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Abstract: Precise modeling and state of charge (SoC) estimation of a lithium-ion battery (LIB) are
crucial for the safety and longevity of battery systems in electric vehicles. Traditional methods
often fail to adapt to the dynamic, nonlinear, and time-varying behavior of LIBs under different
operating conditions. In this paper, an advanced joint estimation approach of the model parameters
and SoC is proposed utilizing an enhanced Sigma Point Kalman Filter (SPKF). Based on the second-
order equivalent circuit model (2RC-ECM), the proposed approach was compared to the two most
widely used methods for simultaneously estimating the model parameters and SoC, including a
hybrid recursive least square (RLS)-extended Kalman filter (EKF) method, and simple joint SPKF.
The proposed adaptive joint SPKF (ASPKF) method addresses the limitations of both the RLS+EKF
and simple joint SPKF, especially under dynamic operating conditions. By dynamically adjusting
to changes in the battery’s characteristics, the method significantly enhances model accuracy and
performance. The results demonstrate the robustness, computational efficiency, and reliability of the
proposed ASPKF approach compared to traditional methods, making it an ideal solution for battery
management systems (BMS) in modern EVs.

Keywords: lithium-ion batteries; battery modeling; joint estimation; Adaptive Sigma Point Kalman
Filter; state of charge estimation

1. Introduction

In recent years, the need to reduce greenhouse gas emissions and mitigate climate
change side effects has mainly contributed to a large shift from internal combustion engine
vehicles (ICEVs) to electric vehicles (EVs) [1]. According to the International Energy Agency
(IEA) projections, the global fleet of light-duty electric vehicles will grow from around
10 million in 2021 to 124–199 million EVs in 2030 and is expected to reach 970–1940 million
EVs by 2050 [2]. As a result, the booming EV market directly impacts the demand for
batteries as a key component of EVs.

Due to their high energy density, long cycle life, low self-discharge rate, and wide
temperature range, lithium-ion batteries (LIBs) have emerged as the most reliable energy
storage system for EVs [3–5]. They are usually connected in series and parallel configura-
tions to achieve the specific power and capacity required by the target application. As the
number of connected batteries grows, the system becomes more complex and can adversely
affect the performance and safety of the LIB [6]. Additionally, LIBs can be hazardous
if improperly handled since they contain combustible material and oxidizing agents [7].
Therefore, the integration of a sophisticated battery management system (BMS) is essential
to track the LIB’s critical states which include the battery state of charge (SoC) and state of
health (SoH), and ensure that the battery operates within its safe operating area (SOA) [6].

Accurate estimation of a battery’s internal states requires a sophisticated battery
model cable of capturing the LIB dynamic behavior based on external parameters. The
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accuracy of the battery model directly influences the battery’s overall performance and
safety. Three predominant approaches have emerged in literature: electrochemical battery
models (EMs) [8,9], equivalent circuit models (ECMs) [10,11] and data-driven battery
models [12,13]. ECMs are widely preferred over electrochemical and data-driven models
due to their balance between accuracy, computational efficiency, and ease of integration
into simulation tools and BMS [14]. They also present a large adaptability across different
battery types, sizes, and geometries with minimal need for recalibration which makes them
a desirable option for real-time BMS applications. An ECM is typically composed of n-RC
networks (where n can be 0, 1, 2, or more), consisting of resistors, capacitors, and voltage
sources to reflect the static and dynamic characteristics of the battery. However, increasing
the number of RC networks makes the model parameters identification and SoC estimation
more demanding for the BMS [15,16]. He et al. [17] compared seven battery models and
found that the 2RC-ECM performed the best and provided reliable results.

In BMS, the battery SoC is a critical factor that directly influences the battery’s per-
formance, longevity, and safety. It reflects the LIB’s remaining capacity relative to its total
usable capacity. Due to the non-linear, time-varying characteristics and complex electro-
chemical reactions occuring within the battery, the SoC cannot be measured directly [18].
Instead, an accurate and timely estimation of the SoC is needed. The literature presents
diverse methods for SoC estimation, each offering distinct benefits and shortcomings. The
most widely used methods include Coulomb counting (CC) methods, open-circuit voltage
(OCV) methods, and model-based methods [19–21]. Despite their simplicity and straightfor-
wardness, the CC and OCV methods fail to accurately predict the battery SoC [22,23]. While
the former requires precise knowledge of the initial SoC value, the latter method requires
strict tests to measure the battery OCV and extract the SoC. On the other hand, model-based
methods are widely preferred in the literature for estimating the battery SoC. As the name
implies, this estimation category requires establishing a mathematical representation of
battery behavior and then applying various algorithms to asses the battery state.

While model-based methods, such as the Kalman Filter (KF) and its variants, have
become increasingly popular for estimating the SoC, their performance is significantly
affected by the accuracy of the battery model and parameter estimation. For instance, the
Extended Kalman Filter (EKF), one of the most widely adopted algorithms, approximates
the nonlinear system by linearizing it at each time step [24–26]. However, this approxima-
tion can lead to estimation errors, particularly when dealing with highly nonlinear systems
like lithium-ion batteries, where parameters such as internal resistance, capacitance, and
OCV change dynamically with the SoC, temperature, and operating conditions.

In response to these challenges, more sophisticated filters, such as the Sigma Point
Kalman filter (SPKF), have been developed to better capture the nonlinearities of the
system without requiring linearization [27,28]. The SPKF uses a set of deterministic points
called Sigma points to accurately estimate the state and model parameters by directly
propagating these points through the nonlinear system dynamics. This allows the filter
to capture the true mean and covariance of the state distribution without the need for
linearization, making it more suitable for the highly nonlinear behavior of lithium-ion
batteries. The relevance of the SPKF in battery management systems lies in its ability
to handle the dynamic variations in battery parameters more effectively, improving the
accuracy of SoC estimation and parameter tracking. Despite these advantages, existing
SPKF-based approaches may still struggle under rapidly changing operating conditions, as
they typically rely on static process and measurement noise covariance matrices, which do
not account for real-time variations in the battery system.

To address these shortcomings, the author proposes an advanced joint estimation
approach that integrates an adaptive Sigma Point Kalman filter (ASPKF) with a 2RC-ECM.
This novel method not only estimates the battery’s SoC but also dynamically identifies
the battery’s model parameters in real time. By incorporating adaptive noise covariance
matrices for both the process and measurement models, the ASPKF is able to respond to
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the time-varying nature of LIBs and provide more accurate and reliable estimations under
varying conditions.

Specifically, our approach adapts the process noise covariance (Q) based on the change
in the predicted state variables, such as SoC and model parameters, between consecutive
iterations. This allows the filter to capture the dynamic behavior of the battery more
effectively. Similarly, the measurement noise covariance (R) is adapted based on the
residual between the predicted and measured terminal voltage, ensuring that the filter
remains robust even in the presence of measurement uncertainties.

In this paper, the proposed ASPKF method is compared with two commonly used
techniques for joint parameter and SoC estimation: the hybrid recursive least square (RLS)-
EKF method, and the simple joint SPKF method. The RLS-EKF method, though capable
of estimating both the SoC and model parameters, can suffer from instability in highly
dynamic environments due to its reliance on linearization. The simple joint SPKF, while
better suited for handling non-linearities, lacks the adaptability needed to fully capture the
time-varying behavior of lithium-ion batteries.

Through extensive simulations, the author demonstrates that the ASPKF significantly
outperforms both the RLS-EKF and the simple SPKF in terms of accuracy, robustness,
and computational efficiency. The results show that the ASPKF provides superior SoC
estimation results and more accurate parameter identification under a wide range of
operating conditions, making it an ideal solution for modern BMS in EVs.

The remainder of the paper is structured as follows. First, the experimental setup is
detailed in Section 2, focusing on the use of the 3 Ah LG-HG2 18650 cylindrical LIB, which
will serve as the basis for model validation and parameter estimation. Next, the battery
modeling approach is discussed in Section 3, where the 2RC-ECM is selected. This model is
chosen for its ability to accurately capture both fast and slow dynamic responses of the LIB,
making it well-suited for precise SoC and parameter estimation. The paper then introduces
the methodology for joint parameters and SoC estimation in Section 4, starting with an
overview of the SPKF appraoch. The process of joint sigma-point filtering is explained
in detail, highlighting the key steps involved. Furthermore, the author addresses the
challenging issues associated with the standard SPKF, such as handling model uncertainties
and maintaining filter stability under varying operating conditions. Finally, the results
and comparisons of the proposed methods are presented in Section 5. The performance of
the hybrid RLS-EKF method and the simple joint SPKF method is compared against the
proposed ASPKF method.

2. Experimental Setup

Modeling the battery and estimating its internal parameters and states requires col-
lecting experimental data that represents the battery response under different tests and
operating conditions. The experimental data considered in this paper are those of the 3 Ah
LG-HG2 18650 cylindrical cell acquired from [29]. The cell’s specifications are shown in
Table 1.

A series of tests (the four pulse discharge hybrid pulse power characterization (FPD-
HPPC) test and four drive cycles) were performed at six different temperatures (−20 ◦C,
−10 ◦C, 0 ◦C, 10 ◦C, 25 ◦C, 40 ◦C), and the battery was charged after each test at 1 C-rate to
4.2 V, 50 mA cut off, with battery temperature 22 ◦C or greater. These tests were performed
at McMaster University in Hamilton, Ontario, Canada by Dr. Phillip Kollmeyer [29].
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Table 1. LG-HG2 18650 cell specification.

Category Specification

Manufacturer LG Chemical
Type Cylindrical

Chemistry Li[NiMnCo]O2 (H-NMC)/Graphite + SiO
Nominal Voltage 3.6 V

Nominal Capacity 3.0 Ah
Energy Density 240 (Wh/Kg)

Charge 1.5 A, 4.2, 50 mA End-Current (CC-CV) Normal
4 A, 4.2 V, 100 mA End-Current (CC-CV) Fast

Discharge 2 V End Voltage, 20 A MAX Continuous Current

As shown in Figure 1, the FPD-HPPC test involves subjecting the battery to a series
of discharge and charge pulses at varying C-rates to evaluate its dynamic performance
across different SoC levels and temperatures. The discharge C-rates are 1 C, 2 C, 4 C,
and 6 C, whereas the charge C-rates are 0.5 C, 1 C, 1.5 C, and 2 C. The FPD-HPPC test is
performed across a wide range of SoC levels (100%, 95%, 90%, 80%, 70%, 60%, 50%, 40%,
30%, 20%, 15%, 10%, 5%, 2.5%, 0%) to capture the battery’s current, voltage, and other
dynamic characteristics at each SoC level.

Figure 1. Four pulse discharge hybrid pulse power characterization (FPD-HPPC) current data and
battery terminal voltage response.

To assess the battery’s performance under real-world driving conditions, drive cycle
tests are designed, by simulating power demands typical of electric vehicle operation. In
these tests, a series of drive cycles, such as the urban dynamometer driving schedule (UDDS)
(see Figure 2), highway fuel economy test (HWFET), LA92, and US06, are performed in
sequence. These drive cycles mimic different driving environments, including city driving,
highway conditions, and mixed traffic scenarios, generating varying power and energy
demands on the battery. These tests are performed at the same six temperatures, ranging
from −20 °C to 40 °C.
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Figure 2. Urban dynamometer driving schedule (UDDS) current data and battery terminal volt-
age response.

3. Battery Modeling

The 2RC-ECM model, presented in Figure 3, is selected in this paper to simulate
the dynamic behavior of the LIB for its accuracy in capturing the battery’s fast and slow
dynamic responses. The model comprises an ideal voltage source VOCV representing the
battery OCV, an internal resistance R0, and two RC networks (R1, C1, R2 and C2). The
internal resistance (R0) represents the ohmic losses of the battery, while the two RC networks
capture the battery’s short-term and long-term dynamic behaviors. The products of R1, C1,
and R2, C2 represent the time constant for the first and second RC pairs, respectively.

Figure 3. Second order equivalent circuit model (2RC-ECM).

According to Kirchhoff’s Voltage law, the governing equations representing the dy-
namic behavior of the LIB can be expressed as follows

dV1(t)
dt

= −
V1(t)
R1C1

+
I

C1
dV2(t)

dt
= −

V2(t)
R2C2

+
I

C2
Vt(t) = VOCV(SoC)− V1(t)− V2(t)− I(t)R0

(1)
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where I is the battery current, V1 is the voltage across the first RC branch and V2 is the voltage
across the second RC branch, Vocv is the battery OCV and Vt is the battery terminal voltage.
The 2RC-ECM parameters, R0, R1, C1, R2 and C2, are SoC and temperature dependent.

The continuous-time equations of the 2RC-ECM can be discretized to simplify numer-
ical implementation and estimation of the battery’s parameters and internal states. The
discrete-time state-space representation provides a structured framework for tracking the
dynamic response of the battery, which is essential for real-time applications.

The state-space model in discrete form is derived as follows

SoC(k + 1) = SoC(k)−
η · ∆T

3600 · Qnom
· Ik

V1(k + 1) = exp(
− ∆T

R1 · C1
) · V1(k) + (1 − exp(

− ∆T
R1 · C1

)) · R1 · I(k)

V2(k + 1) = exp(
− ∆T

R2 · C2
) · V2(k) + (1 − exp(

− ∆T
R2 · C2

)) · R2 · I(k)

Vt(k) = VOCV(k)− V1(k)− V2(k)− I(k) · R0

(2)

where Qnom is the battery capacity, η is the Coulombic efficiency and ∆T is the sam-
pling time.

4. Joint Parameter and SoC Estimation

The methodologies employed for the joint estimation of model parameters and SoC of
the LIB are presented in this section. The effectiveness of the SPKF in managing nonlinear
dynamics will be discussed. Subsequently, the joint sigma point filtering process will
be explored, and the challenges associated with standard SPKF implementations will
be addressed.

4.1. SPKF Overview

The SPKF serves as an effective method to address the intrinsic nonlinearities in
battery behavior while jointly estimating the battery model parameters and SoC. Unlike
the traditional KF, which assumes linear dynamics, and the EKF, which approximates the
system’s nonlinearity through first-order linearization, the SPKF provides a more accurate
approach by directly working with the nonlinear system model. It achieves this by using
a set of carefully selected sample points, known as Sigma Points, to represent the state
distribution. These Sigma Points are then passed through the nonlinear dynamics and
measurement functions, allowing the SPKF to capture the true behavior of the system
without the need for explicit linearization.

The core idea behind the SPKF is to propagate a set of Sigma Points through the nonlin-
ear functions that describe the system and its measurements. At each time step, these Sigma
Points are generated based on the current estimate of the state and its covariance, ensuring
that their weighted mean and covariance match the current estimate. These points are then
passed through the nonlinear system dynamics, resulting in a transformed set of points
that represent the predicted state. A similar transformation is applied for the measurement
update, allowing the SPKF to update the state estimate based on new observations.

One of the main advantages of the SPKF is its ability to handle strong nonlinearities
more effectively than simple KFs. By avoiding linearization, the SPKF provides a more
accurate representation of the LIB dynamics where nonlinearities are significant. This
makes it ideal for estimating both the battery’s SoC and the 2RC-ECM parameters (R0, R1,
C1, R2, C2).

4.2. Joint Sigma-Point Filtering

According to the literature, the quantities that describe the LIB exist on two-time
scales. Battery system states, such as SoC, diffusion voltage, and hysteresis voltage, tend to
change quickly. And time-varying parameters of the battery system, such as cell capacity,
that fluctuate slowly over time [28]. Estimating both the state and the slow time-varying
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cell parameters can be done by combining the cell model state vector with the model
parameters and simultaneously estimating the values of this augmented state vector. This
approach is known as joint estimation.

Joint estimation makes the battery model more adaptive to real conditions as it al-
lows for simultaneous tracking of both the battery’s SoC and model parameters. This
leads to more accurate state predictions and performance compared to separate estimation
methods, as interdependencies between SoC and parameters are better captured. De-
spite the increased complexity of matrix operations, SPKF joint estimation methods are
straightforward to implement once the state-space model is established.

Combining the state and parameter vectors to form an augmented state is the first step
to apply SPKF joint estimation method to the studies battery system. The dynamics may be
represented as follows:


SoCk+1
V1,k+1
V2,k+1

θk

 =



SoCk −
η · ∆T

3600 · Qnom
· Ik + wk−1

exp(
− ∆T

R1 · C1
) · V1,k + (1 − exp(

− ∆T
R1 · C1

)) · R1 · Ik + wk−1

exp(
− ∆T

R2 · C2
) · V2,k + (1 − exp(

− ∆T
R2 · C2

)) · R2 · Ik + wk−1

θk−1 + rk−1


(3)

Vt(k) = Vocv(SoCk)− Ik.R0 − V1(k)− V2(k) + vk (4)

where ∆t is the time step, wk−1 is process noise, θk represents the battery model parameters
at time step k.

With the augmented model of the system state dynamics and parameter dynamics
defined, we apply the SPKF method. The state estimation SPKF steps, are presented in
Table 2.

4.3. Challenging Issues of Standard SPKF

The SPKF method is widely used in nonlinear control applications and is effective
for joint estimation of the battery SoC and parameters. However, the standard SPKF faces
several challenges that can affect its accuracy and stability:

• Process and Measurement Noise: For accurate estimation, the SPKF requires prior
knowledge of the mean and variance of process noise and measurement noise. Any
deviation from the true noise values can degrade the estimation accuracy and even
lead to filter divergence. In real-world applications, uncertainties in the physical
battery system make it difficult to know the true statistical values of the noises. To
address this issue, the SPKF must be adapted to account for unknown or time-varying
noise statistics. Considering the statistical value of noises may be time-varying, an
adaptive update method for time-varying statistical values should be proposed.

• Positive Definiteness of the Error Covariance Matrix: The error covariance matrix
must remain positive definite during the SPKF process to ensure the filter’s stability
and accuracy. However, due to uncertainties and numerical rounding errors, main-
taining the positive definiteness of the matrix can be difficult, which could lead to
filter divergence or failure. To solve this, the Cholesky decomposition method is
used to decompose the error covariance matrix, ensuring it remains positive definite
throughout the estimation process.

In summary, to overcome these drawbacks, an ASPKF method is proposed, which
includes additional steps for noise statistics estimation and Cholesky decomposition to
ensure stability and robustness in the presence of uncertainties.
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Table 2. Summary of the nonlinear sigma-point Kalman filter (SPKF) for joint parameters and
states estimation.

State-space model

[
xk
θk

]
=

[
f (xk−1, uk−1, wk−1, θk−1, rk−1, k − 1)

θk−1 + rk−1

]
yk = h(xk, uk, vk, θk, k)

where wk, rk, and vk are independent Gaussian noise processes with covariances
Σw, Σr, and Σv, respectively.
For simplicity, let Xk =

[
xT

k , θT
k
]T , Wk =

[
wT

k , rT
k
]T , and

ΣW = diag(Σw, Σr).

Initialization: for k = 0, set X̂+
0 = E[X0]

Σ+
X0

= E
[
(X0 − X̂+

0 )(X0 − X̂+
0 )T

]
Σa,+

X,0 = diag(Σ+
X0

, ΣW , Σv)

Computation: for k = 1, 2, . . . ,
compute
State estimate time update

Σa,+
Xk ,0 = diag(Σw, Σr, Σv)

X̂a,−
k = X̂a,+

k + γ
[√

pΣa,+
Xk

−
√

pΣa,+
Xk

]
Xa,−

k = F (Xa,+
k−1, uk−1, XW , Xv, k − 1)

Xa,−
k,i =

p

∑
i=0

αiX
a,−
k,i

Σ−
Xk

=
p

∑
i=0

α
(c)
i (Xa,−

k,i − X−
k,i)(Xa,−

k,i − X−
k,i)

T

Output estimate
yk = h(xk, uk, vk, θk, k)

ŷk =
p

∑
i=0

α
(m)
i yk,i

Σy,k =
p

∑
i=0

α
(c)
i (yk,i − ŷk)(yk,i − ŷk)

T

Estimator gain matrix
Lk = ΣXy,kΣ−1

y,k

State estimate measurement update
X̂+

k = X̂−
k + Lk(yk − ŷk)

Error covariance measurement up-
date Σ+

Xk
= Σ−

Xk
− LkΣy,kLT

k
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5. Results and Discussion

This section presents the results obtained from the experimental validation and anal-
ysis of the proposed methodologies for estimating battery parameters and SoC. The vali-
dation of the 2RC-ECM model will be detailed, highlighting its effectiveness in accurately
representing the battery dynamics. Following this, the performance of the SPKF approach
for joint estimation of battery parameters and SoC will be discussed, along with a thor-
ough examination of the ASPKF and its advantages in improving estimation accuracy
and robustness.

5.1. 2RC-ECM Model Validation

The battery OCV is extracted for each discharge pulse corresponding to specific SoC
points at the sampling intervals of 1, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1, 0.05,
0.025, and 0. The corresponding voltage data from the FPD-HPPC test shown in Figure 1 is
matched to the corresponding SoC values. During the laboratory tests, the SoC is initially
calculated using the ampere-hour counting method. For the intermediate points between
the predetermined OCV values, linear interpolation is employed, utilizing a polynomial
function to derive the voltage values accurately between the known OCV measurements
Figure 4. Additionally, the root mean square error (RMSE) between the measured OCV
values and the interpolated OCV values is computed to 0.003898 V.

The interpolation function used is a seventh-order polynomial function is presented
as follows:

Vocv(SoC) = a1.SoC7 + a2.SoC6 + a3.SoC5+

a4.SoC4 + a5.SoC3 + a6.SoC2 + a7.SoC1 + a8 (5)

Figure 4 illustrates the relationship between the SoC and OCV, highlighting how the
OCV varies as a function of SoC.

Figure 4. State of charge-open circuit voltage (SOC-OCV) curve.

To validate the 2RC-ECM’s performance, the measured and estimated battery terminal
voltage under the FDP-HPPC test, UDDS and LA92 drive cycles at 25 ◦C are illustrated
respectively in Figures 5–7. To evaluate the effectiveness of the proposed battery model,
the corresponding estimation errors are also plotted.

The voltage error under the FPD-HPPC test is minor with an RMSE equal to 0.0069 V.
Similarly, the UDDS test results showed good agreement between the estimated and
measured terminal voltages with an RMSE of 0.00208 V.
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Figure 5. 2RC-ECM voltage response under FPD-HPPC test at 25 ◦C.

Figure 6. Measured and estimated battery terminal voltage under UDDS test at 25 ◦C.

Figure 7. Measured and estimated battery terminal voltage under LA92 test at 25 ◦C.

5.2. SPKF-Joint Estimation of Battery Parameters and SoC

This section presents the results obtained from applying the SPKF for the joint es-
timation of battery parameters and SoC based on the 2RC-ECM. The methodology was
evaluated under various operating conditions to assess its performance and robustness.
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The SPKF-joint estimation algorithm, grounded in empirical and experimental values,
was rigorously tested under diverse operating scenarios to assess its effectiveness. In this
framework, the system state vector is defined as x = [SoC, V1, V2, R0, R1, C1, R2, C2].

The state covariance matrix P was initialized as a diagonal matrix, reflecting the
initial uncertainty associated with the parameters and state, informed by the confidence
in the initial estimates. Additionally, the process noise covariance matrix Q represents
the uncertainty in the system model, accounting for potential errors or approximations in
the dynamics of the system. Finally, the measurement noise covariance R was designed
to balance the trust between model measurements and predictions, ensuring optimal
filter performance.

To further evaluate the robustness of the proposed method, simulations were con-
ducted under different load profiles, specifically UDDS and LA92. Figure 8 presents the SoC
estimation results under the UDDS test at 25 ◦C. The simple SPKF approach maintained an
RMSE of 0.0314%. Additionally, it robustness was quantified with a robustness score of
0.00035511. This demonstrated good accuracy and stability throughout the tests. However,
while the computational efficiency of the SPKF, requiring 996.23 s for processing, is satis-
factory, there remains potential for improvement in the overall estimation accuracy and
robustness. The ASPKF method proposed in this paper aims to enhance these outcomes,
addressing dynamic behavior more effectively and ensuring timely updates essential for
BMS applications where quick decision-making is critical for performance and safety.

Figure 8. SPKF State of charge estimation under UDDS test at 25 ◦C.

5.3. Adaptive SPKF Joint Estimation of SoC and Parameters

The proposed ASPKF represents a significant advancement in the real-time estimation
of battery SoC and battery model parameters by systematically adapting both process
and measurement noise covariances. Recognizing that accurate estimation relies heavily
on precise knowledge of noise statistics—often unknown or time-varying in practical
applications—the ASPKF dynamically adjusts the process noise covariance (Q) based on
observed changes in predicted state variables. This adaptation is achieved by calculating
the state change as the difference between the predicted state and the mean of the predicted
states, allowing for a direct assessment of how much the state estimates vary. The variance
of these state changes informs the updates to Q, which are implemented using the equation:

Q = (1 − α) · Q + α · var(∆xi) (6)

where α is the adaptation factor, and var(∆xi) is the variance of the state change. This
technique enables Q to reflect the current dynamics of the battery system, adapting rapidly
to sudden shifts while preserving information from prior estimates. Moreover, a regulariza-
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tion term is included to ensure that Q does not shrink excessively, maintaining sufficient
process noise to account for model uncertainties and variations.

Simultaneously, the ASPKF modifies the measurement noise covariance (R) accord-
ing to the residuals between predicted and measured voltage. By squaring the voltage
residuals—representing the differences between the filter’s predictions and actual mea-
surements—this method captures the inherent measurement noise associated with sensor
inaccuracies and environmental factors. R is updated using the equation:

R = (1 − α) · R + α · var(vresidual) (7)

This approach ensures that R is responsive to fluctuations in measurement noise, pro-
viding a more accurate representation of the uncertainty in the observations. Regularization
is also applied to R to prevent it from diminishing too much, ensuring that the filter retains
a realistic estimate of measurement noise even during stable periods. This dual adaptation
mechanism enhances the filter’s robustness against the uncertainties inherent in battery
systems, significantly improving estimation accuracy. By addressing both the process and
measurement noise in a systematic manner, the ASPKF mitigates potential filter divergence
caused by inaccurate noise estimations, setting a new standard for real-time estimation
techniques in BMS.

The efficacy of the proposed ASPKF is evidenced by its performance compared to
traditional methods. The RMSE values achieved are 0.0473% for the RLS-EKF method,
0.0314% for the Simple SPKF, and an impressive 0.0281% for the ASPKF, demonstrating a
marked improvement in accuracy. Additionally, the Mean Absolute Error (MAE) values
also reflect this trend, with 0.0235% for the RLS-EKF, 0.0198% for the SPKF, and 0.0172%
for the ASPKF. These MAE values reinforce the significant accuracy advantage provided
by the ASPKF. Furthermore, while the computation time for the ASPKF was recorded
at 1346.98 s, which is longer than the 734.47 s required by the RLS-EKF and 996.23 s by
the SPKF, the significant enhancement in robustness—reflected in a robustness score of
0.00087873 for the ASPKF compared to 0.00057873 and 0.00035511 for the RLS-EKF and
Simple SPKF, respectively—underscores the value of the adaptive approach. A detailed
overview of the ASPKF is provided in Table 3. Table 4 summarizes the performance metrics
of the methods RLS-EKF, SPKF and ASPKF, highlighting their RMSE, MAE, computation
time, and robustness.

Robustness, in the context of this study, refers to the algorithm’s ability to maintain
accurate SoC estimation in the presence of noise and parameter uncertainties. Specifically,
the robustness metric evaluates:

• Accuracy in SoC Estimation: The algorithm’s capability to preserve precision in estimat-
ing SoC despite disturbances, noise, or inaccuracies in the battery model parameters.

• Speed of Convergence: How quickly the filter recovers and converges to an accurate
SoC estimation after disturbances or variations in system conditions, such as sensor
noise or parameter drift, are introduced.
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Table 3. Summary of the Adaptive Sigma-Point Kalman Filter (ASPKF) for joint parameters and
states estimation.

State-space model [
xk
θk

]
=

[
f (xk−1, uk−1, wk−1, θk−1, rk−1, k − 1)

θk−1 + rk−1

]
yk = h(xk, uk, vk, θk, k)

where wk, rk, and vk are independent Gaussian noise processes with covariances Σw,
Σr, and Σv, respectively. For simplicity, let Xk =

[
xT

k , θT
k
]T , Wk =

[
wT

k , rT
k
]T , and

ΣW = diag(Σw, Σr).
Initialization: for k = 0, set

X̂+
0 = E[X0]

Σ+
X0

= E[(X0 − X̂+
0 )(X0 − X̂+

0 )T ]

Σa,+
X,0 = diag(Σ+

X0
, ΣW , Σv)

Computation: for k = 1, 2, . . .
State estimate time update

X̂a,+
k = E[X̂a

k ] =
[
(X̂+

k )T , ŴT , v̂T]T

Σa,+
Xk ,0 = diag(Σw, Σr, Σv)

X̂a,−
k = X̂a,+

k + γ
[√

pΣa,+
Xk

,−
√

pΣa,+
Xk

]
Xa,−

k = F (Xa,+
k−1, uk−1, XW , Xv, k − 1)

Xa,−
k,i =

p

∑
i=0

αiX
a,−
k,i

Σ−
Xk

=
p

∑
i=0

α
(c)
i (Xa,−

k,i − X−
k,i)(Xa,−

k,i − X−
k,i)

T

Process Noise Adaptation Update Q based on the change in the predicted state variables

Q = (1 − α) · Q + α · var(∆x)

Measurement Noise Adaptation Update R based on the residual between predicted and measured voltage.

R = (1 − α) · R + α · var(residualvoltage)

Output estimate
yk = h(xk, uk, vk, θk, k)

ŷk =
p

∑
i=0

α
(m)
i yk,i

Σy,k =
p

∑
i=0

α
(c)
i (yk,i − ŷk)(yk,i − ŷk)

T

Estimator gain matrix
Lk = ΣXy,kΣ−1

y,k

State estimate measurement update
X̂+

k = X̂−
k + Lk(yk − ŷk)

Error covariance measurement update
Σ+

Xk
= Σ−

Xk
− LkΣy,k LT

k
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Table 4. Performance comparison in terms of RMSE, MAE, computation time, and robustness for
different methods.

Metric RLS+EKF Simple SPKF Adaptive SPKF

RMSE (%) 0.0473 0.0314 0.0281
MAE (%) 0.0235 0.0198 0.0172

Computation Time (s) 734.47 996.23 1346.98
Robustness 0.00035511 0.00057873 0.00087873

By considering both accuracy and convergence speed, this metric assesses the stability
and reliability of the algorithm under real-world conditions, including system uncertainties
and dynamic changes.

Robustness =
1

ConvergenceTime
(8)

To ensure the stability and reliability of the estimation process, the use of Cholesky
decomposition maintains the positive definiteness of the error covariance matrix through-
out the filtering procedure. By addressing these critical challenges, the proposed ASPKF
significantly improves the accuracy and reliability of state and parameter estimations,
providing a more effective tool for BMS in electrified vehicles. This advancement not only
enhances the operational efficiency of energy storage applications but also contributes to
the development of more sophisticated control strategies in the field.

The schematic diagram in Figure 9 illustrates a comparative framework for the joint
estimation of battery parameters and SoC using different approaches. At the top, three
distinct test datasets—FPD-HPPC test, UDDS test, and LA92 test—provide experimental
data, including voltage, current, and SoC measurements. This data is utilized by three
methods: the Hybrid RLS-EKF, the simple joint SPKF, and the Adaptive Joint ASPKF. These
methods aim to identify the parameters of a 2RC-ECM (R0, R1, C1, R2, C2) that depend
on SoC and perform a joint estimation of battery SoC. The middle row of the diagram
presents the mathematical formulations associated with each method, while the bottom
row displays performance comparisons. The plots depict the estimated SoC against the real
SoC over time for all methods, highlighting their accuracy. Finally, the bar charts provide a
comparison of RMSE, computation time, and robustness, thereby indicating the strengths
and weaknesses of each method. The results clearly demonstrate the high accuracy and
robustness of the proposed ASPKF, as it consistently achieves lower RMSE values and
higher robustness across various test scenarios.

To summarize, Figure 10 compares the performance of the traditional RLS-EKF and
joint SPKF methods to the proposed ASPKF. The algorithm takes as input the current
load and measured voltage to jointly estimate the model parameters and SoC. The chart
demonstrates the effectiveness of the proposed approach in accurately predicting both the
SoC and parameters simultaneously, all while maintaining a low computational cost.
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θECM = [VOCV , R0(soc), R1(soc),
C1(soc), R2(soc), C2(soc)]

Hybrid RLS + EKF method Simple Joint SPKF

RLS 2RC-ECM parameters 
identification 

HPPC Test UDDS Test LA92 Test

Adaptive Joint SPKF method

Figure 9. Schematic diagram for the battery parameters and SoC joint estimation.
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Figure 10. Comparison between battery SoC estimation results using RLS+EKF/UKF/AUKF under
UDDS test at 25 ◦C.

6. Conclusions

In this study, we presented an advanced joint estimation approach utilizing an ASPKF
for the precise modeling and SoC estimation of LIBs. The proposed method effectively ad-
dresses the limitations of traditional techniques, such as the hybrid RLS-EKF and the SPKF,
particularly under dynamic operating conditions. By integrating an adaptive mechanism
for process and measurement noise covariance matrices, the ASPKF demonstrated superior
accuracy, robustness, and computational efficiency in estimating both model parameters
and SoC.

The author’s extensive simulations with the 3 Ah LG-HG2 18650 cylindrical battery
validated the effectiveness of the ASPKF [29]. The results indicated that the ASPKF outper-
forms existing methods with an RMSE of 0.0281%, compared to 0.0314% for the traditional
SPKF and 0.0473% for the RLS-EKF method. In terms of computational efficiency, the
ASPKF exhibited a computation time of 1346.98 s, while the simple SPKF required 996.23 s,
and the RLS-EKF took 734.47 s. Notably, the robustness metrics revealed that the ASPKF
achieved the highest value of 0.00087873, surpassing the simple SPKF at 0.00035511 and
the RLS-EKF at 0.00057873. These findings highlight the ASPKF’s effectiveness in main-
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taining performance under varying conditions, making it an ideal solution for modern
BMS applications.

Future research will focus on further enhancing the robustness of the ASPKF method,
particularly in extreme operating conditions, such as rapid temperature fluctuations and
high discharge rates. Additionally, integrating machine learning techniques to predict
battery behavior and dynamically adjust filter parameters may significantly improve
estimation accuracy. Exploring innovative methodologies, including hybrid approaches
that combine data-driven and model-based techniques, as well as applying deep learning
algorithms to capture complex relationships in battery data, will be essential for advancing
SoC estimation techniques. Continuous improvement in these areas will contribute to
optimizing BMS, ensuring the safety, performance, and longevity of lithium-ion batteries
in EVs and other applications.
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