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Abstract: This paper introduces an enhanced APF method to address challenges in automatic lane
changing and collision avoidance for autonomous vehicles, targeting issues of infeasible target points,
local optimization, inadequate safety margins, and instability when using DLQR. By integrating
a distance adjustment factor, this research aims to rectify traditional APF limitations. A safety
distance model and a sub-target virtual potential field are established to facilitate collision-free path
generation for autonomous vehicles. A path tracking system is designed, combining feed-forward
control with DLQR. Linearization and discretization of the vehicle’s dynamic state space model,
with constraint variables set to minimize control-command costs, aligns with DLQR objectives.
The aim is precise steering angle determination for path tracking, negating lateral errors due to
external disturbances. A Simulink–CarSim co-simulation platform is utilized for obstacle and speed
scenarios, validating the autonomous vehicle’s dynamic hazard avoidance, lane changing, and
overtaking capabilities. The refined APF method enhances path safety, smoothness, and stability.
Experimental data across three speeds reveal reasonable steering angle and lateral deflection angle
variations. The controller ensures stable reference path tracking at 40, 50, and 60 km/h around
various obstacles, verifying the controller’s effectiveness and driving stability. Comparative analysis
of visual trajectories pre-optimization and post-optimization highlights improvements. Vehicle
roll and sideslip angle peaks, roll-angle fluctuation, and front/rear wheel steering vertical support
forces are compared with traditional LQR, validating the optimized controller’s enhancement of
vehicle performance. Simulation results using MATLAB/Simulink and CarSim demonstrate that the
optimized controller reduces steering angles by 5 to 10◦, decreases sideslip angles by 3 to 5◦, and
increases vertical support forces from 1000 to 1450 N, showcasing our algorithm’s superior obstacle
avoidance and lane-changing capabilities under dynamic conditions.

Keywords: path planning; artificial potential field algorithms; collision avoidance; path tracking;
linear quadratic optimal controller

1. Introduction

With the rapid advancements in computer science, technology, and artificial intelli-
gence, the prospect of replacing human drivers with automated driving systems is becom-
ing a reality. The development of autonomous driving has enabled people to progressively
relinquish control to these systems [1]. The integration of the Internet of Things and artificial
intelligence into vehicles has endowed them with their own decision-making capabilities.
Consequently, intelligent autonomous driving technology is gradually assuming the role of
the conventional “perception–decision–execution” process carried out by human drivers.
A highly sophisticated product, autonomous driving integrates a number of cutting-edge
technologies, such as environment sensing, decision-making, and following control sys-
tems. Autonomous driving systems (ADS), enhanced by sensor integration and innovative
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vehicle features, spawn a rich array of benefits. Autonomous vehicles are able to plan
routes and adjust driving styles more efficiently, for example, reducing sharp acceleration
and braking, which in turn reduces fuel consumption and emissions. It is estimated that
self-driving cars can reduce their carbon footprint by up to 90% compared to conventional
vehicles. The combination of autonomous driving technology with new energy vehicles,
such as electric vehicles (EVs) and hydrogen fuel cell vehicles (FCEVs), accelerates the shift
toward green mobility solutions and further reduces fossil fuel dependence. Autonomous
driving technology also offers seniors a new way to travel independently, safely, and easily
to their destinations, even in the face of physical decline. This greatly improves their quality
of life and social participation. As the elderly reintegrate into social activities, their con-
sumption and employment potential is also activated, injecting new vitality into economic
growth. Dudziak et al. [2] noted that the emergence of new technologies has facilitated the
development and gradual implementation of autonomous vehicle (AV) concepts, catering
to the demands of aging demographics in industrialized nations and establishing AVs as
both a necessity and a viable business model. Autonomous vehicles employ sophisticated
sensors and algorithms to adjust acceleration, deceleration, and cornering limits, enhancing
passenger comfort by avoiding the jolts of sudden starts or stops. Hwang et al. [3] proposed
a comfort regenerative braking system (CRBS) that utilizes artificial neural networks to con-
trol vehicle braking. The driving comfort of an autonomous vehicle primarily depends on
its control algorithm. If the passenger’s comfort is initially predicted based on acceleration
and deceleration thresholds, the control strategy algorithm can be adjusted, which helps to
improve the ride comfort of the autonomous vehicle. A numerical analysis of this control
strategy demonstrated its effectiveness in reducing jolting conditions, verifying the CRBS’s
improvement over traditional braking systems. The proposed CRBS provided effective
regenerative braking within the limits and ensured increased passenger driving comfort.
Autonomous vehicles are equipped with sensors and advanced algorithms that can identify
and react to hazards ahead of time, prevent potential collisions, and even proactively avoid
hazards in emergency situations, dramatically improving driving safety. The cardinal
benefit anticipated from advanced vehicle systems is the substantial abatement of both
accident frequency and severity. Indeed, proponents of these technologies champion their
potential to all but eliminate human error—an overarching factor in road mishaps. By
leveraging automation and intelligent interventions, such systems target the very core of
operational vulnerabilities and pave the way for a paradigm shift in traffic safety [4].

The paramount concern within the domain of vehicular safety pertains to collision
prevention on our roads, encapsulated starkly by the grim tally of accidents and colli-
sions [5]. It is projected that AVs hold significant potential to dramatically curtail mishaps
attributable to human fallibility—such misjudgments currently constitute upwards of
90% of total vehicular incidents, encompassing distractions (e.g., smartphone usage), exces-
sive velocity, impaired operation under intoxicants, fatigue, and impulsive judgments [6].
These advancements stand poised not only to precipitously decrease casualties but also
to bolster emergency responsiveness. Notably, AVs outshine human operators in terms of
inter-vehicular communication, boasting superior awareness of fellow road participants’
whereabouts while accurately forecasting their movements. Moreover, they mitigate risks
associated with drowsy driving [7]. Consequently, these autonomous marvels contribute
to life preservation via state-of-the-art avoidance strategies coupled with enhanced crash
mitigation protocols. Underpinning this capability lies their adeptness in monitoring the
surrounding traffic milieu, charting courses via intricate software algorithms, and orches-
trating vehicular maneuvers independently of direct human command. In essence, AVs
harness cutting-edge detection capabilities, navigational prowess, and autonomous action
to redefine vehicular safety standards, thereby heralding a new era of reduced accident
rates and enhanced occupant security [8]. Path planning serves as the foundation of auto-
matic driving, while path following is a crucial technology. By implementing reasonable
path planning and accurate path tracking, road safety can be ensured, traffic accidents can
be avoided, passenger comfort can be maintained, and traffic congestion can be reduced.
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Path planning has received much attention in the study of obstacle avoidance for
autonomous vehicles. Path design for self-driving automobiles must take into account reg-
ulations and road architecture, in addition to impediments. In order to make the planned
path easier for the vehicle to follow, vehicle dynamics, as well as the constraints of the actu-
ating controller, are taken into account at the path-planning level. Local path planning is a
crucial technique for addressing the active safety issues with self-driving cars. Significant
characteristics include excellent computing efficiency and real-time performance. The most
common local path-planning algorithms currently include A*, genetic, ant colony, particle
swarm, and artificial potential field (APF) methods. The potential field is created using
the artificial potential field method based on the potential functions of objectives, road
constructions, and barriers. It moves along the potential field’s downward direction as it
plans the route. The route tracking module then figures out the inputs needed from the
vehicle to track the path. Its low computational cost, even for complicated path planning,
including barriers and road features, is this method’s key benefit over other path-planning
approaches. It benefits from quick searches, tremendous computational power, and simple
modeling. In contrast to other algorithms, the approach is also well suited for active obsta-
cle avoidance in self-driving automobiles [9]. Using the conventional artificial potential
field technique, the vehicular operating landscape is delineated; gravitational pulls and
repulsions contour around impediments, constructing the environmental framework. The
conventional APF-based vehicle active-obstacle avoidance path-planning method does,
however, have some drawbacks. The standard APF-based self-driving vehicle is unable
to obtain information about the state of the world’s roads [10]. An extensive body of
research has been conducted on APF-based path planning and tracking, with the aim of
enhancing obstruction evasion and customizing trajectories for versatile travel demands.
Tang et al. [11] ellipticized the distances in the conventional repulsive potential field. To
address the local minimum problem, An et al. [12] suggested a novel obstacle-point con-
struction approach. To increase the planning path’s smoothness, Xiu Caijing et al. [13]
coupled the vehicle restrictions with the objective function. This strategy, however, was
only able to address the vehicle path-planning problem in static environments; it ignored
the path-planning problem in dynamic environments, making it challenging to use in
XEautomatic driving. The approach is straightforward in theory and performs well in
real-time. In real applications, however, it is simple to run into issues with local optimal
solutions and goal unreachability due to a lack of constraints like vehicle dynamics. The
resilience of the algorithm is impacted by the parameters [14].

By deciding on a strategy to enhance the heuristic of the search and increase the
applicability of the algorithm, Song et al. [15] improved the smart droplet algorithm [16].
Wang et al. offered a technique to provide advice for corrective speed, reducing the
detrimental effects of finite rationality. Jian et al. [17] refined the ant colony algorithm
by combining it with the artificial potential field approach for global and local planning.
To increase the algorithm’s viability, Liu et al. [18] integrated the artificial potential field
method with the composite force field to relocate the sampling sites with a tendency for
collusion to the region of no collusion. In order to overcome the shortcomings of the APF
algorithm, such as its propensity to easily fall into local minima for virtual impediments,
Zheng et al. [19] introduced a new minimal criterion and improved the local path-planning
method. The local minimization problem was resolved by Matoui [20] and colleagues using
a non-minimum speed approach. To solve the local minimization problem brought on by
obstructions near the target, Ning et al. [21] suggested a safe distance. A better active filter
was then used to design an obstacle-avoidance controller.

Path tracking control is a critical technology for self-driving cars, typically imple-
mented through active steering or differential braking [22]. Various methods have been
explored by researchers to address the route tracking problem of self-driving cars, such
as proportional integral differential (PID) control, linear self-resistance control [23], pure
tracking models, fuzzy adaptive control, and model predictive control [24]. However,
the implementation of real-time path tracking faces significant technical challenges under
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complex conditions. This is due to differential braking’s impact on the vehicle’s longi-
tudinal motion, coupled with the inherent complexity and uncertainty in predicting the
path of high-speed vehicles. These factors intertwine to create a demanding environment
for achieving accurate and responsive path tracking. Active steering encounters notable
technical hurdles in complex operational scenarios. Implementing odel predictive control
(MPC) methods offers a solution by significantly enhancing control performance. This
is achieved through the optimization of the objective function, concurrently factoring in
the vehicle’s kinematic and dynamic characteristics. By doing so, MPC not only improves
control efficacy but also ensures that the vehicle’s movement and stability are considered in
the control strategy. To construct predictive control for tracking yaw stability, Zhou Li-Hua
et al. [25] adopted the linear quadratic regulator (LQR) technique. Wu et al. [26] proposed a
new strategy based on MPC and connected vehicles (CVs) for metering and speed guidance
control of urban highway entrance ramps. To achieve adaptive optimization of predictive
views, Wang et al. [27] suggested an MPC-based route tracking method based on variable
predictive views. Morales et al. [28] engineered an omnidirectional system to achieve trajec-
tory tracking, integrating a multilevel control strategy with a Linear Quadratic Regulator
(LQR) trajectory tracking controller. This integration was pivotal to minimizing the error
associated with trajectory tracking. The fundamental rationale and core objective of path
tracking for autonomous vehicles is to drastically diminish the discrepancy between the
actual path taken and the intended route throughout the autonomous driving process.
This precision is crucial for the safe and efficient navigation of driverless vehicles. Pure
tracking control, linear quadratic regulator control, and model predictive control are the
current leading route-tracking control approaches. The core contribution of this research
is to design a path planner that integrates potential field principle and optimal control
strategy to realize the obstacle avoidance function of autonomous vehicles and strictly
follow the vehicle’s dynamic characteristics. This innovative scheme cleverly combines the
advantages of potential field method and optimal path planning, allowing flexibility to
incorporate multiple potential factors when seeking the best path to meet obstacles, road
layout, and vehicle dynamic characteristics. In contrast, the traditional optimal control
path-planning system often only regards obstacles and road edges as limiting conditions or
a single cost function [29–33], which fails to fully reflect the differences between various
obstacles and road structures. Our approach is unique in that it gives the optimal control
problem greater flexibility and pertinence and can be adapted according to the different
characteristics of obstacles and roads. Furthermore, we adopt a quadratic model predictive
controller to deal with obstacle avoidance challenges in two-dimensional space.

The methodological contributions of this paper are as follows: We refine the standard
artificial potential field (APF) method by incorporating a distance adjustment factor, a
safe distance protection model, and a virtual sub-target potential field to resolve target
unreachability and local minimum issues. A dynamic road repulsive potential field, based
on safety distance, optimizes path planning in dynamic environments. The enhanced APF
method, with new models and algorithms, boosts autonomous vehicle obstacle-avoidance
efficiency, safety, and adaptability to dynamic obstacles, crucial for real-world operations.
It improves path planning accuracy, avoids unreachable paths or local optima, and exhibits
superior real-time responsiveness and stability. To design optimal paths, the enhanced
APF method is applied alongside a vehicle dynamics model, based on the bicycle model
principle, linearized and discretized, with a path-tracking model constructed. An optimal
predictive control objective function, constrained by variables, minimizes the control
command’s cost function. Through the co-simulation of MATLAB R2020a/Simulink and
CarSim 2019.1, the lower limit of the roll angle required by the optimized vehicle to avoid
obstacles in 40, 50, and 60 km /h lane changes is reduced from 11 to 5◦ and the upper limit
is reduced from 15 to 10◦. The maximum fluctuation range of the lateral angle is reduced
from 11 to 7◦, while the lateral sideslip angle is reduced by 3 to 5◦. In addition, the vertical
support force of the front and rear wheels increased from 1000 to 1450 N, and the lower
limit of the fluctuation starting point of the vertical support force of the front and rear



World Electr. Veh. J. 2024, 15, 522 5 of 32

wheels increased from 950 to 1100 N. The performance of obstacle avoidance and tracking
is verified under different dynamic obstacle scenarios as well as different speed parameters.

The article structure is as follows:

1. Section 2 details the collision-avoidance system description and framework, and analyzes
autonomous obstacle avoidance and path-planning theory, as well as research based on
the optimization of artificial potential field method for autonomous driving vehicles.

2. In Section 3, the vehicle dynamics model is proposed to provide theoretical support
for the path tracking controller.

3. In Section 4, the tracking control principle of the DLQR algorithm is analyzed.
4. In Section 5, the path-planning algorithm is experimentally verified. In Section 6, the

path-tracking control experiment is analyzed by combining with CarSim–Simulink to
change the speed class in different obstacle scenarios.

2. Path Planning for Autonomous Obstacle-Avoidance Based on an Improved
APF Algorithm
2.1. Collision-Avoidance System Description and Framework

Traffic accidents due to vehicle collisions are common, and collision avoidance systems
aim to prevent such incidents by developing algorithms that avert frontal impacts. The
system implements emergency braking through longitudinal and lateral control, with
lateral maneuvering being more effective in confined spaces because of its shorter reaction
time. With precise calculations and steering adjustments, the automated driving system op-
timizes lateral control and significantly improves driving safety. Our focus is on technology
that instantly senses the environment and makes quick decisions about turning, ensuring
stable and comfortable driving with high adaptability to actual road conditions. The object
of the collision-avoidance framework is to closely follow the predetermined path, generate
a collision-free route, and adapt to changing obstacles. The system consists of virtual envi-
ronment simulation, path control, and collision-free path generation modules. The potential
field method, derived from Khatib’s 1985 theory, uses a virtual force field to plan a path. In
this model, a gravitational force pulls the vehicle towards the target, while a repulsive force
helps the vehicle avoid obstacles. By calculating these gravitational and repulsive forces,
the vehicle’s movement is controlled to avoid obstacles and travel along a safe path. This
method provides rapid feedback, simple mathematical modeling, and closed-loop control,
allowing it to produce a smooth, safe path with considerable robustness.

2.2. Road Potential Field Model

For autonomous driving to be safe, accurately modeling a secure road boundary potential
field function is crucial. It is assumed that the route used by the primary vehicle has two lanes,
as illustrated in Figure 1. On the left and right sides of the road are designated lanes A and B,
respectively, with lane B serving as the primary travel lane and lane A as the overtaking lane.
The road coordinate system’s horizontal and vertical coordinates are x and y, respectively. In
order to avoid a collision and keep the vehicle safe, the main vehicle should overtake any
obstacle vehicles on the road, as shown in Figure 1, in accordance with the design principle
of the active obstacle avoidance system for self-driving vehicles. In order to prevent more
serious traffic collisions, the primary vehicle should also avoid approaching or crossing the
road boundary on either side, keeping within the safe limits of the designated lanes.
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2.2.1. Hazardous Potential Fields at Road Boundaries

The roadway lateral hazard potential field as a function of Px with x-direction is
expressed as [34]:

Px = exp[− (4−|X − 2|) 2] (1)

The longitudinal hazard potential field of the road as a function of the x-direction Pz
is expressed as:

Pz =
exp[−(X − 2)2]

2
(2)

The longitudinal hazard potential field of the road as a function of the y-direction Py
is expressed as:

Py =


0,

|Y−Y0|−Db
Dt−Db

,

1,

|Y − Y0|≤ Db

Db ≤|Y − Y0|
|Y − Y0|≥ Dt

≤ Dt (3)

where (X0, Y0) are the obstacle coordinates, Db is the main vehicle safety distance and Dt is
the transition region. The function Ur of the road hazard potential field is expressed as:

Ur = Px + PyPz (4)

The expression for the lateral repulsion of the road is:

Frx =



2sign(X − 2)(
∣∣∣X − 2

∣∣∣−4) exp[− (|X − 2|−4) 2],

(
4 exp[− (|X−2|−4) 2]sign(X−2)(

∣∣∣X−2
∣∣∣−4)(Dt−Db)

2(Dt−Db)

+
exp[−(X−2)2](

∣∣∣Y−Y0

∣∣∣−Db)(2X−4)

2(Dt−Db)
),

(2sign(X − 2)(
∣∣∣X − 2

∣∣∣−4) exp[− (|X − 2|−4) 2]

+ exp[−(X − 2)2](X − 2)),

|Y − Y0|≤ Db

Db ≤|Y − Y0|≤ Dt

|Y − Y0|≥ Dt

(5)

The expression for the longitudinal repulsive force on the pavement is:

Fry =

{
−sign(Y−Y0) exp[−(X−2)2]

2(Dt−Db)
, Db ≤|Y − Y0|≤ Dt

0, else
(6)

The attraction potential field expression Uatt is:

Uatt =

∣∣X − Xr
∣∣+ ∣∣Y − Yv − 1

2 Ds
∣∣

100
(7)

where Ds denotes the distance range of the vehicle’s forward path search and Xr denotes
the center line of the overtaking lane. Yv is the longitudinal position of the center of mass
of the main vehicle in the coordinate system.

The roadway lateral gravitational force expression Fxatt is:

Fxatt =
−sign(X − Xr)

100
(8)

The roadway longitudinal attraction expression Fyatt is:

Fyatt =
−sign(Y − Y0 − 1

2 Ds)

15
(9)
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2.2.2. Safe Distance Protection Model

Vehicle braking, steering, and road structural parameters need to be taken into account
when building the obstacle vehicle potential field. Additionally, it is crucial to guarantee
that the primary vehicle has enough time to make decisions regarding steering behavior
and high stability when performing active obstacle avoidance maneuvers.

For active obstacle avoidance, it is therefore important to make sure that the safety
distance Db and transition distance Dt are at least [35]:

Db =
M(v1

2 − v2
2)

8Fm
+

L1

2
(10)

Dt = Db + 10 (11)

where v1 and v2 are the initial speeds of the main vehicle and the obstacle vehicle on the
road, respectively, Fm is the maximum braking force of one wheel, M is the total mass of
the main vehicle, and L1 is the length of the body of the obstacle vehicle.

2.3. Classical Artificial Potential Field Method
2.3.1. Target Point Gravitational Field

Figure 2a shows the traditional artificial potential field method’s gravitational field function:

Uatt =
1
2

Katt(X − Xg)
2 (12)

where X represents the autonomous vehicle’s position, Uatt stands for the gravitational
potential at the goal point, Katt denotes the positive real scalar describing the field’s gain,
and Xg indicates the aimed-at position of the autonomous car. Herein lies the determination
of the gravitational potential field’s negative gradient:

Fatt = −grad(Uatt) = k(Xg − X) (13)
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Figure 2. APF three-dimensional potential field. Figure (a) shows the attractive potential field of the
target point. Figure (b) shows the repulsive potential field of the static obstacle. Figure (c) shows the
repulsive potential field of the dynamic obstacle.

2.3.2. Obstacle Vehicle Repulsion Field

According to Figure 2b, static obstacle repulsive potential field and Figure 2c, dynamic
obstacle repulsive potential field, the specific potential field function of the natural potential
field of repulsive force can be expressed as follows [36]:

Urep =

{
1
2 krep(

1
D − 1

D0
)

2
D ≤ D0

0, D > D0
(14)



World Electr. Veh. J. 2024, 15, 522 8 of 32

where Urep is the obstacle vehicle repulsive force field; krep is the repulsive potential field
gain coefficient, a positive real number; D is the straight line between the car and the
obstacle vehicle (shortest distance); D0 is the obstacle vehicle repulsive force that can affect
the maximum range.

Frep =

{
krep(

1
D − 1

D0
) 1

D2
δD
δX , D ≤ D0

0, D > D0
(15)

2.4. Optimization of the Artificial Potential Field Method
2.4.1. Boosted Repulsive Field Function: Distance Adjustment Enhanced

An advanced repulsive potential field function is devised from the baseline model,
characterized by an increased distance adjustment parameter to diminish repulsive forces
near the destination. This innovation counteracts the inherent limitation preventing target
acquisition in classic artificial potential field methodologies. Following is the presentation
of this optimized function:

Urep =

{
1
2 krep(

1
D − 1

D0
)

2
[1 − exp (X−Xg)

2+(Y−Yg)
2

R2 ], D ≤ D0

0, D > D0
(16)

where [X, Y] are the autonomous vehicle’s real-time coordinate points; [Xg, Yg] are the
coordinates of the target point; and R is the radius of the autonomous vehicle.

The repelling force of the obstacle vehicle’s potential field can be determined by:

−U′
rep(x) = −krep(X − Xg)(

1
D

− 1
D0

)
2

exp[
(X − Xg)

2 + (Y − Yg)
2

R2 ] + krep(
1
D

− 1
D0

)[1 − exp(
(X − Xg)

2 + (Y − Yg)
2

R2 )]
X − X0

D3 (17)

−U′
rep(Y) = −krep(Y − Yg)(

1
D

− 1
D0

)
2
+ krep(

1
D

− 1
D0

)[1 − exp(
(X − Xg)

2 + (Y − Yg)
2

R2 )]
Y − Y0

D3 (18)∣∣∣∣Frep

∣∣∣∣= √U′
rep(X)2 + U′

rep(Y)
2 (19)

From Equations (3) and (16), adjustments to the repulsive potential occur exclusively
close to the destination, yet the improved approach can hinder the search algorithm’s
efficiency [37]. Therefore, in this paper, the repulsive force is improved, i.e., the distance
adjustment factor is added to the original repulsive force. The repulsive force formula is:

|Frep| =
{

krep
D2 (

1
D − 1

D0
)[1 − exp( (X−Xg)

2+(Y−Yg)
2

R2 )], D ≤ D0

0, D > D0
(20)

Through Equation (16), the repulsive potential field gains strength; consequently,
the vehicle’s repulsive force decays toward nil at the destination, factoring in the car’s
radius to elevate both route dependability and security. The improved potential field
function addresses the target unreachability issue commonly found in traditional potential
field methods, while also mitigating extreme values of the repulsive force and preventing
scenarios with excessive repulsion.

2.4.2. Sub-Target Virtual Point Intervention

After confirming that the primary vehicle is trapped in a local minimum, the decision
of the virtual target point’s position must be taken into account. First, care must be taken
to prevent the inclusion of this point from causing it to mix with the gravitational or
repulsive force and imprison the primary vehicle once more in the local minima. Second, in
accordance with the design principles of the active obstacle avoidance system, the primary
vehicle should attempt to maintain the center line of the lane during actual driving. In
other words, the main vehicle should preferentially reach the center of the neighboring
lane when engaging obstacle avoidance behavior. As a result, lane B’s centerline should
be set at point P1’s horizontal coordinate X1. When the main vehicle enters a localized
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minimal point, point P1 should also guarantee that it can be subjected to a significant
attractive potential energy. Figure 3 shows that the primary vehicle can then successfully
execute active obstacle avoidance and quickly escape the local minima. In conclusion,
the virtual target point’s coordinates are set as P1(X1, Y0+Yv

2 ), and then, using the spatial
geometric relationship, the minimum distance between the virtual target point P1 and the
main vehicle’s center of mass is calculated as:

dmin =

√
(Xv − X1)

2 + (Yv −
Y0 + Yv

2
)

2
(21)
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2.4.3. Sub-Target Virtual Potential Field Attraction Function

To ensure that the newly introduced virtual target point may successfully address the
local minima problem, we provide an appropriate attractive potential field function. This
feature must be able to rapidly activate and operate as the main influencing factor in the
event that the main vehicle is trapped in the local minima. The gravitational potential field
function of the sub-target is as follows:

Uvir =
1
2

Kvird2
min (22)

where Kvir is the field gain coefficient for the attraction potential.
The gravitational potential field’s negative gradient Fvir is the associated potential

field force. In order to express the second virtual target gravitational potential field force
F bundle, the following functions are used:

Fvir = −∇Uvir = −Kvirdmin (23)

The host vehicle was pointed in the direction of the second virtual potential field force.
Once the issue of becoming trapped at the minimum point is resolved and the obstacle
vehicle is successfully avoided, the virtual target point is then deactivated. Environmen-
tal elements such as road margins, fixed obstructions, and moving obstructions will be
considered in this effort by creating relevant potential functions. The exclusion potential
function is used to determine the collision risk in order to prevent a collision between the
self-driving vehicle and road edges and objects.

The self-driving vehicle is traveling on a straight, two-lane road, and the total potential
field of the potential function consists of the potential field values of the road edges,
obstacles, and target points. Figure 4 presents a 2D contour plot of the generic potential
showing the collision-free trajectory of the vehicle’s path planning.

The total potential field function can be expressed as:

Utotal =
n

∑
i=1

Uri + Urep + Uatt (24)

When the self-driving vehicle is caught in the local minima environment during
driving, the sub-target virtual potential field triggers and intervenes in the controller
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system to help the self-driving vehicle escape from the local optimum, at which time the
potential function can be expressed as:

Ftotal =
n

∑
i=1

Fri + Frep + Fatt (25)

When the self-driving vehicle is caught in the local minima environment during
driving, the sub-target virtual potential field triggers and intervenes in the controller
system to help the self-driving vehicle escape from the local optimum, at which time the
potential function can be expressed as:

Utotal =
n

∑
i=1

Uri + Urep + Uatt + Uvir (26)

The potential field is rationally represented as:

Ftotal =
n

∑
i=1

Fri + Frep + Fatt + Fvir (27)
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3. Vehicle Dynamics Modeling
3.1. Conditional Assumptions

Vehicle dynamics modeling’s fundamental premise is to investigate the relationship
between each object’s relative motion and mechanical properties in order to give accurate
control of the vehicle during path tracking. The actual modeling technique makes the
following assumptions in order to streamline the algorithm’s solution procedure and
improve path tracking efficiency:

1. Exceptional road quality enables the vehicle to execute motion confined to a plane,
parallel to the road surface, in pure two-dimensional dynamics;

2. Given the rigidity of the vehicle, considerations for suspension system impacts
are omitted;

3. The left and right wheel angles do not alter when the vehicle rotates with the
front wheels;

4. How the vehicle tires are coupled longitudinally and laterally is not taken into account;
5. The impact of aerodynamics is disregarded;
6. The transfer of the vehicle load is disregarded;
7. In order to streamline the study, the bicycle model is created while taking into account

the characteristics of the reference path, as illustrated in Figure 5.
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3.2. Vehicle Kinematics Modeling

Vehicle kinematics modeling can be expressed as Equations (28)–(31):

.
X = v cos φ (28)

.
Y = v sin φ (29)

since the formula: .
φ = v

R

tan θ = L
R

(30)

So there is:
.
φ =

v tan θ

L
(31)

where θ is the front wheel angle, L is the vehicle wheelbase, and R is the turning radius.

3.3. Simplified Model of Vehicle Dynamics

Despite its tracking accuracy at low speeds in smooth conditions, the vehicle’s kine-
matics model can be challenging to use to execute path tracking when the vehicle’s speed
increases and the path curvature varies. The nonlinear vehicle dynamics model calculation
is too difficult. The tiny angle assumption, which turns each angle in the model into an
ideal condition, is presented to lessen the burden of data processing. In this case, a vehicle
dynamics model that considers the vehicle’s tire characteristics and dynamic effects must
be developed in order to accurately track the reference path. It is assumed that the vehicle’s
front wheel rotates at a small angle and that the longitudinal velocity is constant. The
small-angle hypothesis approximates as follows:

sin θ ≈ 0 (32)

cos θ ≈ 1 (33)

tan θ ≈ 0 (34)

By invoking Newton’s principles of force, we derive the dynamic expressions govern-
ing the vehicle’s behavior:

may = Fy f cos θ + Fyr (35)

The moment equation is:

Fy f cos θ · a − Fyr · b = I
..
φ (36)

where a and b are the distance from the front and rear tires to the center of gravity of the
vehicle, respectively.
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The relationship between ay and y is:

vy =
.
y

ay =
..
y + vx

.
φ

(37)

Ff = Cα f · α f
Fr = Cαr · αr

(38)

where Cα f and Cαr are the lateral deflection stiffness of the front and rear tires, respectively.
The lateral deflection stiffness is expected to be negative, with the theoretical knowledge of
the car and vehicle dynamics related to knowledge of coordinate systems in line with the
cognitive logic of physics.

The front and rear wheel side deflections are calculated as:

αα f =
.
φ·a+vy

vx
− θ

ααr =
vy−

.
φ·b

vx

(39)

The front and rear side deflection forces are:

Ff = Cα f · (
.
φ·a+vy

vx
− θ)

Fr = Cαr · (
vy−

.
φ·b

vx
)

(40)

By substituting (31) and (34) into Equation (29), we obtain:

m(
.
vy + vx ·

.
φ) = Cα f (

.
φ · a + vy

vx
− θ) + Cαr(

vy −
.
φ · b

vx
) (41)

By substituting (34) into Equation (30), we obtain:

I
..
φ = a · Cα f (

.
φ · a + vy

vx
− θ)− b · Cαr(

vy −
.
φ · b

vx
) (42)

From vy = y, substituting into Equations (6), (7), (15), and (16) accordingly outline the
vehicle’s lateral state space model, defining it comprehensively:( ..

y
..
φ

)
=

 Cα f +Cαr
mvx

a·Cα f −b·Cαr
mvx

− vx

a·Cα f −b·Cαr
Ivx

a2·Cα f +b2·Cαr
Ivx

 ·
( .

y
.
φ

)
+

−Cα f
m

−Cα f
I

 · θ (43)

4. Path Tracking for Autonomous Vehicles Based on DLQR Control Algorithm
4.1. Path Tracking Control Architecture

Despite the vehicle kinematics model’s high tracking accuracy at low speeds in smooth
conditions, the dynamics model of an autonomous vehicle reveals that both feed-forward
control and feedback are essential to handle high-speed or complex driving scenarios. To
generate the proper steering angle for the self-driving car, the DLQR control approach
is employed. In an autonomous driving system, combining feed-forward control with
DLQR (Discrete Linear Quadratic Optimal Regulator) control can give full play to the
advantages of both. Feed-forward control can be used to predict and compensate for
deviations due to external interference or system uncertainty, while DLQR control can
be used to optimize vehicle trajectory and speed. In practical applications, feed-forward
control is often designed as an additional control that is added to the output of the DLQR
controller. In this way, the DLQR controller is responsible for providing the basic control
signal, while the feed-forward controller is responsible for providing additional control
signals that compensate for the predicted deviation for optimal driving performance. In
order to lessen the disturbances caused by path curvature, the controller makes use of the
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reference path’s preview information. Conversely, the LQR algorithm exhibits a superior
adaptability to fluctuations in longitudinal speed during course adherence. Its design is
geared towards mitigating the real-time lateral deviation and directional discrepancies
precipitated by external perturbations, thereby ensuring a more robust and responsive
control mechanism. Figure 6 depicts the control model framework.
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4.2. Calculation of Error Parameters

The closest planning point to the true motion point is found by traversing the planning
path points such that the sequence of points is denoted as Dmin.

xr
yr
θr
kr

 =


x1 x2 · · · xn
y1 y2 · · · yn
θ1 θ2 · · · θn
k1 k2 · · · kn

 (44)

Then the tangential unit vector and the normal unit vector are:

→
τ =

(
cos(θDmin)
sin(θDmin)

)
,
→
η =

(
− sin(θDmin)
cos(θDmin)

)
(45)

The distance error is:

derr =

(
x − xDmin
y − yDmin

)
(46)

where (x, y) is the true motion point and (xDmin, yDmin) is the traversal matching point-normal
distance error and tangential distance error, respectively:

ed =
→
η

T
· derr , es =

T →
τ

T
· derr (47)

The angle between the velocity of the planned path point and the x-axis is:

θr = θmin + kDmin · es (48)

The normal distance error rate is:

.
ed = vy cos(φ − θr) + vx sin(φ − θr) (49)

The vehicle’s transverse angle error is:

eφ = φ − θr (50)
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The vehicle’s transverse swing angular velocity error is:

.
S =

vx cos(φ−θr)−vy sin(φ−θr)
1−kDmined

.
eφ =

.
φ − kDmin ·

.
S

(51)

The curvature of the planning path points is:

kr = kDmin (52)

In summary, the error vector of the lateral error differential equation can be obtained as:

err = [ed,
.
ed, eφ,

.
eφ] (53)

The component of the velocity in the y-direction and the acceleration are:

vy =
.
ed − vxeφ

.
vy =

..
ed − vx

.
eφ

(54)

The vehicle’s transverse swing angular velocity and acceleration are:

.
φ =

.
eφ +

.
θr

..
φ =

..
eφ

(55)

Substituting the above Equations (45)–(53) into the differential equation for the
two-degree-of-freedom dynamics, the differential equation for the transverse error is
obtained as:

vy = (
Cα f + Cαr

mvx
)

.
ed + (−

Cα f + Cαr

m
)eφ + (

aCα f − bCαr

mvx
)

.
eφ + (

aCα f − bCαr

mvx
− vx)

.
θr + (−

Cα f

m
)δ f (56)

..
eφ ≈ ..

φ = (
aCα f − bCαr

Ivx
)

.
ed + (−

aCα f − bCαr

I
)eφ + (

a2Cα f + b2Cαr

Ivx
)

.
eφ + (

a2Cα f + b2Cαr

Ivx
)

.
θr + (−

aCα f

I
)δ f (57)

Written in matrix form, this becomes:


.
ed
..
ed
.
eφ
..
eφ

 =


0 1 0 0

0
Cα f +Cαr

mvx
−Cα f +Cαr

m
aCα f −bCαr

mvx

0 0 0 1

0
aCα f −bCαr

Ivx
− aCα f −bCαr

I
a2Cα f +b2Cαr

Ivx




ed
.
ed

eφ
.
eφ

+


0

−Cα f
m

0

− aCα f
I

δ f +


0

(
aCα f −bCαr

mvx
− vx)

0

(
a2Cα f +b2Cαr

Ivx
)


.
θr (58)

4.3. Feed-Forward Control

Aiming squarely at accuracy, the refined optimal feed-forward controller targets
elimination of lateral discrepancies induced by curved paths. In order to achieve this
goal, the algorithm cleverly introduces the preview information of path curvature, which
is key data that can be accurately obtained directly from the pre-planned path, so as to
ensure the efficiency and accuracy of the controller when dealing with complex paths. The
feed-forward control can be defined as δ f a, expressed as Equations (59) and (60).

δ f a =

.
θr

vx
[a + b − b · k3 −

m · vx

a + b
(

b
C f

+
a

Cr
k3 −

a
Cr

)] (59)

.
S =

vx cos eθ − vy sin eθ

1 − Ked
(60)
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The defining equation for the curvature K is:

K =

..
y

(1 +
.
y)

3
2
=

.
θ
.
S

(61)

It is obtained from the defining equation of K:

.
θr = K

.
S (62)

Since the expression is too complex, it is approximated here as |K|≪ 1, |eθ|≪ 1,
∣∣Vy
∣∣≪ 1

in a drift-free state. .
θr = K ·

.
S ≈ K · vx (63)

Thus, substituting the above Equation (61) into Equation (57), we obtain:

δ f a = K[a + b − b · k3 −
m · vx

a + b
(

b
C f

+
a

Cr
k3 −

a
Cr

)] (64)

where δ f a is feed-forward control Angle input, k3 is the third element of the K-matrix
calculated by the feedback control module, vx is the constant longitudinal velocity, m is the
mass, and a, b are the distances from the hub centers of the vehicle’s front and rear wheels
to the center of mass, respectively. The vehicle’s front and back wheels’ lateral deflection
stiffnesses are represented by the values C f and Cr, respectively.

The feed-forward control input is f. External perturbations hinder the controller’s
ability to sustain negligible lateral deviation. In order to reduce the lateral error, it is
important to develop an external disturbance feedback controller.

4.4. Forecasting System

Because the vehicle motion comes with inertia effects, the steering control has a lag, so
it is necessary to add a prediction module to improve the vehicle motion lag to improve the
vehicle predictive performance.

The vehicle prediction position point is:

xpre = x + vxts cos φ − vyts sin φ (65)

ypre = y + vyts cos φ + vyts cos φ + vxts sin φ (66)

The vehicle is predicted to have a transverse swing angle of:

φpre = φ +
.
φts (67)

Vehicles are predicted to have a speed of:

vxpre = vx, vypre = vy,
.
φpre =

.
φ (68)

4.5. Optimal DLQR Control

Tasked with aligning paths by compensating for lateral errors induced by disruptions,
the DLQR controller operates under an assumption of steady forward speed. The vehicle’s
state-space error dynamics are modeled as:

.
err = A · err + B · u (69)

where err = [ed,
.
ed, eφ,

.
eφ], u is the feedback steering control command. With the LQR

controller utilizing discrete digital inputs and a 0.01-s sampling period, the state space
representation requires discretization using Euler’s technique.
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Hence, expressing the DLQR’s discrete model for lateral error dynamics yields:

err(k + 1) = A · err(k) + B · u(k) (70)

The optimal steering control command may be expressed as:

u(k) = −K · err(k) (71)

where K is the optimal control gain and K is expressed as Equation (32):

K = (R + BT PB)
−1

BT PA (72)

Minimizing the constrained control command’s objective cost function via Equation (71),
and ascertaining matrix P through the algebraic Riccati equation, Equation (72).

J =
+∞

∑
k=0

(xT
k Qxk + uT

k Ruk) (73)

P = Q + AT PA − AT PB(R + BT PB)
−1

BT PA (74)

Q =


q1 0 0 0
0 q2 0 0
0 0 q3 0
0 0 0 q4

 (75)

The elements on the diagonal matrix correspond to the weights of different state and
control quantities: the larger the weights, the more importance we attach to the quantity,
i.e., we hope that the quantity will maintain a smaller value during the change process, in
other words, the larger the “penalty” for the quantity. Q is the diagonal state cost matrix,
which features optimization minimization performance; R = [15] is the input cost matrix,
which represents the control realization minimization. Steering parameters, under this
methodology, are set as follows: q1 = 25, q2 = 3, q3 = 10, q4 = 4.

From the transverse error differential equation, the matrix A, B is:

A =


0 1 0 0

0
Cα f +Cαr

mvx
−Cα f +Cαr

m
aCα f −bCαr

mvx

0 0 0 1

0
aCα f −bCαr

Ivx
− aCα f −bCαr

I
a2Cα f +b2Cαr

Ivx

, B =


0

−Cα f
m

0

−Cα f
I

 (76)

Matrices A and B are only related to vx, dlqr = (A, B, Q, R), the larger Q is, the better
the accuracy, but poor stability is a factor. The larger R is, the smoother the motion process
is, the better the comfort and safety, but the tracking effect is poor, so the values of Q and R
should be weighed. Finally, the steering angle input is as follow:

δ f = δ f a + uk (77)

5. Simulation Verification of Optimized APF-Based Autonomous Vehicle Path Planning
for Obstacle Avoidance
5.1. Experimental Parameter Presetting

This study simulates the path planning of autonomous vehicles both before and
after the artificial potential field method has been improved. The test road is first chosen
as a two-lane road. Each lane will be 3.5 m wide, with a total length of 100 m. The
self-driving car’s starting point is (0, 2), and its destination position is (100, 2). Additionally,



World Electr. Veh. J. 2024, 15, 522 17 of 32

two dynamic obstacle vehicles with initial positions of (45, 1.75), (60, −1.75), and matching
speeds of 15 and 20 km/h are set up for simulation testing.

5.2. Simulation Experiment Analysis

When the obstacle vehicle is moving faster than the rear main vehicle, which is
assumed to be moving normally in the traffic lane traveling at 60 km per hour, the space
between the two vehicles narrows until it is less than the predetermined safety distance.
A reasonable gravitational potential field of the sub-target virtual point is generated by
adding the sub-target virtual point, which provides a sub-target virtual point of attraction
for the main vehicle that falls into the local minima and local oscillations, allowing it to
escape from the issue of local minima and local oscillations. As a result, the preset vehicle
safety and transition distance cannot completely eliminate the risk of falling into the local
minima. The simulation results are as follows: In Figure 7a–c, the autonomous vehicle
initiates its journey from the starting point at a steady pace, deftly navigating past the
moving obstacle, vehicle 1, under the guidance of the composite potential field, thereby
successfully executing an obstacle-avoidance maneuver with elegance and precision. And
while the dynamic obstacle vehicle 2 drives, it progressively changes course to prepare
for the subsequent lane change. Due to the influence of the composite potential field (as
shown in Figure 7c–e), the autonomous vehicle changes lanes earlier, overtakes from the
same lane, successfully avoids the dynamic impediment vehicle 2, and travels smoothly to
the target position.
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5.3. Conclusion of the Simulation Experiment

The simulation findings accurately represent the precision of the algorithm and show
that self-driving cars are capable of avoiding hazards, changing lanes, and overtaking
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in dynamic conditions. The enhanced artificial potential field approach increases the
speed and degree of path smoothing while also improving the accuracy of the planned
paths to suit the actual situation’s stability requirements. The increased artificial potential
field method used in this work can therefore yield computations with more accuracy
and applicability.

6. Joint CarSim and Simulink for Path Tracking Experiment Simulation
6.1. Joint Simulation Platform

The utilization of co-simulation platforms in the realm of autonomous driving has
emerged as a prevalent approach. In this study, leveraging a multi-software co-simulation
environment, we have developed an enhanced DLQR path-tracking controller grounded
in vehicle dynamics. This controller enables the autonomous vehicle to adeptly follow its
intended path in both medium- and high-speed traffic scenarios. To evaluate the obstacle
avoidance capabilities and safety stability of this optimized DLQR controller, we have
employed the reference path derived from an advanced artificial potential field method.
This method was used to rigorously test the controller’s performance across a spectrum
of obstacle configurations and varying speed parameters, ensuring its robustness and
reliability in real-world conditions.

6.2. Tracking Control Algorithm Architecture

The self-driving car’s body specifications and characteristics are first built up in
CarSim. Figure 8 and Table 1 display the characteristics and body measurements.
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Table 1. Vehicle parameters.

Parameter Value Unit

Mass above suspension 1020 kg
Animator’s canvas width 1718 mm

Inertia against yaw motion 1020 Kg·m2

Axle base 2330 mm
Wheel center elevation 310 mm

Elevation of the center of gravity 375 mm

The simulation conditions are specified when the entire vehicle’s dimensions and
parameter data have been configured in CarSim, and the CarSim parameter model is
then transmitted to Simulink via an external interface. Currently, the route tracking joint
simulation control model, which can perform joint simulation with input parameters, is
made up of the Simulink control algorithm module and the CarSim parameter configuration
module. Figure 9 displays the joint simulation control model for path tracking.
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Subsequently, a vehicle dynamics model based on the bicycle model is built, in order
to validate the viability and path planning impact of the enhanced APF based on the safe
distance protection model under the specified road conditions. The related constraint
variables are set to minimize the objective cost function of the control commands under
the constraints by linearizing and discretizing the model and creating the best objective
function for controlling the path-tracking model. Through joint simulations in MATLAB,
the embedded Simulink model, and CarSim, the main vehicle’s active obstacle avoidance
behavior is tested across various obstacle scenarios and various initial velocity parameters,
to ensure the obtained active obstacle avoidance paths meet the actual vehicle’s dynamics
and kinematics, as well as the requirements for safety and stability.

6.3. Visual Analysis of Obstacle Avoidance Simulation in Different Obstacle Scenarios Before and
After Optimization by Artificial Potential Field Method
6.3.1. Visual Analysis Before and After Optimization

In the comprehensive study shown in Figure 10, we comprehensively compared
and analyzed the performance differences between the traditional Artificial Potential Field
(APF) method and the optimized artificial potential field method in generating autonomous
navigation paths and effectively avoiding obstacles. As an intuitive experimental compar-
ison, this figure not only reveals the limitations and potential of the two methods in the
field of vehicle path planning, but also clearly shows the path comparison before and after
optimization, highlighting the significant advantages of the optimized APF algorithm.
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In Figure 10, the defects of the traditional APF algorithm (depicted by the dark
blue trajectory) are vividly revealed. When approaching the target area, the obstacle
avoidance path of the intelligent vehicle continues to oscillate, falling into the so-called
“local minimum trap”, which makes the vehicle unable to reach the destination successfully
even after multiple attempts. In addition, the path also has obvious shortcomings in safety,
stability and smoothness. It is too close to the obstacle, which increases the risk of collision.
Path instability, manifested as sudden changes in direction, may cause mechanical stress
to the agent and threaten system reliability. Additionally, sharp turns and discontinuous
movements along the path negatively affect the motion efficiency and energy consumption
of the agent.

In contrast, the performance of the optimized APF algorithm (shown in light blue) is
remarkable. It successfully generates a safe and stable path that guides the agent through
a complex environment to reach the goal point efficiently and smoothly. The optimized
path significantly improves its safety and maintains the safe distance between the agent
and its obstacles. It enhances the path stability, avoids unnecessary direction mutation, and
reduces the mechanical stress. At the same time, the smoothness of the path is optimized,
sharp turns and discontinuous motion are avoided, the motion efficiency of the agent is
improved, and energy consumption is reduced.

Through the intuitive comparison in Figure 10, we deeply understand the superiority
of the optimized APF algorithm in the field of path planning, which not only solves
the key limitations of traditional methods but also significantly improves the navigation
ability of intelligent vehicles in complex environments, opening up new prospects for the
development of autonomous navigation technology.

6.3.2. The Obstacle Avoidance Performance of the Algorithm Is Visually Verified in the
Mixed Scene of Dynamic and Static Obstacles

As shown in Figure 11a, the yellow main vehicle is in the travel lane, beginning from
the white starting point at a constant speed of 40 km/h. The blue vehicle is a stationary
obstacle, located in the travel lane of the red obstacle vehicle with an initial speed of
20 km/h, and accelerating at 2.5 m/s2. The yellow vehicle is located in the travel lane,
when the vehicle visual detection and LiDAR feedback to the front of the blue stationary
obstacle vehicle triggers the collision-avoidance system to improve the APF algorithm to
make timely decisions, tracking the first section of the planned overtaking path to avoid
the blue stationary obstacle vehicle, as shown in Figure 11b. At this time, when traveling to
the overtaking lane, the vision and radar again feed back information about the existence
of a slow-moving dynamic obstacle vehicle (red). At this time, the distance between the
yellow vehicle and the red in front of it is lessening, once again triggering the collision-
avoidance system to improve the APF algorithm, tracking the second section of the planned
overtaking path to avoid the red dynamic obstacle vehicle 1 located in the overtaking lane,
then returning to the traveling lane. As shown in Figure 11c, after passing the red obstacle
vehicle 1 located in the overtaking lane, the scene detection system feeds back that there is
another red dynamic obstacle vehicle in front of it, and that the vehicle is accelerating. The
yellow main vehicle is still larger than the red obstacle vehicle in front of it, but the distance
between them is shrinking, and, at this time, tracking the third section of the planned
overtaking path to avoid the red dynamic obstacle vehicle 2, located in the traveling lane
(Figure 11d), it finally successfully avoids all stationary and moving obstacle vehicles to
successfully reach the target point. Compared with Figure 10 in Section 6.3, it is verified
that the autonomous obstacle avoidance path planned by the optimized artificial potential
field method and controlled by the DLQR tracking algorithm can meet the dynamics and
kinematics requirements of the actual vehicle, and meet the requirements of steering safety,
stability, and smoothness.
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6.4. Simulation Data Analysis Before and After Optimization of Tracking Control Under Different
Speed Parameters

When the discrete LQR algorithm is applied to lateral overtaking control, higher steering
speeds may increase the risk of loss of control or sideslip of the vehicle during cornering. Fast
steering maneuvers may lead to unstable vehicle maneuvers, especially at high speeds, where
the system may over-respond or oscillate and thus lose stability, and the vehicle may also cause
excessive impacts when executing overtaking maneuvers, due to the fact that, at high speeds,
the inertia and dynamics of the vehicle may lead to greater lateral forces and accelerations,
making the overtaking maneuvers more drastic and unstable. Overtaking control at high speeds
requires more precise control of the system. Excessive speed may make it difficult for the
controller to accurately track and adjust the position and trajectory of the vehicle. Overtaking
needs to take into account the position, speed, and acceleration of the vehicle in front of it to
ensure that the overtaking maneuver is completed safely. Excessive speed may make overtaking
more dangerous and increase the risk of collision with other vehicles.

Therefore, when applying the discrete LQR algorithm to lateral-overtaking control, the
dynamic tracking control performance of the system needs to be verified at different speeds,
balancing the relationship between speed parameters and system stability, and appropriately
selecting the appropriate speed range to ensure the stability and safety of the lateral overtaking
operation. Through the joint simulation of the CarSim parameter configuration and the Simulink
algorithm control module, the DLQR algorithm based on different initial speeds is implemented
to track the obstacle avoidance trajectory planned in different visual scenes before and after the
above optimization. The simulation and data comparisons of vehicle steering angle, vehicle
yaw angle, and vertical steering forces of front and rear wheels over time were obtained under
different speeds before and after optimization. This analysis assesses whether the lateral control
of the vehicle can meet the requirements of the actual vehicle dynamics and kinematics, as well
as the necessary standards for steering safety and stability.
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6.4.1. Comparison of Experimental Values Before and After Vehicle Lateral Steering
Angle Optimization

Vehicle lateral steering angle optimization refers to changing the lateral movement of
the vehicle by changing the lateral steering angle of the front wheel when overtaking to
avoid obstacles, which can reflect the stability and controllability of the vehicle-tracking
controller in ensuring that the vehicle can smoothly and safely travel along the planned
trajectory. Figures 12a–c and 13a–c show the numerical analysis of the variation of the
lateral steering angle of the vehicle over time, before and after optimization, respectively,
obtained from the vehicle tracking controller’s driving experiment along the planned
obstacle avoidance trajectory at speeds of 40, 50 and 60 km/h.

The comparison of experimental values before and after optimizing the lateral steering
angle is shown in Table 2. By comparing the data in Figure 12a–c with those in Figure 13a–c,
it is evident that the variation amplitude of the lateral angle of the controller vehicle after
optimization is smaller than that of the vehicle before optimization, and the tracking and
control performance of the reference path is improved at different speeds. Under the three
speed conditions, the fluctuation range of both maximum steering angle and steering
angle change rate is reduced after optimization, with the angle change range at 60 km/h
being smaller than at 40 and 50 km/h. The lateral control of the vehicle shows improved
lane-changing performance. The variation amplitude of the optimized lateral angle data
demonstrates that the lateral control performance of the vehicle is better during lane change
and overtaking. The optimized controller enables the vehicle to turn to the corresponding
angle more quickly, without delay and hysteresis. The vehicle can achieve a small steering
radius and greater stability during the steering process, so that the vehicle can maintain
stability and avoid sideslipping, loss of control, or instability. Consequently, the optimized
vehicle tracking controller provides better grip and handling stability during high-speed
or sharp turns and lane changes, speeding and tightening rotation and improving the
vehicle’s maneuverability.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 23 of 36 
 

to the fact that, at high speeds, the inertia and dynamics of the vehicle may lead to greater 
lateral forces and accelerations, making the overtaking maneuvers more drastic and 
unstable. Overtaking control at high speeds requires more precise control of the system. 
Excessive speed may make it difficult for the controller to accurately track and adjust the 
position and trajectory of the vehicle. Overtaking needs to take into account the position, 
speed, and acceleration of the vehicle in front of it to ensure that the overtaking maneuver 
is completed safely. Excessive speed may make overtaking more dangerous and increase 
the risk of collision with other vehicles. 

Therefore, when applying the discrete LQR algorithm to lateral-overtaking control, 
the dynamic tracking control performance of the system needs to be verified at different 
speeds, balancing the relationship between speed parameters and system stability, and 
appropriately selecting the appropriate speed range to ensure the stability and safety of 
the lateral overtaking operation. Through the joint simulation of the CarSim parameter 
configuration and the Simulink algorithm control module, the DLQR algorithm based on 
different initial speeds is implemented to track the obstacle avoidance trajectory planned 
in different visual scenes before and after the above optimization. The simulation and data 
comparisons of vehicle steering angle, vehicle yaw angle, and vertical steering forces of 
front and rear wheels over time were obtained under different speeds before and after 
optimization. This analysis assesses whether the lateral control of the vehicle can meet the 
requirements of the actual vehicle dynamics and kinematics, as well as the necessary 
standards for steering safety and stability. 

6.4.1. Comparison of Experimental Values Before and After Vehicle Lateral Steering 
Angle Optimization 

Vehicle lateral steering angle optimization refers to changing the lateral movement 
of the vehicle by changing the lateral steering angle of the front wheel when overtaking 
to avoid obstacles, which can reflect the stability and controllability of the vehicle-tracking 
controller in ensuring that the vehicle can smoothly and safely travel along the planned 
trajectory. Figure 12a–c, and Figure 13a–c show the numerical analysis of the variation of 
the lateral steering angle of the vehicle over time, before and after optimization, 
respectively, obtained from the vehicle tracking controller’s driving experiment along the 
planned obstacle avoidance trajectory at speeds of 40, 50 and 60 km/h. 

 
(a) 40 km/h 

Figure 12. Cont.



World Electr. Veh. J. 2024, 15, 522 23 of 32World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 24 of 36 
 

 
(b) 50 km/h 

 
(c) 60 km/h 

Figure 12. The results of lateral angle data of vehicle before optimization. Figure 12. The results of lateral angle data of vehicle before optimization.

Table 2. Comparison of experimental values before and after vehicle lateral steering angle optimization.

Traditional Artificial Potential Field Method Optimized Artificial Potential Field Method

Speed
(km/h)

Peak Steering Angle
Required for Lateral

Movement of Vehicle (deg)

Fluctuation Range of
Steering Angle Required
for Lateral Movement of

Vehicle (deg)

Peak Steering Angle
Required for Lateral

Movement of Vehicle (deg)

Fluctuation Range of
Steering Angle Required
for Lateral Movement of

Vehicle (deg)

40 11◦ 0~7◦ 5◦ 0~3◦

50 13◦ 0~9◦ 7◦ 0~5◦

60 15◦ 0~11◦ 10◦ 0~7◦



World Electr. Veh. J. 2024, 15, 522 24 of 32World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 25 of 36 
 

 
(a) 40 km/h 

 
(b) 50 km/h 

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 26 of 36 
 

 
(c) 60 km/h 

Figure 13. The results of lateral angle data of vehicle after optimization. 

The comparison of experimental values before and after optimizing the lateral 
steering angle is shown in Table 2. By comparing the data in Figure 12a–c with those in 
Figure 13a–c, it is evident that the variation amplitude of the lateral angle of the controller 
vehicle after optimization is smaller than that of the vehicle before optimization, and the 
tracking and control performance of the reference path is improved at different speeds. 
Under the three speed conditions, the fluctuation range of both maximum steering angle 
and steering angle change rate is reduced after optimization, with the angle change range 
at 60 km/h being smaller than at 40 and 50 km/h. The lateral control of the vehicle shows 
improved lane-changing performance. The variation amplitude of the optimized lateral 
angle data demonstrates that the lateral control performance of the vehicle is better during 
lane change and overtaking. The optimized controller enables the vehicle to turn to the 
corresponding angle more quickly, without delay and hysteresis. The vehicle can achieve 
a small steering radius and greater stability during the steering process, so that the vehicle 
can maintain stability and avoid sideslipping, loss of control, or instability. Consequently, 
the optimized vehicle tracking controller provides better grip and handling stability 
during high-speed or sharp turns and lane changes, speeding and tightening rotation and 
improving the vehicle’s maneuverability. 

Table 2. Comparison of experimental values before and after vehicle lateral steering angle 
optimization. 

 Traditional Artificial Potential Field Method Optimized Artificial Potential Field Method 

Speed 
(km/h) 

Peak Steering Angle 
Required for Lateral 

Movement of Vehicle (deg) 

Fluctuation Range of 
Steering Angle Required 
for Lateral Movement of 

Vehicle (deg) 

Peak Steering Angle 
Required for Lateral 

Movement of Vehicle 
(deg) 

Fluctuation Range of 
Steering Angle Required for 
Lateral Movement of Vehicle 

(deg) 
40 11° 0~7° 5° 0~3° 
50 13° 0~9° 7° 0~5° 
60 15° 0~11° 10° 0~7° 

6.4.2. Vehicle Lateral Slippage Angle Optimization Before and After Comparison 
The lateral sideslip angle refers to the angle between the vehicle’s actual driving 

direction and the center line of its driving track during lateral movements, such as 

Figure 13. The results of lateral angle data of vehicle after optimization.



World Electr. Veh. J. 2024, 15, 522 25 of 32

6.4.2. Vehicle Lateral Slippage Angle Optimization Before and After Comparison

The lateral sideslip angle refers to the angle between the vehicle’s actual driving direction
and the center line of its driving track during lateral movements, such as overtaking or avoiding
obstacles. This angle is an important index to measure the lateral dynamic stability of the
vehicle. An excessive sideslip angle may cause the vehicle to lose control and compromise safety.
Figures 14a–c and 15a–c show the numerical analysis, before and after optimization, respectively,
of the lateral slip angle of the vehicle obtained through the experimental simulation.

The comparative experimental values of the vehicle’s lateral slip angle, before and
after optimization, are shown in Table 3. By comparing the data in Figure 14a–c with those
in Figure 15a–c, it can be seen that under different speed conditions, after optimization,
the peak and duration of the sideslip the angle are reduced, the fluctuation amplitude of
the sideslip angle’s change rate is small, the range of variation is more reasonable, and
the tracking controller has stable lateral control performance. The results show that the
vehicle can maintain a stable side yaw angle, and the side yaw angle and jitter fluctuation
are small, indicating that the vehicle has excellent stability and can keep on the expected
trajectory. The vehicle is able to respond quickly to steering wheel control inputs, producing
corresponding side-angle changes to achieve accurate maneuvering and directionality. The
vehicle is better able to quickly return to a stable side angle, and when the vehicle encounters
crosswinds, uneven roads, or unexpected situations, it should be able to recover quickly
and maintain stable side control.
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6.4.3. Numerical Comparison of the Pre- and Post-Optimization of Vertical Support Force
of Front- and Rear-Wheel Steering

The vertical supporting force of the front and rear wheels of a vehicle refers to the force
perpendicular to the ground caused by the ground reaction force in the process of transverse
movements such as lane changing and overtaking. This force is critical for maintaining the
stability and handling of the vehicle. Figures 16a–c and 17a–c present analyses of vertical
support force of the front and rear wheels of the vehicle through experimental simulation,
before and after optimization, respectively.
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The results of optimizing the vertical support force data of front and rear
four-wheel steering are shown in Table 4. As shown in the numerical comparison be-
tween Figures 16a–c and 17a–c, under different speed conditions, the optimized tracking
controller shows better lateral control performance than the pre-optimized tracking con-
troller in terms of the numerical size and uniform distribution of the steering vertical
support force of the vehicle’s four wheels. When the vehicle encounters an obstacle, the
algorithm effectively enables collision avoidance and lane-change/overtaking control, and
the four wheels of the vehicle maintain better ground pressure, increase the support force of
the inner wheel, and reduce the support force of the outer wheel. This can provide higher
lateral acceleration and better maneuvering performance, achieve effective turning and
maneuvering control and cornering characteristics, and ensure optimal grip and handling
stability, which results in faster turning speeds and more precise handling responses. When
the vehicle encounters crosswinds, uneven road surfaces, or other disturbances, it can
also adjust the vertical wheel steering support and wheel support distribution to maintain
stability and avoid loss of control or skidding.

Table 4. Optimizing the vertical support force of front- and rear-wheel steering.

Traditional Artificial Potential Field Method Optimized Artificial Potential Field Method

Speed
(km/h)

Peak Vertical Support
Force of Front and Rear

Wheels in Lateral
Movement of Vehicle (N)

Lower Limit of Vertical
Support Force

Fluctuation of Front and
Rear Wheels in Lateral

Movement of Vehicle (N)

Peak Vertical Support
Force of Front and Rear

Wheels in Lateral
Movement of Vehicle (N)

Lower Limit of Vertical
Support Force

Fluctuation of Front and
Rear Wheels in Lateral

Movement of Vehicle (N)

40 4100 400 5100 1400
50 4300 200 5600 1300
60 4500 0 6050 950

In summary, insufficient steering speed may result in slow steering response, while
excessive steering speed may reduce control accuracy. Appropriate steering speed can pro-
vide better maneuvering performance, and turning at the appropriate steering speed helps
the vehicle more easily track the planned path and receive adequate feedback. Comparison
of experimental parameters in Table 2 shows that the values of lateral control steering angle
and side deflection angle across three speed conditions fluctuate within a reasonable range.
The controller effectively maintains stable path tracking under various reasonable steering
speed parameters, ensuring the vehicle’s stability while driving. Additionally, the vertical
support forces of the front and rear tires are sufficient to meet the requirements of safe lane
changes and collision avoidance during overtaking at higher speeds, demonstrating the
controller’s high tracking precision, adaptability, and resilience.

7. Conclusions

The integration of artificial intelligence in autonomous driving marks a pivotal phase
in automotive evolution. However, fully replacing human drivers remains challenging due
to critical safety and reliability concerns. Our research advances autonomous vehicle path
planning and tracking control through an enhanced Artificial Potential Field (APF) method.
By addressing the APF’s limitations in target reachability and local optimum issues, and
by integrating safety distance models and dynamic road-repulsive potential fields, we
enhance the precision of path planning. Additionally, a linearized and discretized vehicle
dynamics model enables optimal path tracking under constraints, minimizing control costs.
Simulation results using MATLAB/Simulink and CarSim demonstrate reduced steering
and sideslip angles (by 5 to 10◦ and 3 to 5◦, respectively), and increased vertical support
forces (from 1000 to 1450 N), showcasing our algorithm’s superior obstacle avoidance and
lane-changing capabilities under dynamic conditions. The DLQR algorithm controller’s
performance, maintaining parameters within rational boundaries, highlights its robustness
in dynamic obstacle environments.
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Future directions in research involve integrating multi-sensor technologies and real-
world testing to refine obstacle avoidance algorithms, aiming for enhanced accuracy and
robustness in complex, real-world scenarios. Path planning and tracking control, when
seamlessly integrated, ensure vehicle stability, comfort, and effective obstacle navigation.
Our vision includes advanced testing environments and real-world vehicle trials to rigor-
ously evaluate algorithmic innovations in practical driving contexts, bridging simulation
success and real-world complexities.
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