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Abstract: Regenerative braking energy recovery is of critical importance for electric vehicles due
to their range limitations. To further enhance regenerative braking energy recovery, a dual-fuzzy
regenerative braking control strategy based on braking intention recognition is proposed. Firstly, the
distribution strategy for braking force is devised by considering classical curves like ideal braking
force allocation and ECE regulations; secondly, taking the brake pedal opening and its opening change
rate as inputs, the braking intention recognition fuzzy controller is designed for outputting braking
strength. Based on the recognized braking strength, and considering the battery charging state and
the speed of the vehicle as inputs, a regenerative braking duty ratio fuzzy controller is developed for
regenerative braking force regulation to improve energy recovery. Furthermore, a control experiment
is established to evaluate and compare the four models and their respective nine braking modes,
aiming to define the dual fuzzy logic controller model. Ultimately, simulation validation is conducted
using Matlab/Simulink R2019b and CRUISE 2019. The results show that the strategy in this paper
has higher energy savings compared to the single fuzzy control and parallel control methods, with
energy recovery improved by 26.26 kJ and 96.13 kJ under a single New European Driving Cycle
(NEDC), respectively.

Keywords: braking intention recognition; regenerative braking; fuzzy algorithm; energy recovery;
braking force distribution

1. Introduction

In the current era, environmental pollution has emerged as a pressing global issue,
with motor vehicle exhaust emissions serving as a prominent source of air contamination.
To address these environmental challenges, nations have actively advocated for the ad-
vancement of clean energy vehicles [1]. Among these alternatives, electric vehicles have
progressively risen in popularity as the predominant choice, attributed to their benefits,
such as emission reduction and minimal noise output. Nevertheless, the expanding accep-
tance of electric vehicles has brought to light the issue of limited range, posing a significant
obstacle to their ongoing development [2]. Regenerative braking in electric vehicles utilizes
the drive motor to convert a portion of kinetic energy into electrical energy during braking,
thereby enhancing energy efficiency and extending the vehicle’s range [3,4]. This technique
stands out as a potent method for range extension, underscoring its profound importance
in furthering the efficiency of electric vehicles.

Electric vehicles employ a combined braking system that integrates regenerative brak-
ing with traditional mechanical braking components [5], whose overall control difficulty is
significantly higher than that of the traditional mechanical braking system. Therefore, to
guarantee both safety during braking maneuvers and the recuperation of energy, scholars
have carried out a lot of research on composite brake control.

In the area of driver braking intention recognition: Due to the driver’s subjective fac-
tors, it is impossible to measure the braking intention directly, and it can only be accurately
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recognized by extracting feature parameters. A wide range of scholars have conducted
research from different perspectives, such as braking feature parameter extraction and
braking intention recognition control algorithms [6]. For braking characteristic parameter
selection, Wen Jianping et al. [7] obtained a multidimensional feature vector of the braking
signal by modal decomposition and feature extraction of the brake pedal signal; they then
combined the sparrow search algorithm with a probabilistic neural network to establish a
model for recognizing braking intentions; and finally, they experimentally verified that the
model has a high recognition accuracy. Luis G. Hernandez et al. [8] proposed a method for
recognizing emergency braking intention based on the driver’s electrical brain signals. By
collecting vehicle data and brain signals and performing emergency braking in different
situations, the findings indicated that the method achieved an 80% accuracy rate in classifi-
cation. Li Min et al. [9] used the driver’s EEG signal as an input parameter for recognizing
the driver’s behavior and intention. Based on the experimental findings, it is evident that
the model demonstrates a notable level of recognition accuracy. Stefan Haufe et al. [10]
validated the feasibility of electrophysiology-based emergency braking intention detection
through real-vehicle driving tests. On this basis, Hermes J. Mora et al. [11] proposed a sim-
ple and accurate emergency braking intention detection method by combining the driver’s
EEG signals with neural networks, which solved the problem of long EEG signal pro-
cessing time. Considering the driver’s fatigue and stress, Oscar Martinez Mozos et al. [12]
used support vector machines and convolutional neural networks to classify the EEG
signals, with a classification accuracy of more than 80%. For braking intention recognition
control algorithms, Tang Jinhua et al. [13] constructed a braking intention recognition
model by fuzzifying multiple sets of braking test data, and trained and tested the model.
Finally, the method was verified offline to have a high braking intention recognition ac-
curacy. Jia Qiyang et al. [14] designed a braking intention recognition controller based
on a large amount of driving data and fuzzy control principles. The braking intention
recognition model’s accuracy underwent validation through collaborative simulation. Yang
Wei et al. [15] introduced a braking intention recognition model for leading vehicles. This
model integrates the BP neural network and Hidden Markov Model, tailored for automatic
emergency braking systems. The model can dynamically change the critical braking dis-
tance under different driving conditions. Wang Shu et al. [16] proposed a braking intention
recognition method based on a long- and short-term memory network, using a support
vector machine-recursive feature elimination algorithm for feature parameter selection,
and real-vehicle experiments proved that the accuracy of the recognition model can reach
more than 95%.

In terms of braking force distribution: Jiang et al. [17] proposed a distribution strategy
based on an optimal distribution algorithm and improved the braking energy recovery
efficiency by more than 51.9% compared to the control strategy of the ADVISOR software.
Liu et al. [18] introduced a control scheme for the adaptive distribution of braking force,
with the maximum regenerative braking torque as the inflection point and the synchronous
attachment coefficient as the expected point. The findings indicated that the strategy
can not only adapt to driving conditions but also improve the braking energy recovery
efficiency. Pei et al. [19] introduced a control strategy for coordinated electric-hydraulic
braking in electric vehicles. Utilizing a genetic algorithm, the team optimized distribution
coefficients for varied braking scenarios. The results show that the strategy has better energy
regeneration performance and braking stability than the ideal braking force allocation.

In terms of energy recovery: He et al. [20] proposed an energy recovery optimization
strategy based on braking safety and efficient recovery, which both improved the energy
recovery and shortened the braking distance. Zhang et al. [21] proposed a new predictive
control method. Firstly, a prediction method was used to predict the vehicle speed and
braking strength; secondly, a dynamic planning method was applied to optimize target
torque and target pressure, and the outcomes indicate a notable enhancement in energy
recovery efficiency. Zhang et al. [22] presented a regenerative braking control strategy
that leverages collective intelligence. This strategy integrates an ant colony algorithm to
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refine the iterative procedure of the particle swarm algorithm. The efficacy of the control
method’s stability was confirmed across diverse operational scenarios. Geng et al. [23]
proposed a hierarchical braking energy recovery control strategy for hybrid vehicles, where
the upper control aims to improve the front axle braking allocation percentage, and the
lower control obtains the regenerative braking ratio coefficient. Finally, a model combining
AMESim and Matlab/Simulink was built, and the results showed that the brake energy
recovery rate was significantly improved.

In the above studies, scholars have used different methods to achieve the recognition
of driver braking intention to some extent or to optimize the electric braking force using
various algorithms to increase energy recovery. However, limited research has been con-
ducted on the simultaneous optimization of recognizing driver braking intentions and
coordinating composite braking forces, as well as the effect of fuzzy controller structure
on the regenerative braking ratio. Therefore, in this paper, a dual fuzzy logic regenerative
braking controller is designed by considering the braking intention of the driver of an
electric vehicle, and the effect of various strategies on braking energy recovery in electric
vehicles is also investigated.

2. Braking Force Distribution Strategy Design

How braking force is shared between the front and rear axles affects safety and energy
recovery. A reasonable braking force distribution strategy can realize as much energy
recovery as possible while prioritizing safety and stability during braking [24]. It is also
key to preventing wheel locking.

2.1. Braking Dynamics Analysis

Before designing a regenerative braking strategy it is necessary to first analyze the
dynamics of the front and rear axle wheels during braking. As depicted below in Figure 1,
the illustration showcases the forces acting on the vehicle when braking on a flat roadway.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 3 of 17 
 

torque and target pressure, and the outcomes indicate a notable enhancement in energy 
recovery efficiency. Zhang et al. [22] presented a regenerative braking control strategy that 
leverages collective intelligence. This strategy integrates an ant colony algorithm to refine 
the iterative procedure of the particle swarm algorithm. The efficacy of the control 
method’s stability was confirmed across diverse operational scenarios. Geng et al. [23] 
proposed a hierarchical braking energy recovery control strategy for hybrid vehicles, 
where the upper control aims to improve the front axle braking allocation percentage, and 
the lower control obtains the regenerative braking ratio coefficient. Finally, a model com-
bining AMESim and Matlab/Simulink was built, and the results showed that the brake 
energy recovery rate was significantly improved. 

In the above studies, scholars have used different methods to achieve the recognition 
of driver braking intention to some extent or to optimize the electric braking force using 
various algorithms to increase energy recovery. However, limited research has been con-
ducted on the simultaneous optimization of recognizing driver braking intentions and 
coordinating composite braking forces, as well as the effect of fuzzy controller structure 
on the regenerative braking ratio. Therefore, in this paper, a dual fuzzy logic regenerative 
braking controller is designed by considering the braking intention of the driver of an 
electric vehicle, and the effect of various strategies on braking energy recovery in electric 
vehicles is also investigated. 

2. Braking Force Distribution Strategy Design 
How braking force is shared between the front and rear axles affects safety and en-

ergy recovery. A reasonable braking force distribution strategy can realize as much energy 
recovery as possible while prioritizing safety and stability during braking [24]. It is also 
key to preventing wheel locking. 

2.1. Braking Dynamics Analysis 
Before designing a regenerative braking strategy it is necessary to first analyze the 

dynamics of the front and rear axle wheels during braking. As depicted below in Figure 
1, the illustration showcases the forces acting on the vehicle when braking on a flat road-
way. 

 
Figure 1. Vehicle braking force analysis. 

In the figure, Fj is the inertial force (N). 
The force situation at this point ignores the air resistance, rolling resistance, and the 

moment of inertia of the rotating mass during decelerating. According to the force 

Figure 1. Vehicle braking force analysis.

In the figure, Fj is the inertial force (N).
The force situation at this point ignores the air resistance, rolling resistance, and the

moment of inertia of the rotating mass during decelerating. According to the force analysis,
the following moment balance equation can be obtained by taking moments on the front
and rear axes: {

Fz f L = Gb + m du
dt hg

FzrL = Ga − m du
dt hg

(1)
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where Fzf and Fzr are the normal reaction force (N) exerted by the front and rear wheels on
the ground; G is the car’s gravitational force (N); L is the wheelbase (m); m is the car’s mass
(kg); a and b are the distances of the two axles from the center of gravity (m); du/dt is the
deceleration of the car (m/s2); and hg is the height of the center of mass (m).

Let du/dt = zg and z be the braking strength; then the ground’s normal reaction force
on both the front and rear wheels can be represented as:{

Fz f =
G
L
(
b + zhg

)
Fzr =

G
L
(
a − zhg

) (2)

2.2. Braking Force Distribution Constraints

In order to take into account braking safety and energy recovery, the distribution of
braking force for the front and rear axles should fall within the region bounded by the ideal
braking force curve I, the ECE regulation line, and the f curve [25]. Assuming that Fxb is the
total ground braking force (N), φ is the road surface adhesion coefficient, and Fxbf and Fxbr
represent the ground braking forces (N) exerted by the front and rear axles, respectively.
Subsequently, diverse conditions impose specific limitations on brake force distribution.

Ideal braking force distribution constraints, as shown in Equation (3):

Fxbr =
1
2

[
G
hg

√
b2 +

4hgL
G

Fxb f −
(

Gb
hg

+ 2Fx f

)]
(3)

The limitations on front and rear axle brake force distribution, as outlined in Equa-
tion (4) by the ECE regulations, are displayed:{

Fxb f =
z+0.07

0.85 · G(b+Zhg)
L

Fxbr = Gz − Fxb f
(4)

The requirements imposed on the front and rear axle braking force by the f -curve are
presented in Equation (5):

Fxbr =
L − φhg

φhg
Fxb f −

Gb
hg

(5)

2.3. Braking Force Distribution Based on Limiting Boundary Conditions

This paper presents braking force distribution curves for the front and rear axle based
on vehicle dynamics and braking force distribution constraints, divided into four segments,
as shown in Figure 2.
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(1) OA section: pure motor brake

The braking demand in this section is small, requiring only motor brakes. Braking
requirements for the front and rear axles:{

Fxb f = Gz
Fxbr = 0

(6)

(2) AB section: pure motor brake

At this stage, with the increase in braking strength, the braking demand becomes
larger, and motor braking alone cannot meet the requirements. At this time, both the motor
brake and mechanical brake are engaged; the front and rear axle braking force is:{

Fxb f =
z+0.07

0.85 × G(b+hgz)
L

Fxbr = Gz − Fxb f
(7)

(3) BC section: pure motor brake

At this stage, the braking strength is greater, so the motor brake and mechanical brake
work at the same time to meet the braking demand; the front and rear axle braking force is:{

Fxbr =
G(zL−φhgz−φb)

L
Fxb f = Gz − Fxbr

(8)

(4) CD section: pure motor brake

At this stage, the braking strength is too high, and the vehicle is subjected to emergency
braking. The primary consideration is braking safety, and the work is carried out by
mechanical braking alone, with front and rear axle braking forces: Fxbr =

Gφ(a−hgz)
L

Fxb f =
Gφ(b+hgz)

L

(9)

3. Dual Fuzzy Regenerative Braking Control Strategy

Utilizing the front and rear axle braking force distribution plan developed within
defined constraints, a dual-fuzzy regenerative braking control strategy is formulated,
incorporating driver braking intention recognition and energy recovery considerations.
The braking intention recognition fuzzy controller is used to recognize the driver’s braking
intention, and the regenerative braking duty ratio fuzzy controller is used to distribute the
electromechanical composite braking force.

3.1. Braking Intention Recognition

Brake intention recognition is a method of pattern recognition in computer technology,
and its accurate recognition is of great significance in improving the accurate control of
the braking system. In regenerative braking, brake intention recognition can improve the
braking performance by recognizing the braking strength information.

Cluster analysis, neural networks, Markov models, and fuzzy logic systems are among
the frequently employed techniques for recognizing brake intentions. Considering that
cluster analysis needs to pre-process the braking characteristic parameters and that the
selection of characteristic parameters has a large impact on the results, artificial neural
networks have a large amount of computational workload and long processing times, and
the application of Hidden Markov Models necessitates a substantial corpus of training data,
which presents a challenge in accurately discerning conventional braking intentions. Fuzzy
inference systems offer a compelling alternative, exhibiting superior flexibility, robust
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anti-interference capabilities, and real-time control. This paper employs a fuzzy inference
system to identify braking intentions.

3.2. Double Fuzzy Logic Controller Design
3.2.1. Feature Parameter Extraction

The accuracy of driver braking intention recognition depends on the selection of
characteristic parameters. Commonly used recognition parameters are brake pedal opening,
pedal change rate, brake pedal force, and brake line oil pressure. Considering that the pedal
force is affected by many factors, which causes it to fluctuate and has a certain degree of
randomness, the brake line oil pressure is generally used only as a redundant design scheme
to improve the reliability of the brake system intent recognition; and driving habits impact
the rate of change in brake pedal opening. Therefore, the brake pedal opening degree is
selected as the characteristic parameter for brake intention recognition. Meanwhile, in
order to identify the driver’s braking urgency, the rate of change of brake pedal opening is
introduced to identify the braking urgency.

When the driver performs a braking operation, the deceleration of the vehicle can be
expressed as:

dv
dt

=
Fµ

m
(10)

where dv/dt is the vehicle’s braking deceleration (m/s2) and Fµ is the vehicle’s brake
force (N).

In this paper, the braking strength is defined as the output of the braking intention
recognition controller, as shown in the following equation:

zg =
dv
dt

(11)

where z is the braking strength and g is the acceleration of gravity (m/s2).
Figure 3 displays the configuration of the fuzzy controller for recognizing driver

braking intentions.
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The regenerative braking duty ratio is not only related to the recognized braking
strength but also in relation to speed and battery State Of Charge (SOC). When speed is
high, the regenerative braking percentage should be appropriately reduced in consideration
of braking safety; when the battery SOC reaches a certain amount, regenerative braking
should be reduced to prevent overcharging.

The structure of the regenerative braking duty ratio fuzzy controller is shown in
Figure 4.
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3.2.2. Dual Fuzzy Logic Controller Structure

The structure of the fuzzy controller depends on the number of rules. Adding inputs
can improve accuracy, but the fuzzy rules grow exponentially. In this paper, there are four
inputs—brake pedal opening, brake pedal opening change rate, vehicle speed, and battery
SOC. To enhance operational speed and minimize controller computations, a dual fuzzy
controller has been devised, with its configuration depicted in Figure 5.
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3.2.3. Fuzzy Rule Formulation and Affiliation Function Design

Based on the above feature parameter extraction, for the brake intention recognition
fuzzy controller, the fuzzy domain of brake pedal opening l is defined as [0, 1], and the
fuzzy subsets are {S (Small), M (Medium), B (Big)}; the fuzzy domain of the change rate of
brake pedal opening dl/dt is defined as [−0.4, 1.6], and the fuzzy subsets are {L (Slow), M
(Medium), F (Fast)}; the fuzzy domain of brake strength z is defined as [0, 1] with the fuzzy
subsets {S (Small), M (Medium), B (Big)}.

For the brake intention recognition fuzzy controller, the fuzzy rules are formulated
based on the fact that the greater the brake pedal opening and the greater the rate of change
of the brake pedal opening, the more urgent the driver’s braking needs. Based on this
logical inference, the fuzzy rules for the braking intention recognition fuzzy controller can
be obtained, as shown in Table 1.

Table 1. Fuzzy rules for the fuzzy controller for braking intention recognition.

dl/dt
l

S M B

L S M B
M S M B
F S B B

The surface map of the recognition effect of the fuzzy controller for braking intention
recognition, obtained from the fuzzy rules formulated in Table 1, is shown in Figure 6.

Analysis of Figure 6 shows that the braking strength is mainly related to the brake
pedal opening; the larger the brake pedal opening, the greater the required braking strength.
When the brake pedal opening is subordinate to the intermediate subset, and the rate of
change of the brake pedal opening is very fast, the identified demand braking strength is
larger. The recognition results of the fuzzy controller for brake intention recognition are
consistent with the driver’s braking operation demands, which verifies the effectiveness of
the fuzzy rules.

The affiliation functions of the input and output variables of the brake intention
recognition fuzzy controller are shown in Figure 7.
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For the regenerative braking duty ratio fuzzy controller, the fuzzy domains of the input
variables vehicle speed V and SOC are defined as [0, 140] and [0, 1], and the fuzzy subsets
are {S (Small), M (Medium), B (Big)} and {S (Small), M (Medium), B (Big)}, respectively; the
fuzzy domain of the regenerative braking duty ratio K is defined as [0, 1], and the fuzzy
subsets are {VS (Very Small), S (Small), M (Medium), B (Big), VB (Very Big)}.

The fuzzy rules for the regenerative braking duty ratio fuzzy controller can be outlined
as follows: (1) as braking strength increases, reduce the regenerative braking duty ratio;
(2) when the vehicle speed is low, motor speed is low and the recoverable energy is small,
so the regenerative braking duty ratio can be appropriately reduced; when the vehicle
speed is high, the primary consideration is the braking safety, and the regenerative braking
duty ratio should be reduced; (3) the bigger the SOC of the battery, the more it should be
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reduced to ensure battery safety. Hence, the fuzzy rules for the regenerative braking ratio
fuzzy controller are shown in Table 2.

Table 2. Fuzzy rules of the fuzzy controller for regenerative braking duty ratio.

Number Z V SOC K Number Z V SOC K

1 S S B S 15 M B M M
2 S M B S 16 B S M S
3 S B B S 17 B M M S
4 M S B S 18 B B M VS
5 M M B S 19 S S S S
6 M B B S 20 S M S VB
7 B S B VS 21 S B S B
8 B M B VS 22 M S S S
9 B B B VS 23 M M S M

10 S S M S 24 M B S M
11 S M M B 25 B S S S
12 S B M B 26 B M S S
13 M S M S 27 B B S VS
14 M M M M

The surface plot of the identification effect of the regenerative braking duty ratio fuzzy
controller, obtained from the fuzzy rules formulated in Table 2 above, is shown in Figure 8.
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Analysis of Figure 8 shows that the regenerative braking duty ratio has the greatest
relationship with the strength of braking demand; the greater the strength of braking
demand, the smaller the regenerative braking duty ratio. SOC and speed play a role in
limiting the output regenerative braking duty ratio: when the speed and the SOC are
too large, there is a certain decline in the output regenerative braking duty ratio. The
identification results of the fuzzy controller of regenerative braking duty ratio are in line
with the law of braking energy recovery ratio allocation in electric vehicle composite
braking systems, which verifies the effectiveness of the fuzzy rules.
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The affiliation functions of the input and output variables of the fuzzy controller for
regenerative braking duty ratio are shown in Figure 9.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 10 of 17 
 

13 M S M S 27 B B S VS 
14 M M M M      

The surface plot of the identification effect of the regenerative braking duty ratio 
fuzzy controller, obtained from the fuzzy rules formulated in Table 2 above, is shown in 
Figure 8. 

   
(a) 

   
(b) 

Figure 8. Input and output relationship surface of the fuzzy controller for regenerative braking 
ratio. (a) T_T-type affiliation function; (b) G_S-type affiliation function. 

Analysis of Figure 8 shows that the regenerative braking duty ratio has the greatest 
relationship with the strength of braking demand; the greater the strength of braking de-
mand, the smaller the regenerative braking duty ratio. SOC and speed play a role in lim-
iting the output regenerative braking duty ratio: when the speed and the SOC are too 
large, there is a certain decline in the output regenerative braking duty ratio. The identifi-
cation results of the fuzzy controller of regenerative braking duty ratio are in line with the 
law of braking energy recovery ratio allocation in electric vehicle composite braking sys-
tems, which verifies the effectiveness of the fuzzy rules. 

The affiliation functions of the input and output variables of the fuzzy controller for 
regenerative braking duty ratio are shown in Figure 9. 

   
Figure 9. Affiliation function of the fuzzy controller for regenerative braking duty ratio. 

3.2.4. Analysis of Controller Results Based on Control Tests 
According to the affiliation function in Section 3.2.3, four different dual fuzzy con-

troller models can be designed, which are (1) both dual fuzzy controllers use T_T-type 

Figure 9. Affiliation function of the fuzzy controller for regenerative braking duty ratio.

3.2.4. Analysis of Controller Results Based on Control Tests

According to the affiliation function in Section 3.2.3, four different dual fuzzy controller
models can be designed, which are (1) both dual fuzzy controllers use T_T-type affiliation
function; (2) both dual fuzzy controllers use G_S-type affiliation function; (3) braking
intention recognition fuzzy controllers use T_T-type affiliation function, and regenerative
braking duty ratio fuzzy controllers use G_S-type affiliation function; and (4) the regen-
erative braking duty ratio fuzzy controller adopts T_T-type affiliation function and the
braking intention recognition fuzzy controller adopts G_S-type affiliation function.

In order to choose the optimal dual fuzzy controller for this study, the vehicle speed
is set as high-speed, medium-speed, and low-speed (110 km/h, 50 km/h, 25 km/h) for
comparison; the braking working conditions are selected as emergency, normal, and slow
brake pedal opening with the rate of change {(0.85, 1.2), (0.4, 0.4), (0.2, 0.15)} for comparison.
Cross-assigning the vehicle speeds to the braking conditions gives nine braking modes, as
shown in Table 3.

Table 3. Parameter table of nine braking modes.

Braking Strength
Speed High Medium Low

Emergency (0.85, 1.2, 110) (0.85, 1.2, 50) (0.85, 1.2, 25)
Normal (0.4, 0.4, 110) (0.4, 0.4, 50) (0.4, 0.4, 25)

Slow (0.2, 0.15, 110) (0.2, 0.15, 50) (0.2, 0.15, 25)

The regenerative braking percentage data for the nine braking modes are shown in
Tables 4–6.

Table 4. Regenerative braking percentage in high-speed braking mode.

Affiliation Function
Braking Mode High-Speed

Emergency Braking
High-Speed

Normal Braking
High-Speed

Slow Braking
T_T + T_T 8.00% 50.00% 75.00%
G_S + G_S 20.01% 50.36% 57.13%
T_T + G_S 13.36% 49.70% 64.22%
G_S + T_T 12.87% 50.00% 61.43%

Table 5. Regenerative braking percentage in medium-speed braking mode.

Affiliation Function
Braking Mode High-Speed

Emergency Braking
High-Speed

Normal Braking
High-Speed

Slow Braking
T_T + T_T 25.00% 50.00% 75.00%
G_S + G_S 28.38% 50.34% 60.94%
T_T + G_S 26.24% 49.71% 64.59%
G_S + T_T 26.23% 50.00% 67.10%
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Table 6. Regenerative braking percentage in low-speed braking mode.

Affiliation Function
Braking Mode High-Speed

Emergency Braking
High-Speed

Normal Braking
High-Speed

Slow Braking
T_T + T_T 25.00% 50.00% 75.00%
G_S + G_S 28.38% 50.17% 56.90%
T_T + G_S 26.27% 49.52% 63.98%
G_S + T_T 26.23% 50.00% 61.43%

Considering that the regenerative braking strategy is mainly applied to urban driving
scenarios, in such scenarios, the vehicle spends most of its time in normal braking and slow
braking states. Therefore, the weights of these two braking modes should be increased.
After a comprehensive analysis, ‘T_T + T_T’ is chosen as the structure of the double fuzzy
controller in this paper.

3.3. Modification of Regenerative Braking Control Strategy

As mentioned above, the regenerative braking duty ratio is not only related to braking
strength but also to vehicle speed and battery SOC. Here, vehicle speed and battery SOC
correction factors are introduced to correct motor power.

From the transmission characteristics of the transmission system, it can be seen that
motor speed and vehicle traveling speed satisfy the following relationship equation:

n =
u · ig · i0
0.377r

(12)

where u is the vehicle travelling speed (km/h); n is the motor speed (1/min); ig is the
transmission ratio; i0 is the main reduction gear ratio; r is the wheel radius (m).

When the vehicle speed is low, the inertial energy of the vehicle traveling is less,
and energy recovery in this state is not significant. Therefore, a speed impact factor is
introduced: when the speed is low (<5 km/h), the motor does not recovery energy; when
the speed of the vehicle is 5–8 km/h, the motor engages in composite braking energy
recovery with a degree of linear growth; when the speed is greater than 10 km/h, the motor
operates normally to carry out composite braking energy recovery, and the correction factor
function is:

Corr1 =


0

0.2v − 1,
1

v < 5km/h
5km/h ≤ v ≤ 10km/h

v > 10km/h
(13)

where Corr1 is the speed correction factor.
The power battery, being the sole energy provider for the all-electric vehicle, must

prioritize safety; thus, a safety threshold should be set at different SOC values. When the
battery SOC value reaches the upper limit of the threshold, the motor does not participate in
the regenerative braking process. Therefore, the battery SOC influence factor is introduced:
when the battery SOC value reaches 95%, the motor exits regenerative braking; when the
battery SOC value reaches 85%, the motor’s participation in regenerative braking should
be gradually reduced, and its correction factor function is:

Corr2 =


1

10(0.95 − SOC),
0

SOC < 85%
85% ≤ SOC ≤ 95%

SOC > 95%
(14)

where Corr2 is the SOC correction factor.
To summarize, Figure 10 displays the relationship between vehicle speed, SOC, and

motor power correction.
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The power value of the motor mechanism, corrected for the two factors of vehicle
speed and battery SOC, is:

Fmot_reg_2 = Fmot_reg_1 · Corr1 · Corr2 (15)

where Fmot_reg_2 is the corrected actual motor power (N); Fmot_reg_1 is the corrected pre-
modified motor power (N) assigned by the double fuzzy controller.

4. Joint Simulation and Analysis of Results

To validate the efficiency of the dual-fuzzy regenerative braking control strategy
proposed in this study, the integrated Matlab/Simulink R2019b and CRUISE 2019 platform
uses the joint simulation of Dynamic Link Library (DLL) to simulate and evaluate the
control strategy using the New European Driving Cycle (NEDC) and Extra Urban Driving
Cycle (EUDC). The simulation validation covers feasibility, energy recovery, and battery
SOC variations.

4.1. Feasibility Simulation

Based on the control strategy of this paper, the vehicle’s following characteristics are
simulated and tested under NEDC and EUDC conditions, as shown in Figure 11.
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Figure 11 shows the actual vehicle speed of this paper’s control strategy under NEDC
conditions, and EUDC conditions can follow the demand speed, which verifies the feasibil-
ity of the control strategy.

4.2. Energy Recovery Simulation

The control strategy in this paper, a single fuzzy control, and a parallel control strategy
were simulated and tested for energy recovery of the vehicle under two cycle conditions.
Energy recovery is depicted in Figure 12, while battery SOC variation is change in Figure 13.
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Figure 12. Energy recovery under different cycle conditions. (a) Energy recovery under NEDC
conditions; (b) Energy recovery under EUDC conditions.
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Figure 13. Variation of battery SOC under different cycle conditions. (a) SOC under NEDC conditions;
(b) SOC under EUDC conditions.

From Figure 12, it can be seen that, under the same conditions, the control strategy in
this paper can recover more braking energy, which verifies the superiority of the control
strategy in energy recovery. The energy recovery is shown in Table 7.

As shown in Table 7, the control strategy in this paper has the largest energy recovery
values of 576.29 kJ and 309.36 kJ for both NEDC and EUDC cycles. Compared to a single
fuzzy control strategy and a parallel control strategy, the energy recovery can be increased
by 26.26 kJ and 96.13 kJ, respectively, for a single NEDC condition.
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Table 7. Energy recovery of different control strategies under two cycle conditions.

Cycle Conditions
Control Strategies

Article Single Fuzzy Control Parallel Control

NEDC (kJ) 576.29 550.03 480.16
EUDC (kJ) 309.36 295.27 245.45

Analyzing Figure 13, it can be seen that, under the same conditions, the battery SOC
under the control strategy of this paper decreases slowly compared with other strategies.
This further confirms the energy-efficient characteristics of the proposed control strategy.
When the initial SOC is 80, the final value of the SOC at the end of the simulation is shown
in Table 8.

Table 8. Battery SOC for different control strategies under two cycle conditions.

Cycle Conditions
Control Strategies

Article Single Fuzzy
Control Parallel Control

No Energy
Recovery

NEDC (%) 71.68 71.63 71.51 70.65
EUDC (%) 74.37 74.34 74.26 73.84

Data analysis from Table 8 indicates a higher final battery SOC value with the control
strategy presented, which increases by 0.05%, 0.17%, and 1.03%, respectively, compared to
the single fuzzy control, parallel control strategy, and the strategy with no energy recovery
under NEDC operating conditions.

5. Conclusions

A dual-fuzzy regenerative braking control strategy based on braking intention recog-
nition is proposed for the electromechanical composite braking system of pure electric
vehicles. The designed dual-fuzzy logic controller includes a braking intention recognition
fuzzy controller and a regenerative braking ratio fuzzy controller. Different controller
structures affect the regenerative braking ratio; a control test is set up to compare and
analyze four different dual-fuzzy controller models, and the structure of the dual-fuzzy
controller is finally determined by comprehensively considering energy recovery and
driving scenarios. In addition, two correction factors, vehicle speed and battery SOC, are
introduced to correct the power of the motor for the effects of low-speed and high-SOC
states on the motor. Finally, the energy recovery effects of this paper’s control strategy,
single fuzzy control, and parallel control are compared by Matlab/Simulink R2019b and
CRUISE 2019 joint simulation.

The simulation results show that the dual fuzzy regenerative braking control strategy
has better energy recovery than the single fuzzy parallel control strategy, which can recover
576.29 kJ and 309.36 kJ of energy under NEDC and EUDC cycling conditions, respectively;
the battery SOC decreases more slowly under the same conditions. Under single NEDC
and EUDC operating conditions, the control strategy can improve the energy recovery by
26.26 kJ, 96.13 kJ and 14.09 kJ, 63.91 kJ, respectively.

From this study, it can be found that the factors affecting braking energy recovery
include not only vehicle speed, SOC, and braking strength, but also the structure of the
fuzzy controller used for braking intention recognition and power optimisation of the
motor mechanism.
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