
constrains the battery’s SOC around the SOCtar trajectory.
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Figure 8. SOC trajectories of two strategies.

As evident in Figure 9a, from a fuel consumption perspective, the CDCS strategy,
which prioritizes electric drive, fails to optimally blend fuel and electric power once the
battery SOC reaches its lower limit, resulting in higher fuel consumption compared to the
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MRB strategy. Conversely, Figure 9b illustrates that in terms of battery life, the preferential
use of an electric drive in the CDCS strategy leads to a greater loss of battery life than in the
MRB strategy. When entering the CD phase, the frequent charging and discharging cycles
increase the cumulative ampere-hour throughput of the battery, thereby exacerbating the
loss of the battery.
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The MRB strategy significantly outperforms the CDCS strategy in terms of battery life
preservation; however, further optimization is necessary to enhance its fuel economy.

3.2.2. Enhanced MRB Strategy

The inherent local CDCS strategy within the MRB framework at the inner layer suf-
fers from limited adaptability due to its reliance solely on predefined rules. This section
proposes an enhancement to the MRB strategy by incorporating an inner layer of adaptive
switching rules designed through a fusion of intelligent algorithms and empirical knowl-
edge. The algorithm computes the optimal driving strategy based on the required power
(torque) and current vehicle speed, autonomously selecting either ED or PS mode. The
core enhancements encompass the determination of driving mode selection and switching
timings, specifically the transitions from ED to PS (ED-PS) and vice versa (PS-ED). This
refined approach is subsequently designated as MRB-II, with the designed switching rules
visualized in Figure 10.
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1. Formulation of the ED/OOL control rule

The Electric Driving/Optimal Operating Line (ED/OOL) strategy operates under the
principle of utilizing a globally optimal Dynamic Programming (DP) algorithm to identify
the most efficient operating mode for varying drive power requirements across all vehicle
speeds. This process operates in reverse, tracing back to determine the optimal mode
switching points.

According to the optimal control theory of DP, the cost function is expressed as follows:{
J∗k (x(l)) = min

{
Lk(x(l), u(n)) + J∗k+1(x(l), u(n))

Lk(x(l), u(n)) = m f uel(Peng(n))
(10)

where J∗k (x(l)) denotes the minimum fuel consumption for the l-th state variable of the k-th
discrete stage; Lk(x(l), u(n)) denotes the fuel consumption for the l-th state variable under
the conditions of the k-th discrete stage and the n-th control variable; J∗k+1(x(l), u(n)) denotes
the minimum fuel consumption of the sub-stage for the l-th state variable and the n-th
control variable in the (k + 1)-th discrete stage; mfuel denotes the fuel consumption rate of
the engine; and Peng(n) denotes the output power of the engine for the n-th control variable.

The expressions for the constraints that each component of the powertrain needs to
satisfy are given below: 

Teng_min ≤ Teng ≤ Teng_max
ωeng_min ≤ ωeng ≤ ωeng_max
Tmotor_min ≤ Tmotor ≤ Tmotor_max
ωmotor_min ≤ ωmotor ≤ ωmotor_max
Tgen_min ≤ Tgen ≤ Tgen_max
ωgen_min ≤ ωgen ≤ ωgen_max
SOCmin ≤ SOC ≤ SOCmax

(11)

where subscripts _min and _max denote the lower and upper limits of the respective variables.
The solution process of the DP algorithm is illustrated in Figure 11.
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where subscripts _min and _max denote the lower and upper limits of the respective variables. 
The solution process of the DP algorithm is illustrated in Figure 11. 
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Figure 11. Solution process of the DP algorithm. Figure 11. Solution process of the DP algorithm.

As shown in Figure 12, the PHEB’s PS and ED modes are solved using the DP method;
the curves represent the mode-switching boundaries. When the vehicle speed is constant,
if the demand power transitions from below the red curve to above it, the PHEB mode
switches to the PS mode; if the demand power transitions from above the blue curve to
below it, the PHEB mode switches to the ED mode.
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where Model = 1 represents the STA mode; Model = 2 represents the shutdown mode of 
the engine; Model = 3 represents the low battery forced hybrid mode; Model = 4 represents 
the OOL hybrid mode; Model = 5 represents the ED mode; Model = 6 represents the SCH 
mode; fE-P(v(t)) represents the upper limit for ED mode switching to PS mode; ωeng(t) rep-
resents the engine speed at time t; fP-E(v(t)) represents the lower limit for PS mode switch-
ing to ED mode; SOCmin(t) and SOCmax(t), respectively, represent the lower and upper lim-
its of SOC at time t; Modelfront denotes the system mode in the previous state; SOCtar(t) 
represents the target SOC value at time t; and Pdri represents the driving power at time t. 
2. Mode-switching logic of the MRB strategy 
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Stateflow platform. 
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Figure 12. Operating points and mode-switching boundaries related to demand driving power and
vehicle speed.

The switching rules of the MRB strategy at the outer layer are contingent upon the
battery SOC. In contrast, the adaptive switching rules at the inner layer are determined by
vehicle speed and demand power. The expressions are as follows:

[SOC(t) ≤ SOCmin(t)
∣∣Pdri(t) > fE−P(v(t))]&ωeng(t) < 1000 Model = 1

[SOC(t) ≥ SOCmax(t)
∣∣Pdri(t) ≤ fP−E(v(t))]&ωeng(t) ≥ 1000 Model = 2

SOC(t) ≤ SOCmin(t)&ωeng(t) ≥ 1000 Model = 3
[SOCmin(t) ≤ SOC(t) ≤ SOCmax(t)&Pdri(t) ≥ fE−P(v(t))]&ωeng(t) ≥ 1000 Model = 4
[SOCmin(t) ≤ SOC(t) ≤ SOCmax(t)&Pdri(t) ≤ fP−E(v(t))]&ωeng(t) < 1000

∣∣SOC(t) ≥ SOCmax(t) Model = 5
[SOC(t) < SOCtar(t)&v(t) = 0]&Modelfront = 3 Model = 6

(12)

where Model = 1 represents the STA mode; Model = 2 represents the shutdown mode of the
engine; Model = 3 represents the low battery forced hybrid mode; Model = 4 represents the
OOL hybrid mode; Model = 5 represents the ED mode; Model = 6 represents the SCH mode;
fE-P(v(t)) represents the upper limit for ED mode switching to PS mode; ωeng(t) represents
the engine speed at time t; f P-E(v(t)) represents the lower limit for PS mode switching to ED
mode; SOCmin(t) and SOCmax(t), respectively, represent the lower and upper limits of SOC
at time t; Modelfront denotes the system mode in the previous state; SOCtar(t) represents
the target SOC value at time t; and Pdri represents the driving power at time t.

2. Mode-switching logic of the MRB strategy

Figure 13 presents the mode-switching logic of the MRB strategy formulated by the
Stateflow platform.
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3.3. Performance Test of MRB-EMS

To validate the performance and adaptability of the algorithms, a comparative analysis
of three strategies was conducted under two distinct operating conditions.

As elucidated in Figure 14a,b, the MRB-II strategy exhibits a more linear variation
in SOC, resulting in a smoother discharge of the power battery under both operating
conditions. The fuel consumption, shown in Figure 14c,d, is further reduced by the MRB-II
strategy due to its adaptive selection of optimal driving modes within the powertrain
system, outperforming the conventional MRB strategy. As illustrated in Figure 14e,f, the
smoother SOC profiles mitigate high-power, repetitive charge–discharge cycles of the power
battery, leading to a decrease in accumulated Ampere-hours throughput and suppression
of aging factors, thereby significantly reducing the loss of battery life.

Ultimately, as evidenced in Table 4, under the CCBC conditions, MRB-II demonstrates a
12.02% reduction in fuel consumption and a 33.33% decrease in loss of battery life compared
to the CDCS strategy. Likewise, under synthetic driving cycles, fuel consumption drops
by 10.35%, and loss of battery life is reduced by 31.64%. These results underscore the
substantial improvement in fuel economy and the remarkable effectiveness of MRB-II in
preserving battery health.

Table 4. Comparative Analysis of MRB-II Performance.

EMS
Fuel Consumption (L) Loss of Battery Life (%)

CCBC Synthetic Driving Cycle CCBC Synthetic Driving Cycle

CDCS 6.0907 6.0308 0.0384 0.0275
MRB 5.8149 5.8671 0.0347 0.0211

MRB-II 5.3586 5.4064 0.0256 0.0188
MRB-II vs. CDCS −12.02% −10.35% −33.33% −31.64%
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Figure 14. Comparison of the performance of MRB-II with other strategies. (a) SOC under CCBC;
(b) SOC under synthetic driving cycle; (c) fuel consumption under CCBC; (d) fuel consumption under
synthetic driving cycle; (e) loss of battery life under CCBC; (f) loss of battery life under synthetic
driving cycle.

In the power-split PHEB hybrid powertrain, energy management strategies and design
parameters of the powertrain are interdependent, collectively influencing the vehicle’s
performance in terms of power, economy, and emissions. Hence, to achieve design goals
like fuel efficiency and power performance, simultaneous optimization of both energy
management strategies and powertrain parameters is necessary.

4. Optimization of Powertrain Parameters Based on the GOP Method

The vehicle’s energy consumption during operation indirectly reflects drive efficiency,
suggesting that higher overall drive efficiency correlates with better energy conversion
in the drive system. Optimizing powertrain parameters can enhance the powertrain
efficiency to some extent. This section focuses on achieving optimal working efficiency
of the powertrain. With the characteristic parameters of the front and rear planetary gear
sets along with the final drive ratio as optimization parameters, it proposes a multi-layer
powertrain optimization method using the GOP.

4.1. Selection of Powertrain Parameters Based on the Genetic Algorithm

The optimization process involves using a GA to search for the optimal parameters
of powertrain components, aiming to maximize the overall vehicle drive efficiency. The
objective function is formulated based on maximizing efficiency, and the expression is
as follows:

Jsys = max(
A1

B1
)

A1 =
tf
∑
t0

[(Pmotor(t) + Peng_dir(t))·(Stu(t) = 1
∣∣∣3) + (Pmotor(t) + Peng_dir(t) + Pb(t))·(Stu(t) = 2)

+
∣∣Pmotor(t) + Pgen(t)

∣∣·(Stu(t) = 4) + (Pb(t)·Stu(t) = 5
∣∣6)]

B1 =
tf
∑
t0

[(
Peng(t)
ηeng(t)

+ Pb(t))·(Stu(t) = 1) +
Peng(t)·(Stu(t) = 2

∣∣3∣∣6)
ηeng(t)

+Pb(t)·(Stu(t) = 4) + Pmotor·(Stu(t) = 5) + Psta·(Stu(t) = 7]

(13)

where Jsys represents the objective function; A1 and B1 represent intermediate variables,
respectively; Stu(t) represents the correspondence between the values of the vehicle power-
train’s operating sub-state at time t and the system state. The expression is as follows:
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

Stu(t) = 1 PS-CD
Stu(t) = 2 PS-CS
Stu(t) = 3 PS-CR
Stu(t) = 4 ED
Stu(t) = 5 REC
Stu(t) = 6 SCH
Stu(t) = 7 STA

(14)

When the system is in PS mode, the states correspond to the current state of the power
battery current (positive, negative, or zero) as follows: Stu(t) = 1 for positive, Stu(t) = 2 for
negative, and Stu(t) = 3 for zero current. Under the condition that the engine output power
is zero and the power battery current is positive, Stu(t) = 4. For negative power in the drive
motor, Stu(t) = 5. When the engine’s output power is positive and the vehicle speed is zero,
Stu(t) = 6. When the engine speed increases from zero to idle, Stu(t) = 7.

The constraints for the objective function considering the limitations of powertrain
speed and vehicle speed, determined during the comprehensive model construction, are as
shown in Equation (15).

α1_min ≤ α1 ≤ α1_max
α2_min ≤ α2 ≤ α2_max
i0_min ≤ i0 ≤ i0_max
60×vmax×i0×(1+α2)

2×π×rtire
≤ ωmotor_max

− 60×vmax×i0×α1
2×π×rtire

≤ ωgen_min

ωeng_max × (1 + α1)− 60×vmax×i0×α1
2×π×rtire

≤ ωgen_max

(15)

where subscripts_min and_max denote the lower and upper limits of the respective variables.
Regarding this optimization problem, GA determines the population, evaluation

function, selection operator, individual encoding, mutation operation, etc. The obtained
optimal individual is then considered as the final powertrain parameters selected by the
system. For a comprehensive optimization of the overall system efficiency, considerations
extend to the efficiency of the ED mode and the SCH mode. This section designs a dual-
motor hybrid drive strategy and an optimal strategy for efficiency in the SCH mode.

4.2. Optimal Adaptive Control of Motor Efficiency (OAME) Strategy

This section outlines the design of the OAME strategy. This strategy calculates and
solves for the optimal efficiency point of the motor system (drive motor and generator) at
different output coefficients under current conditions of vehicle speed and required driving
power. It then adopts the optimal output coefficient as the current electric drive policy to
ensure that all motors operate at their highest drive efficiency in ED mode. The OAME
strategy overcomes the limitations of traditional methods and addresses the complexity
and real-time optimization challenges associated with global optimization calculations.

The system efficiency and output torque expressions for the dual motors in the PHEB
under the ED mode are given as follows:

ηsys =
Pmotor+Pgen

Pmotor/ηmotor(Tmotor,ωmotor)+Pgen/ηgen(Tgen,ωgen)

Tmotor =
Tdri×κ
1+α2

Tgen = Tdri×(1−κ)
α1

(16)

where ηsys denotes the efficiency of the motor system and κ denotes the output coefficient
in ED mode in the range of [0, 1].

Here is a step-by-step breakdown of the specific optimization calculation process:
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(1) Check the operating state of the PHEB. If the PHEB operates in any state other than
ED mode (Stu ̸= 4), set the optimal output coefficient κ∗ = 1. Otherwise, proceed to
step (2).

(2) Discretize the output coefficient κ. Discretize the dual-motor drive output coefficient
κ with a step size of sβ. κi ∈ [0: sβ: 1], where i = 0, 1, 2, . . ., 1/sβ, and i represents the
subscript of the i-th discrete output coefficient.

(3) Calculate the optimal output coefficient κ∗ for the drive motor. Iterate through and
store the system efficiency for each output coefficient κi. Save κi under the highest
system efficiency, and κ∗ = κi.

(4) Output κ∗.
(5) Repeat steps (1) to (4) until the end of the driving cycle.

Simulation results of forcibly placing the vehicle into ED mode under CCBC are
illustrated in Figures 15–18.

As observed in Figure 15a, under the OAME strategy, the generator shares part of the
torque of the drive motor, causing the operating point of the drive motor to move closer to
the high-efficiency (red dots) points. This advantage of the dual-motor drive is particularly
evident when the speed is above 2300 r/min and the torque is greater than 200 N·m or
when the speed is below 1000 r/min and the torque is greater than 220 N·m. Figure 15b
displays the operating points of the generator driven by the OAME strategy. Particularly,
when the vehicle’s speed and torque demand are low, the vehicle is entirely driven by the
generator output, giving full play to the high-efficiency characteristics of the generator in
that range. When the drive motor features high speed and high torque demand or low
speed and significant torque demand, the generator and drive motor work together to
output the driving power.

As depicted in Figure 16, the red triangles represent OAME-HM, which denotes the
system efficiency during motor system operation. It is observable that at any operating
point, the OAME-HM efficiency is greater than or equal to the efficiency of the single-drive
motor (black dots). When the system operates in a dual-motor hybrid drive mode, the
system efficiency lies between the efficiency of the current drive motor and that of the
generator, embodying the optimal state. In Figure 17, at the end of the cycle, considering
solely energy consumption, the energy consumption of the vehicle in single-motor drive
mode is 1.343 × 107 J, while under the OAME strategy, it is 1.228 × 107 J. The OAME
strategy reduces energy consumption by 8.562%, demonstrating a significant improvement
in energy efficiency.

Simulation results indicate that the OAME strategy effectively enhances the economy
in ED mode compared to single-drive motors, resulting in reduced energy consumption in
ED mode.
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Figure 15. Distribution of operating points of the motor system under the OAME strategy.
(a) Distribution of operating points of drive motors; (b) distribution of operating points of generators.
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4.3. Optimization of SCH Based on the Particle Swarm Optimization (PSO) Algorithm

The PSO algorithm stems from Reynolds’ proposal based on the foraging behavior
of bird flocks. When dealing with problems involving continuous variables, the PSO
algorithm demonstrates characteristics such as low computational complexity and rapid
convergence. The operational state of an engine can be viewed as a continuous variation in
both speed and torque. Hence, this section employs the PSO algorithm to determine the
optimal operating point for the engine in the SCH mode.

In the SCH mode, the engine’s output power is entirely transmitted to drive the
generator for power generation through the planetary carrier. The efficiency of both the
engine and generator varies at different torque and speed states. As the optimal state
remains constant, the calculation of its system efficiency can be regarded as a steady-state
process, expressed as follows:

ηrec = ηeng·ηgen (17)

Jrec = −ηeng·ηgen (18)

The optimization process involves solving a single-objective dual-parameter problem.
Therefore, the number of particles is 2, denoted as P1 and P2, with both in the range [0, 1].
The conditional expression is given below:
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

ωeng = ωeng_min + P1·(ωeng_max − ωeng_min)
Teng = T(ωeng)min + P2·(T(ωeng)max − T(ωeng)min)
ωgen = ωeng·(1 + α1)
Tgen = Teng/(1 + α1)
ηeng = f(Teng, ωeng)

ηgen = f(Tgen, ωgen)

(19)

where T(ωeng)min signifies the minimum torque at the current engine speed and T(ωeng)max
signifies the maximum torque at the current engine speed.

The PSO algorithm tracks the historical optimal positions of individuals and the popu-
lation. It continuously updates and iterates the particle’s velocity and position information
through two behaviors, exploration and exploitation, to achieve the evolution of the popula-
tion. The main parameters of the PSO algorithm include the population size (MPSO), search
space dimension (D), maximum number of iterations (G), maximum velocity of the particle
(vp_max), weight coefficient (ω) representing the global and local search capabilities of the
particle, and learning factors c1 and c2 (generally set as 2). The optimization process of the
PSO algorithm involves initializing particles’ speed and position variables, determining the
individual historical optimal position and the population’s historical optimal position, and
determining the particle’s speed and position for the next iteration to optimize the optimal
operating point for the engine during the SCH mode.

To put it in a nutshell, the optimization algorithm for powertrain parameters in this
section consists of three layers: the top layer is the objective layer, the middle layer is the
control strategy algorithm layer, and the bottom layer is the model layer. The powertrain
parameters optimized by the GA via the OAME strategy and PSO algorithm are utilized to
calculate the optimal output coefficient κ∗ of the dual motors and the engine’s speed and
torque during the SCH mode. These parameters are then passed to the MRB strategy. The
model layer utilizes the control algorithm to transmit various component control signals to
the vehicle model, iteratively generating the fitness function values required for the GA.
Figure 18 represents the overall topology of the GOP method.

5. Results and Discussion

Figure 18 represents the optimization results of the PHEB’s powertrain parameters
using the GOP method.

As depicted in Figure 18a, after 137 iterations of the algorithm, the model acquired
the optimal powertrain parameters shown in Figure 18b. The resulting parameters were
α1 = 5.346, α2 = 2, and i0 = 6.434.

In Figure 18c, with initial parameters of α1 = 2.6, α2 = 2.6, and i0 = 3.41, the system
efficiency was 0.4637. Post-optimization, the powertrain, as illustrated in Figure 18d,
revealed the highest efficiency of 0.4026 for the SCH mode. At this point, the engine speed
was 1318 r/min, with a torque of 429.2 N·m.

In Figure 18e, compared to the pre-optimization state where a substantial number of
the engine’s operating points were concentrated at a higher speed of 1600 r/min, resulting
in fuel consumption of 202 g/(kW·h), after the GOP optimization, the engine’s operating
points shifted toward lower-speed regions. The fuel consumption in this region was
approximately 195~196 g/(kW·h), indicating a notable enhancement in the engine’s fuel
conversion efficiency.

As demonstrated in Figure 18f, post-optimization, the overall load on the drive motor
decreased, and the operating points shifted toward high-efficiency points. Particularly
in the ERC mode, the efficiency of the motor under the OAME strategy significantly
improved, reaching 0.621. This enhancement led to a 33.92% improvement in the overall
vehicle system efficiency.

To validate the adaptability and effectiveness of the GOP optimization, a comparative
analysis of the powertrain parameters before and after optimization was conducted under
CCBC and synthetic driving cycles. Following optimization, the increase in the charac-
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teristic parameters of the front planetary gear enhanced the direct torque transmission
from the engine to the front gear ring via the planet carrier, improving the powertrain
efficiency during PS phases. Additionally, it harnessed the inherent efficiency advantage of
the generator at higher rotational speeds, resulting in enhanced power generation efficiency.
Conversely, the decrease in the characteristic parameters of the rear planetary gear, coupled
with an increase in the final drive ratio, reduced the load on the drive motor. This shift
allowed the operating point to move towards the high-efficiency points, consequently
enhancing the efficiency of the drive motor.

As witnessed in Figure 19, the optimized powertrain system facilitated the shift
of engine operating points from high-load to medium-to-low-load regions, resulting in
enhanced engine efficiency. The OAME strategy contributed to bolstering the electric drive
efficiency of the individual motor, as evidenced in Table 5. Upon GOP optimization, the fuel
consumption under CCBC conditions decreased from 5.35 L to 4.87 L, representing a 9.04%
reduction in the cycle fuel consumption. Similarly, loss of battery life declined from 0.0188%
to 0.0182%, a 3.19% improvement. Under synthetic driving cycles, fuel consumption
dropped from 5.41 L to 4.43 L, translating into an 18.11% reduction, while battery life
loss decreased from 0.0256% to 0.0237%, a 7.32% improvement. These simulation results
conclusively demonstrate that GOP-optimized powertrain parameters enhance the overall
efficiency of the powertrain system, as corroborated by their abilities to improve vehicle-
level fuel economy and mitigate the loss of battery life, underscoring the practicality and
efficacy of the optimization approach.
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Table 5. Comparison of evaluation metrics.

State
Fuel Consumption (L) Loss of Battery Life (%)

CCBC Synthetic Driving Cycle CCBC Synthetic Driving Cycle

Before optimization 5.3586 5.4064 0.0188 0.0256
After optimization 4.8743 4.4275 0.0182 0.0237

Before vs. After −9.04% −18.11% −3.19% −7.42%

In this study, the positive points of the proposed methodology are as follows:

1. In this paper, an oil–electric control method based on the target SOC trajectory is
designed for the line operation characteristics of PHEBs. This solves the problem that
the conventional CDCS strategy fails to control the power source according to the
preset SOC trajectory.

2. To further improve the efficiency of the ED mode, this paper designs an OAME
strategy to achieve the highest efficiency of the electric drive system. By evaluating
the efficiency of the motor system in the ED mode, this strategy automatically seeks
the optimization in the current state, the single generator mode, the single drive motor
mode, and the dual motor mode, thus attaining minimal electric energy consumption
in the ED mode.

3. In this paper, to solve the problem of fuel consumption efficiency in parking power
generation mode, the PSO algorithm is used to dynamically solve the optimal engine
operating point under different driveline parameters, resulting in the most efficient
fuel consumption in this mode.

4. Recognizing the direct correlation between the characteristic parameters of the power
coupling mechanism and the overall mixing efficiency, the GA algorithm is leveraged
to optimize drivetrain parameters with the objective of enhancing vehicle power
system efficiency. This offline optimization process yields optimal characteristic
parameters that elevate the powertrain system’s efficiency.

5. The DP algorithm is harnessed to pinpoint the optimal efficiency of the powertrain
system’s operating point under arbitrary power and rotational speed conditions,
thereby achieving minimal energy consumption.

6. The statistical method is used to design the PS-ED and ED-PS switching demarcation
line, which can effectively avoid the problem of repeated switching of PS and ED in
the power system at the efficiency critical point.

The limitations of this paper are as follows:

1. While the paper is based on the flat terrain of Xi’an City, if the operating line is in an
area with significant altitude fluctuations, the SOC target trend based on the operating
mileage cannot fully reflect the distribution of power in each stage.

2. For the inner logic layer of MRB-II, there is still room for improvement in the intelli-
gence of mode switching for rule-based switching methods.

In summary, the MRB-II energy control strategy effectively capitalizes on the sim-
ple and practical advantages of the rule-based strategy while integrating an adaptive
optimization-seeking kernel, rendering the algorithm both highly efficient and streamlined.
By optimizing the characteristic parameters of the power coupling mechanism through
the GOP method, we achieve hardware-level optimization that augments vehicle econ-
omy. To substantiate the efficacy of this design, comprehensive comparative analyses
will be conducted across various road conditions, thereby verifying the improvement
in performance.

6. Conclusions

To enhance the fuel economy of the power-split PHEB system, an MRB energy man-
agement strategy and a GOP method for optimizing powertrain parameters were proposed,
leading to the following conclusions:
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1. Innovatively combining rule-based algorithms with intelligent algorithms. Based
on the DP algorithm, the optimal working mode point of the power system under
any speed and power combination state is solved, and the mode switching lines of
ED-PS and PS-ED are designed in combination with the distribution of the working
points, which are used as the control rules of ED/OOL to formulate the MRB energy
management strategy. The results showed that compared with CDCS, MRB-II reduced
fuel consumption by 12.02% and 10.35% under CCBC and synthetic conditions, re-
spectively, and reduced battery life loss by 33.33% and 31.64%, with significant effects.

2. The innovative optimization algorithm for multilayer GOP driveline parameters,
aimed at maximizing system efficiency, was constructed. The genetic algorithm is
used to generate three parameters of the driveline α1, α2, and i0, which are imported
into the designed OAME strategy to adaptively solve the pure electric drive efficiency
under the optimal coupling coefficient for single-motor or dual-motor operation
modes, and into the PSO algorithm to solve the power generation efficiency under
the optimal operating point state of the power generation system in the parking and
charging mode. The optimal drive train parameters are obtained by rolling iterations.
The PHEB with optimized driveline parameters reduced fuel consumption by 9.04%
and 18.11% under CCBC and synthetic conditions, respectively, and by 3.19% and
7.42% at the level of battery life loss, which demonstrates a substantial elevation in
the fuel economy and battery protection capabilities of PHEB.

3. The proposed MRB energy management strategy and GOP optimization method for
powertrain parameters, balancing both engine fuel economy and overall powertrain
efficiency, represent effective approaches for energy management and powertrain
optimization in HEVs.

In view of the possible limitations of this article, the next research direction is as follows:

1. At the operational level, the impact indicators of altitude change on power distribution
can be added, and the slope parameters can be synthesized by methods such as the
Markov chain, so as to construct multi-dimensional conditions based on speed-slope,
in order to improve the adaptability of MRB-EMS (MRB-II) in other regions.

2. For the inner switching logic of MRB-II, methods such as machine learning or model
prediction can be combined to predict the future speed and speed change to achieve
the intelligent switching of modes.
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