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Abstract: The application of deep learning in autonomous vehicles has surged over the years with
advancements in technology. This research explores the integration of deep learning algorithms
into autonomous vehicles (AVs), focusing on their role in perception, decision-making, localization,
mapping, and navigation. It shows how deep learning, as a part of machine learning, mimics the
human brain’s neural networks, enabling advancements in perception, decision-making, localization,
mapping, and overall navigation. Techniques like convolutional neural networks are used for image
detection and steering control, while deep learning is crucial for path planning, automated parking,
and traffic maneuvering. Localization and mapping are essential for AVs’ navigation, with deep
learning-based object detection mechanisms like Faster R-CNN and YOLO proving effective in real-
time obstacle detection. Apart from the roles, this study also revealed that the integration of deep
learning in AVs faces challenges such as dataset uncertainty, sensor challenges, and model training
intricacies. However, these issues can be addressed through the increased standardization of sensors
and real-life testing for model training, and advancements in model compression technologies can
optimize the performance of deep learning in AVs. This study concludes that deep learning plays a
crucial role in enhancing the safety and reliability of AV navigation. This study contributes to the
ongoing discourse on the optimal integration of deep learning in AVs, aiming to foster their safety,
reliability, and societal acceptance.

Keywords: deep learning; autonomous vehicle; pivotal role; key challenges

1. Introduction

Deep learning is a form of machine learning that applies neural networks to mimic
the structural and functional dynamics of the human brain [1]. The operational aspects
of autonomous cars rely heavily on analyzing vast amounts of environmental data, from
which operational decisions and situational awareness are derived [1,2]. This ability to
learn from the environment through the collection and analysis of data in autonomous cars
is enabled by deep learning [2]. Initially, the idea of autonomous vehicles was a fictional
idea. However, due to the availability and accessibility of advanced technologies like deep
learning, autonomous vehicles are now a reality [3]. Therefore, it is vital to understand
how AI-based technologies like deep learning work in AVs as a primary step towards
level 5 automation.

The thesis of this research is based on the argument that deep learning algorithms
have been extensively used in optimizing the technical and operational architecture of
autonomous vehicles (AVs). In autonomous vehicles, the current research postulates that
deep learning algorithms are used to enable perception, decision-making, localization, and
mapping in autonomous navigation. However, the application of deep learning algorithms
is also hindered by challenges ranging from the complexity of model training to sensor
challenges and the complexity and uncertainty of deep learning systems. This paper
concludes that addressing these challenges will optimize the accuracy and robustness of
deep learning systems in AVs.
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The main objective of this study is to analyze the uses and challenges of deep learning
in autonomous vehicles (AVs). Through the analysis of how deep learning is applied
in autonomous vehicles, this research paper will enhance the existing understanding of
AI-based technologies used in AVs. This paper will also highlight reasons why the role of
technologies like deep learning in AVs is indispensable. By highlighting some of the barriers
and challenges involved in the application of deep learning models in AVs, this study will
also spur and inspire future research directions targeted at upscaling the application of
deep learning in AVs.

Subsequently, this study will extensively contribute towards the feasible and large-
scale adoption of deep learning in AVs.

2. Research Method

Therefore, to satisfy these objectives, this research paper employs a qualitative research
method in this systematic and dynamic literature review of the literature on deep learning
in autonomous vehicles. A comprehensive review of relevant peer-reviewed literature
published between 2017 and 2023 was conducted, focusing on real-world applications of
deep learning in autonomous vehicles.

Terms like ‘deep learning’, ‘autonomous vehicles’, ‘application challenges’, and ‘system-
atic literature review’ were used in the search. These keywords were deemed most appropriate
to select the literature for the present study that was allied to the major research themes: “Deep
learning algorithms significantly enhance the perception, localization, and navigation capabil-
ities of autonomous vehicles, optimizing their overall operational framework”.

The reason for choosing a systematic literature review as the legal research method
is that as it provides an accurate, comprehensive, and quite detailed identification and
definition of the research variables [4,5]. To improve the validity of the review, the selection
process included only articles published between 2017 and 2023, which reflects the recent
state of the issue. This period was selected deliberately because it covers the modern
developments and issues in the utilization of deep learning in self-driving automobiles.

However, to select the articles, several criteria were used aside from the publication
date, among which include the following: In particular, only articles published in peer-
reviewed journals were considered, which allowed us to focus only on reliable sources.
Papers that were excluded were those that were purely theoretical, with little computational
or field data support, or those where the real-world implementation of the theories was
not clearly explored. Furthermore, only those papers that focused on deep learning and
self-driving cars were included in this review.

As far as perspective awareness is concerned, it can be assumed that the literature
review collected from the studies published during the last five years will give a fresh
outlook on the state-of-art technologies and methodologies on deep learning in AV systems,
along with the identification of open problems and challenges in this regard.

3. Literature Review
3.1. Autonomous Vehicles

The wave of modernization and technological development is responsible for the
paradigm shift being witnessed in the automotive industry. By 2030, level 2 AVs will
represent 92% of the market share and level 3 AVs will represent 8% [6]. Additionally, the AV
market is expected to grow by 39.47% from USD 54.23$ billion in 2019 to USD 75.6 billion in
2026 and ultimately aggregate USD 87 billion by 2030 [7]. By 2035, self-driving cars are also
expected to account for 25% of total car sales. Between 2019 and 2026, Europe is expected
to have the highest growth rate in the AV market at 42.6%, with North America also being
expected to be a leader in the AV industry [7,8]. Nevertheless, whereas AI systems like
deep learning have enhanced the technical architecture of AVs, the large-scale adoption of
AVs is also hindered by social acceptability, adverse road conditions, weather, data privacy,
and cybersecurity among others [1].
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Despite the current development, Biswas and Wang [9] argue that the practicality of level
5 autonomous vehicles is still under development. The primary impetus factors that cause
these phenomena include unaddressed technological barriers besides trust, safety, and ethical
issues. Nevertheless, technological giants like Tesla, Google, Audi, BMW, and Mercedes-Benz
among others, through ongoing road-testing, have extensively influenced current research
designed to address the AV technological architectural barriers [10]. Through such efforts,
giants like Tesla and Google have managed to incorporate self-driving features in current AVs.
Furthermore, with the increasing availability of data and advanced technology, the detection
accuracy, latency, and response time of AVs are expected to be optimized.

The six automation levels used to categorize autonomous vehicles are summarized in
Table 1.

Table 1. The automation levels are used to categorize autonomous vehicles.

Levels Description

Level 0 (no automation) The dynamic driving task (DDT) is fully controlled by human beings [11].

Level 1 (driver assistance) It is the lowest level of automation that incorporates mild driver assistance systems
like adaptive cruise control.

Level 2 (partial driving automation) It incorporates an advanced driver assistance system that controls aspects like speed
and steering. Human intervention is still required.

Level 3 (conditional driving automation)

Advanced autonomy with numerous sensors to analyze the environment and make
informed decisions. They incorporate autonomous systems like automated emergency
breaking (AED), traffic jam assist, and driver monitoring (DM) among other
functionalities [11].

Level 4 (high driving automation)
They can operate in self-driving mode, but due to geo-fencing, they are limited to
certain low-speed urban areas. Incomprehensive legislation and inadequate
infrastructure required for such AVs also limits self-driving [11].

Level 5 (fully autonomous driving)

The dynamic driving task is eliminated, and hence, such AVs do not require human
intervention. They will not be limited by geo-fencing. Despite the ongoing extensive
research on actualizing level 5 AVs, the universal adoption of such AVs is a long-term
objective [12].

3.2. The Need for Autonomous Vehicles

There are various reasons why autonomous cars are relevant and significant in the
backdrop of changing transportation. Besides alleviating the economic and environmental
issues related to transportation, autonomous vehicles are promising solutions to congestion,
accidents, and emissions [12].

Notably, Fayyad et al. [10] agree that autonomous vehicles will provide a safe, efficient,
cost-effective, and accessible means of transport. Autonomous cars are also expected
to alleviate the impact of undesirable impacts of carbon emissions on climate change.
For example, Ercan et al. [13] illustrate that a 1% increase in the sale of electric vehicles
has the potential to reduce carbon emissions in a city by 0.096% and 0.087% in a nearby
city. Additionally, electronic vehicles also reduce carbon emissions indirectly through
substitution, consumption, and technological effects. Overall, the results of Ercan et al. [13],
which analyzed data from more than 929 metro/metropolitan areas in the US, showed that
the adoption of autonomous vehicles could reduce greenhouse gases by 34% by 2050.

However, another study undertaken at the Massachusetts Institute of Technology (MIT)
revealed that the powerful onboard computers programmed to use deep learning and neural
networks are not environmentally friendly [14]. Therefore, widespread and global adoption
of autonomous vehicles is likely to generate over 0.14 gigatons of greenhouse emissions
annually, similar to the annual greenhouse emissions of Argentina [14]. Therefore, enhancing
the theoretical, technical, and operational understanding and challenges of deep learning in
autonomous vehicles is likely to alleviate such undesirable environmental impacts.
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Autonomous vehicles are also expected to solve other transport-related issues like
accidents and congestion. For instance, 93% of accidents, especially crashes, are caused by
human errors [15]. Autonomous vehicles will reduce such statistics by reducing human
involvement in driving, which will subsequently minimize human errors like speeding,
distraction, and driving under the influence [15]. This impact on minimizing accidents has
already been realized in semi-autonomous vehicles. A Survey by the Insurance Institute of
Highway Safety showed that partially autonomous features like forward collision avoid-
ance, side view assistance, and lane departure warning reduced road accident crashes,
accidents, and fatalities by at least 33% [16]. Karnati et al. [1] also agree that the application
of AI in AVs will optimize the ability of self-driving vehicles to address some of the prob-
lems affiliated with conventional cars like road safety, limited independence for people
with disabilities, low efficiency, traffic congestion, and environmental pollution.

Self-driving cars are said to enhance traffic flow but have difficulties in simulating
congestion. Human-like AVs are explicitly programmed to drive patiently and safely; thus,
they may over-compensate on this by going slower. “Deep learning applications face several
challenges, including model training complexity and the need for highly accurate sensor data.
These challenges directly impact the decision-making processes of autonomous vehicles”.

The second set of issues is linked to fleet management at ride-hailing platforms,
where AVs drive around without passengers, thus contributing to congestion. In urban
environments, reactions to pedestrians and cyclists may also hinder AVs as they may have
to make several braking and slow movements for reasons of safety [16].

However, the opportunity exists for AVs to be coordinated in the management of
traffic in a way that is likely to control congestion in the long term. Elements include vehicle
“platooning” of cars, where shifting from one route to another could improve traffic flow
by better aligning the distances between vehicles and their speeds. Potential modifications
include better connectivity for AVs, including smart traffic lights and dedicated AV lanes
to reduce congestion points. Although the use of AVs might result in small congestion
initially, their adoption is likely to lead to long-term opportunities of achieving enhanced
traffic systems [14].

3.3. Deep Learning

Deep learning is a specialized form of machine learning based on artificial neural
networks (ANNs), whose structure is derived from the human brain. Deep learning
algorithms comprise multiple layers of ANNs that are trained to extract and learn relevant
features from vast amounts of data [17,18]. This ability to learn and extract relevant features
makes deep learning algorithms applicable in different AV features like natural language
processing, image and speech recognition, and autonomous navigation [19]. One of the
turning points in deep learning that fostered its application in self-driving cars, among other
fields, was the achievement of state-of-the-art results in the ImageNet visual recognition
challenges by a deep convolutional neural network called AlexNet [20,21].

Ultimately, the comprehensive application of deep learning has been influenced by
various factors. Such factors include the advancements in powerful computing resources
and the availing of large, quality, and reliable training datasets [22,23]. Some of the existing
deep learning structures are summarized in Table 2. “Recent advancements in end-to-end
deep learning have further streamlined the decision-making process in AVs by eliminating
intermediate steps, allowing models to directly map sensory inputs to control actions. This
approach has shown promise in enhancing the accuracy of AV systems, particularly in path
planning and obstacle detection”.
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Table 2. Deep learning structures.

Deep Learning Type Description

Autoencoder

Composed of an encoder and a decoder. It is also designed to learn a compressed
version of input data from which the original input data can be recreated [19].
Autoencoders are incorporated with end-to-end deep learning strategies to help
AVs determine the appropriate steering angle during autonomous navigation [24].

Convolutional neural networks (CNNs)

The CNN uses convolution operations to extract and learn relevant features from
data. It helps in the identification of data patterns that could have been
challenging to detect using traditional algorithms. It has a hierarchical structure,
whereby the lower layers learn simple data features whereas the high layers
extract complex data features [25].

Deep belief networks (DBNs)

Comprises multiple layers of the restricted Boltzmann machine (RBM). The
shallow and two-layered RBMs are stacked on top of each other to form a deep
DBN network [26].
Besides being trained through unsupervised learning, DBNs can be applied in AV
functions like natural language processing, speech recognition, and computer
vision relevant in the detection and classification of images during autonomous
navigation [27].

Recurrent neural networks (RNNs)

RNNs could analyze sequential data as input. This ability to model temporal
dependencies and patterns has enabled RNNs to be used for different AV
functions like natural language processing, speech recognition, and time series
predictions [19]. However, RNNs are also sensitive to the order of input data.

4. Results

Deep learning has multiple uses in AVs as demonstrated by a wide scope of the litera-
ture being related to the research topic. These uses are affiliated with components/aspects
of AVs like perception, decision making, motion planning, and safety validation.

4.1. Perception

Perception refers to the ability of the AV to continuously scan and track the sur-
rounding environment. Perception also involves the semantic segmentation of roads with
different drivable surfaces like off-road and tarmacked surfaces. For this purpose, the AV
uses LiDar and radar sensors besides cameras to mimic human vision [28]. The existing
deep learning algorithms enable both mediated and direct perception.

Mediated perception applies both deep learning and convolutional neural networks
to detect images of the surrounding environment. The detailed map of the surroundings
is developed from the analysis of distance and coordinates from other vehicles and other
physical obstacles like trees and road signs [29]. The study of Tong et al. [30] sought to
establish the perception accuracy of deep learning algorithms. The study showed that
deep learning enabled AVs to detect traffic signs with an accuracy of 99.46%, which was
higher than humans in some tests [30]. Other deep learning models like YOLO Darknet
v2 detect 40–70 frames per second, which is an 80% detection accuracy rate in real-time
AV driving [30]. Ultimately, high-definition images are expected to enhance the detection
accuracy of deep learning algorithms. Additionally, Guan et al. [31] acknowledge that
advanced techniques like salient analysis and edge detection have been developed to derive
high-definition images.

On the other hand, direct perception involves decision-making and integrated scene
awareness. Hence, direct perception focuses on immediate AV aspects like the immediate
steering wheel motion and speed while avoiding preliminary localization and mapping [32].
Therefore, instead of using a detailed local map, the AV uses deep learning to develop
sections of maps required to acquire immediate scene awareness components like the
distance from immediate vehicles and lane markings [33].

One of the most recommended deep learning algorithms used for direct perception
in AVs is PilotNet. The deep learning model is efficient because it comprises a single
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normalization layer and five convolutional layers besides three fully connected layers [34].
Using sensor and camera data as the input, the primary output of the model is steering
parameters, which help to steer the AV.

Odometry is also an important aspect of perception enabled by deep learning algo-
rithms. It involves identifying shifts in position and orientation relative to surroundings
during autonomous navigation [35,36]. Notably, Li et al. [37] and Mohamed et al. [38]
established visual odometry algorithms like UnDeepVO, which significantly relied on
unlabeled data, unsupervised learning, and deep neural networks to enhance accuracy and
robustness. Others like probabilistic visual odometry (ESP-VO) also use deep learning, re-
current convolutional neural networks (RCNNs), and monocular cameras to estimate pose
and generate depth maps [39,40]. These examples demonstrate the extensive application of
deep learning algorithms in fostering perception during autonomous navigation in AVs.

4.2. Decision Making

Given that autonomous vehicles (AVs) are rapidly developing and placing a new kind
of focus to the transport’s future, such opportunities and challenges exist [41]. Some of
the most relevant concerns connected to AVs include platooning, car sharing, as well as
relocation considerations. All of these concepts form the core of how self-driving cars
will operate on the roads and interact with other traffic systems [42]. All of these topics
convey a potential to yield substantial benefits but provoke issues such as traffic jam and
ineffectiveness if proper planning is not performed.

Platooning

The technology of platooning is critical in AV use, wherein vehicles have the ability
to travel in series with little distance between them. Based on the information exchange
between vehicles and other reference vehicles, as well as vehicle-to-vehicle communications,
i.e., (V2V), speeds, brake actions, and even the steering actions can automatically be
synchronized to reduce the inter-vehicle distances to be very small. Through this formation,
it enhances fuel economy as less drag is created, and in increasing the number of vehicles
to be transported within a given space, the efficiency of highways is enhanced [43].

The main advantage that can be received by implementing platooning is a possible
improvement in traffic conditions, reducing sudden lane changes or jerks caused by sudden
braking or fluctuations in speed, which are often exhibited by human drivers in a convoy,
are eliminated, hence allowing platooning AVs to maintain the best speed in order to avoid
traffic congestion [44]. However, this very notion presupposes certain difficulties as well. If
AVs were to share the roads with other conventional automobiles, human drivers could
sometimes interfere with platoons by joining the highly compact formation. This could
disrupt the communication and coordination of autonomous vehicles on the road, meaning
that everyone will be moving slowly and simultaneously pose risks to one another [45].

The realization of the above benefits of platooning may require enhancements in
the road infrastructure such as allocating exclusive AV lanes. These lanes would enable
the grouped operation of AVs without hindrance by other human-operated automobiles.
Thirdly, the standards of V2V communication must be set to enforce all forms of AV to
be compatible with one another and be able to interact and integrate into platooning
systems [46].

Car Sharing

Another promising phenomenon associated with the emergence of the use of self-
driving cars is car sharing. Possessive handling of a car could be replaced by shared
models, where users obtain access to a flotilla of self-driving cars, as needed. It may cut
the circulation of cars, lessen emissions, and perhaps even eliminate some of the traffic
congestions seen in cities today, especially when it comes to hunting for parking lots. As
there is no human driver in an AV, it can operate for twenty-four hours, picking up and
dropping off passengers, thus enhancing transportation systems [47].
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However, car sharing with AVs offer the following challenges: An emerging problem is
the question of how to coordinate the arrival of client demands to shared cars. Car-sharing
AVs must be located throughout a city to facilitate passenger demands, but they are not
always required at all times because passenger demands rise and fall with time, geographic
location, and specific events. Combined, these vehicles can be condensed in certain areas,
leaving other areas a little or not at all serviced. Self-driving fleets must be able to deploy
complex predicative algorithms for the demand and deployment of the cars [48].

Another issue is what’s commonly known as deadheading, where self-driving cars
travel empty, moving around without any passengers on board. If not accomplished
effectively, this could worsen traffic jams, especially in large cities. With such factors as
distance, cost, and demand density being essential ingredients in the relocation policy,
greatest efforts should be made to ensure that a fleet is not left idle in a particular location
for many hours on end while, on the other hand, a vehicle is required urgently in another
location [49].

Relocation Strategies

Location solutions are important in managing AV fleets, especially in car-sharing/ride-
hailing businesses. AVs require a shuttle between trips to serve customers and can be
problematic if they are not well managed in terms of spatial needs and traffic jam. The
movement of vehicles without passengers, a practice referred to as ‘dead running’, can
reinforce traffic in already traffic-troubled zones should several fleets be running all at
once [50].

To overcome this, AVs have to process detailed algorithms that will help them antici-
pate the influx of passengers and move vehicles to these parts quickly. Such algorithms
should include inputs like real-time traffic flow, weather conditions, or demand so as to
ensure that more of these relocations do not just add to traffic congestion for example,
which would be a waste of resources. Moreover, relations of cooperation between fleets
of AVs and urban transport systems imply the potential fine-tuning of mobility shifts in
relation to traffic conditions [51].

4.3. Localization and Mapping

Localization is the ability of the AV to effectively use its sensors in precisely detecting
and perceiving the environmental features based on the developed environmental map [52].
It involves identifying, classifying, and integrating physical obstacles and features into
an actual navigational map using sensor data and deep learning among other AI-based
systems [53]. The navigational capabilities of AVs are extensively dependent on localization.
Ultimately, Li et al. [54] agree that localization is a major indicator of an autonomous
system’s reliability as it is one of the primary sources of autonomous driving challenges.

By applying the sensor data, deep learning algorithms, and other AI-based systems, the
AV should be able to not only estimate its location but also detect and assess the proximity
of physical obstacles and other vehicles [55]. The deep learning algorithm relies on a
diverse scope of sensor data to enable localization in AVs. For example, the point clouds
generated by LiDAR are analyzed to develop a map of the environment [56]. Additionally,
features like particle filters enable deep learning models to enhance the accuracy of the
data collected by sensors by comparing the observed environmental description with a
known map that is used as part of the algorithm training dataset [57]. Additionally, features
that cannot be precisely identified through this comparison are used by the deep learning
algorithm to update new features on the existing map held in the algorithm [58,59].

The sensor data and deep learning algorithms are used to develop absolute and relative
maps. Firstly, absolute maps describe a geographical location based on its fixed point on a
worldwide coordinate frame [42]. It shows stationary landmarks defined by two parameters
that show their location on a Cartesian plane relative to the worldwide coordinate frame [42].
On the other hand, relative maps are used by AVs to derive awareness about the distance
between two landmarks [60]. Golroudbari and Sabour [19] also show that deep learning
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algorithms like convolutional neural networks are effective in object detection through
their abilities to acquire a comprehensive representation of the object under detection.

Notably, deep learning-based object detection and localization mechanisms like Faster
R-CNN and YOLO have demonstrated high accuracy, robustness, and speed in the real-time
detection of obstacles, regardless of factors like adverse weather conditions or darkness [59].
This accuracy in object detection during autonomous navigation has also been ascertained
by several studies. For example, Afif et al. [61] assessed the effectiveness of lightweight
EfficientDet in autonomous navigation. The study established that this deep learning
object detection approach, among others like TensorFlow and OpenCV, optimized obstacle
detection by providing a high-resolution binary image of the obstacle [61]. Therefore,
despite the challenges affiliated with the acquisition of adequate training data, it is evident
that deep learning-based systems are highly effective in AV localization and mapping.

5. Challenges
5.1. Complexity and Uncertainty

The issues are similar to the previous problems in the application of cerebral learning
in autonomous vehicles, which demonstrate continual difficulties. Grigorescu et al. [62]
explain that ambiguities can be framed in two main ways: Firstly, there are issues that
are explored when the sensors are unable to perform their functions properly, as they
are affected by environmental factors. The outdoor environment is another factor that
may affect the sensor as climate change will inevitably affect the quality of the collected
data. Second, even learning algorithms themselves might be problematic when they are
used for application in the real world. Lack of clarity regarding the relationships between
these models and their particular roles—interactions between object detection and decision-
making modules—may result in suboptimal work and inconvenience [63].

Moreover, because the environment is unpredictable, sensors cannot consistently provide
high-quality data required for accurate models [39]. This is worsened by the fact that deep
learning models depend on large amounts of quality data to make accurate decisions.

However, there are other aspects that cause deep learning models to produce poor
driving outcomes for autonomous cars and trucks apart from environmental conditions
beyond environmental aspects; other aspects hinder deep learning models from delivering
good outcomes for self-driving cars and trucks. For instance, lane detection is a challenge
at night due to the nature of data used in deep learning models, which is mainly obtained
during the daytime. While a human driver is able to anticipate and successfully drive a car
in low visibility, today’s deep learning models are unable to do the same. The aim should
be to move on to the next generation of deep learning models capable of operating with a
high degree of accuracy when operating in complex and potentially volatile conditions.

Regarding the drawbacks of deep learning models, it is also worth mentioning that
users, in terms of the autonomy of automobiles, are risky and shaky as well. Biswas and
Wang [9] wrote that any changes to the environment could impact deep learning systems
and hence the behavior of progressive supports and drivers incorporated into cars. Fur-
thermore, ISO 26262 [64], the current industrial standards for automotive functional safety,
give no consideration to the incorporation of deep learning into automated systems [19].
This necessitates new, better frameworks and standards relevant to various challenges that
AI presents in self-driving vehicles.

5.2. Sensor Challenges

The detection accuracy and latency of deep learning algorithms significantly depend
on the quality of data obtained from the multiple sensors embedded in AVs. Notably, one
of the approaches used to foster accuracy in AVs is sensor fusion. It involves the integration
of data from different sensors to increase the quantity and quality of data available for deep
learning algorithms to make better and more accurate decisions [64,65]. For example, the
integration of LiDar and camera data optimizes AV performance at night [65]. However,
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adverse weather conditions are likely to affect the performance of data collection sensors,
which can be slightly improved through sensor fusion.

Biswas and Wang [9] also acknowledge that a challenge for AV manufacturers emerges
from the tradeoff between the cost of sensors and their accuracy. The outcome is different
manufacturers opting for different sensors. Such sensor inconsistencies, among others, lead
to heterogeneous datasets that might have undesirable effects on accuracy. Besides the
varying reliability and quality of sensors, Yeong et al. [66] note that the different frequencies
and timestamps of sensors also affect the synchronization accuracy and subsequent safety
of AVs.

Another issue is the lack of universal standards and comprehensive research regarding
the aspect of sensor failure. Sensor failure is an important factor as the safety and relia-
bility of AVs significantly rely on the presence and optimal functionality of fundamental
sensors [67]. Therefore, undetected sensor failure might influence severe technical failures
like accidents. Besides technical failure, sensor failure due to external factors like dirt,
deviation, and blockage might also lead to the communication of false data within the AV’s
architecture [68].

5.3. The Complexity of Model Training

For deep learning algorithms to offer their best in AV deployment, there is the need
to feed the models with data that acknowledges the variety of conditions. However, the
environment for the deployment of AVs is dynamic and complex and may at times include
scenarios that were not covered in the training dataset [9]. This complexity can reduce
the efficiency of the most essential AV fronts, including detection, perception, SLAM, and
decision-making [9].

Furthermore, the construction of a proper training set is a laborious task because
it requires proper coordinates for pedestrians, vehicles, lanes, and other obstacles. The
unpredictability of a temporal driving environment and the variability of possible scenarios
enforce the difficulties of training deep learning models by temporal data [9]. However,
it is noteworthy that various training strategies have been developed to surmount these
training difficulties, such as collaborative training, lightweight deep learning algorithms,
and model compression techniques.

The second major problem is linked with the impossibility of training in realistic condi-
tions. Training deep learning algorithms in AVs typically employs three major approaches,
using the help of car simulations, experiments with miniature car models, or real-life exper-
iments. Among the three methods, the first two have been used frequently, whereas the use
of real-world experiments has been limited due to technical and infrastructural challenges.
The lack of kinetic and stochastic actual field exercise undermines the real-world accuracy
and variability of the deep learning training sample.

In a bid to buttress the relevance of real-life training, Ni et al. [69], have estimated in
their study that about 109 h of vehicle operations are needed to obtain a correct estimate
of the failure rate. Moreover, improved statistical significance would require running
such tests serially to provide the needed results. However, many practitioners, such as
Tesla, have performed multiple tests of real-world training and have noted the current
shortcomings of AV architectures and the importance of better approaches [70].

6. Conclusions

Ultimately, it is prudent that deep-learning-based systems have enhanced the safety
and reliability of navigation in AVs. The analysis showed that deep learning algorithms
have been applied in major AV components like perception, localization, mapping, path
planning, and navigation. Future advancements in deep learning algorithms are expected
to enhance the accuracy of AVs in decision making, perception, localization, and mapping.
Therefore, to optimize the use of deep learning in AVs, the current study recommends an
increased standardization of the sensors to enhance synchronization and accuracy. Real-life
testing should also be actively incorporated in model training to ensure that deep learning



World Electr. Veh. J. 2024, 15, 518 10 of 12

algorithms adapt to the dynamic nature of real driving. These recommendations along with
future research will enhance the safety, reliability, and social acceptability of autonomous
vehicle systems.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Karnati, A.; Mehta, D. Artificial Intelligence in Self-Driving Cars: Applications, Implications and Challenges. Ushus J. Bus. Manag.

2022, 21, 1–28. [CrossRef]
2. Miglani, A.; Kumar, N. Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and

challenges. Veh. Commun. 2019, 20, 100184. [CrossRef]
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