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Abstract: To improve the accuracy of detecting small and long-distance objects while self-driving cars
are in motion, in this paper, we propose a 3D object detection method, Att-BEVFusion, which fuses
camera and LiDAR data in a bird’s-eye view (BEV). First, the transformation from the camera view
to the BEV space is achieved through an implicit supervision-based method, and then the LiDAR
BEV feature point cloud is voxelized and converted into BEV features. Then, a channel attention
mechanism is introduced to design a BEV feature fusion network to realize the fusion of camera
BEV feature space and LiDAR BEV feature space. Finally, regarding the issue of insufficient global
reasoning in the BEV fusion features generated by the channel attention mechanism, as well as
the challenge of inadequate interaction between features. We further develop a BEV self-attention
mechanism to apply global operations on the features. This paper evaluates the effectiveness of
the Att-BEVFusion fusion algorithm on the nuScenes dataset, and the results demonstrate that the
algorithm achieved 72.0% mean average precision (mAP) and 74.3% nuScenes detection score (NDS),
with an advanced detection accuracy of 88.9% and 91.8% for single-item detection of automotive and
pedestrian categories, respectively.

Keywords: autonomous car; BEV feature fusion; object detection

1. Introduction

Environment sensing as a basis for unmanned systems can understand and adapt
to the surrounding environment, drawing increasing attention from both industry and
academia. An accurate and comprehensive understanding of the driving environment
around a person, including vehicles, pedestrians, and streets, is essential for self-driving
cars to make reliable and efficient driving decisions. Among these tasks, 3D object detection
is a core aspect of 3D perception. However, due to the inherent properties of different
sensors, relying only on a single type of sensor cannot ensure stable and high-quality
perception results in the ever-changing driving environment [1]. For example, camera
data can provide dense color and texture information but are unable to capture depth;
radar can detect objects at long distances and provide real-time object information but
has lower resolution, limiting high-precision data; and LiDAR offers accurate depth and
structural information but faces limitations in range and sparsity [2]. It is worth noting
that multi-sensor fusion is important for accurate and reliable sensing since today’s self-
driving systems are equipped with various sensors, and different sensors can provide
complementary signals.

Currently, most sensor systems for driverless vehicles use two sensors, LiDAR and
camera, and the fusion of the two can be classified into pre-, mid-, and post-fusion according
to the data fusion stage, and several fusion methods have their own advantages and
disadvantages. Pre-fusion methods include PointPainting [3] and PointAugmenting [4],
which are used to construct complex mapping relationships, mapping point cloud data
to image data, or mapping image data to point cloud data. Traditional mid-term fusion
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methods at the feature end include MV3D [5] and AVOD [6], which use (Convolutional
Neural Network) CNN [7] to extract features from the point cloud and RGB images and
input them into RPN for fusion. The late fusion methods on the decision side include
CLOCs [8] and Fast CLOCs [9], which use a low-complexity multi-modal fusion structure
to take the consistency relationship between independent point cloud detection and image
detection candidates and input them into sparse convolutional computation to achieve the
final fusion result.

Based on the data structure processed by the algorithms, the methods for 3D object
detection can be classified into three groups: the first one is based on the original point
cloud, the second one is based on the voxel grid, and the third one is based on the bird’s-eye
view (BEV). Three-dimensional object detection methods based on raw point clouds include
PointNet [10], PointNet++ [11], and Point-RCNN [12]. These methods directly utilize raw
point clouds without converting them into other grid representations, maximizing the
retention of original geometric details. Voxel grid-based 3D object detection methods
include SECOND [13] and PointPillars [14]. Unlike methods that use raw point clouds
directly, these approaches address challenges posed by the large, unordered, and uneven
distribution of point cloud data by partitioning it along the X, Y, and Z axes, converting it
into a grid-like encoded representation for more efficient data processing. BEV 3D object
detection methods include BEVDet [15] and Bevpool [16]. These methods convert features
from the image view into a BEV perspective and use a prediction head for object detection
in the BEV, allowing for a more comprehensive representation of the complete scene and
effectively enhancing detection performance.

Despite the different implementation methods, the ultimate goal of these approaches
is to find an optimal balance between precise features obtained from point clouds and
computational cost. While raw point cloud methods maximize the retention of geometric
information, they also incur the highest computational overhead. Voxel-based methods
reduce complexity and increase computation speed but may result in some loss of in-
formation. At this point, the fusion from the BEV perspective plays a significant role; it
provides a physically interpretable principle when merging different views, modalities,
temporal sequences, and feature information. For example, DeepFusion [17] integrates
LiDAR and camera features in a multi-scale space by consolidating them in the BEV, en-
hancing multi-modal 3D object detection. CBGN [18], also based on the bird’s-eye view,
performs cross-modal fusion of data from cameras and LiDAR in the BEV space, accurately
combining data from two different sensors. However, the low resolution caused by con-
volution and pooling operations can result in the neglect or loss of small objects, creating
challenges in detecting long-distance and small objects due to the limited pixel information.

The most popular work on fusing camera and LiDAR data in the BEV perspective
is BEVFusion [19], which utilizes shared image BEV features combined with point cloud
features, effectively preserving both geometric and semantic information, achieving ex-
cellent results in the nuScenes [20] detection benchmark. However, when merging image
BEV features with LiDAR BEV features, spatial alignment errors between the two can
lead to the misalignment of features, resulting in lower detection accuracy [21]. As shown
in Figure 1, which illustrates the qualitative comparison between BEVFusion and Att-
BEVFusion, it can be seen that BEVFusion experiences missed detections for distant and
small objects, whereas our proposed Att-BEVFusion incorporates channel attention and
self-attention mechanisms, making it more robust in detection accuracy and capable of
accurately detecting those missed objects. In this paper, we present an object detection
method (Att-BEVFusion) for camera and LiDAR fusion in a BEV perspective, with the main
contributions in the following aspects:

(1) An implicit module was developed to convert camera view features into BEV features,
along with a module for transforming LiDAR point cloud data into BEV features. This
facilitates the alignment of camera view features with LiDAR BEV features, enhancing
feature fusion.
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(2) An attention mechanism was added. During the construction of the BEV feature
fusion module for camera and LiDAR data, a channel attention mechanism was
introduced to capture important features. The issue caused by the channel attention
mechanism, namely the neglect of global information in the feature map, is addressed
by further designing a feature fusion-based self-attention mechanism. This helps to
avoid limitations when handling long-range dependencies and the gradual loss of
information during transmission.

(3) We trained, validated, and tested our algorithms on the autonomous driving dataset
nuScenes. Experiments show that the detection accuracy of the proposed Att-BEVFusion
approach outperforms the most popular publicly available results, achieving an out-
standing performance of 72.0% mAP and 74.3% NDS in the 3D object detection task,
which is of great significance for enhancing the robustness and reliability of intelligent
vehicle perception.
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Figure 1. Comparison between BEVFusion and our proposed method, Att-BEVFusion, which shows
that our method is able to effectively detect both distant and occluded objects.

2. Related Work
2.1. Camera-Based 3D Object Detection

With the emergence of Faster-RCNN [22], various methods for 2D object detection
have emerged, but the 2D detection results are far from satisfying our needs for unmanned
vehicles. In the real 3D world, objects have 3D shapes, and many applications need to
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have information about the length, width, and height of the object, as well as the deflection
angle [23]. Camera-based 3D object detection methods mainly rely on extracting depth
and spatial information from 2D images to achieve 3D detection, and estimating the
3D bounding box only from the image data input provided by the camera faces a great
challenge since recovering 3D information from 2D input data is an unsettled problem. In
the last two years, with the emergence of BEV perception, 3D object detection based on
purely visual BEV schemes has attracted much attention, among which, the pioneering
work of depth-based estimation, LSS [24], extracts the features of the surround-view
camera image and “lifts” each image feature into a view cone. Then, all the view cones
are “flattened” into a rasterized BEV grid to obtain the BEV feature map, and finally,
the BEV feature map is processed using the task header to output the perceptual results.
Inspired by LSS, subsequent works such as BEVDet were created [15]. Following the
LSS paradigm, we propose a multi-angle camera 3D detection network architecture for
use in BEV, which enhances the quality of depth estimation to enhance the performance
of multi-view 3D object detection. The BEVDepth [25] approach, while maintaining the
LSS structure, focuses on obtaining more accurate and optimized depth estimations and
proposes a method to efficiently compute the voxel pooling process by introducing a
multi-frame fusion technique. Utilizing this top-down BEV perspective can improve
the performance of camera-based 3D detection algorithms by a large margin. However,
camera-only-based methods usually need to rely on monocular depth estimation or stereo
vision techniques due to insufficient depth information, but the depth estimation of these
techniques is usually not accurate enough, which can lead to misdetection or omission,
thus affecting the detection accuracy.

2.2. Three-Dimensional Object Detection Based on LiDAR

Current point cloud-based 3D object detection methods can be divided into two cate-
gories: voxel-based and pillar-based. Among the voxel-based methods, VoxelNet [23] is
a 3D convolutional neural network-based algorithm that divides irregular point clouds
into voxels and applies 3D convolutional aggregation of local voxel features, which are
processed by a Region Proposal Network (RPN) to generate the object region of interest
and predict the 3D bounding boxes. However, in the VoxelNet model, a large number of
highly computational 3D convolutions are required, which makes real-time applications
challenging. The subsequently proposed SECOND [13] network introduces 3D sparse
convolution to accelerate and enhance the VoxelNet model in real time. In contrast to voxel-
based methods, pillar-based approaches focus on reducing inference time and enhancing
real-time performance. For example, the PointPillars [12] network utilizes pooling opera-
tions to transform point cloud features into pseudo-images in a bird’s-eye view. It achieves
end-to-end learning using only 2D convolutional layers, which significantly enhances
the real-time performance of 3D object detection. Shi et al. from the Harbin Institute of
Technology proposed the PillarNet [26] model, which introduces a 2D sparse convolution
with a ResNet18 structure into the backbone of the BEV feature extraction module, in a
way that improves real-time performance while being able to achieve similar accuracy to
voxel-based networks [27].

2.3. Three-Dimensional Object Detection Based on Multi-Sensor Fusion

Due to certain limitations of individual sensors in tasks such as object detection and
identification, the fusion of multiple sensors to maximize the benefits of each sensor is
attracting more and more attention. Currently, there are numerous approaches based
on camera and LiDAR fusion, such as MVAF-Net [28], PointFusion [29], RoarNet [30],
DeepFusion [17], etc. MVAF-Net improves the performance of multi-view object detection
in multi-view scenarios by introducing a view attention mechanism and feature fusion
to process the input images from multiple viewpoints. PointFusion [29] processes point
cloud data through multi-sensor fusion and feature fusion, thus enhancing the performance
of 3D object detection and semantic segmentation tasks while effectively leveraging the
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information provided by various sensors. The core idea of RoarNet [30] is to first extract
rough 3D object regions from LiDAR point clouds, and then use features from camera
images to further refine these regions for object detection. Deepfusion [17] enhances the
relationship between the image and LiDAR features during fusion by using InverseAug
inverse geometric correlation enhancement as well as LearnableAlign fusion that utilizes
cross-attention to capture correlations dynamically in order to obtain an effective alignment
between multi-modal features. Despite the increasing maturity of these methods, there
will still be the problem of object occlusion in complex scenes, whereas the application of
BEV in object detection has a great advantage in that it provides a uniform and complete
representation of the global scene, where the size and orientation of the objects can be
directly represented. The steps for camera and LiDAR fusion in the BEV perspective include
first extracting features from camera and LiDAR inputs and efficiently converting them into
BEV features using view transformation. The transformed BEV features are then passed
through a fully convolutional BEV encoder to obtain fused BEV features. Finally, these
features are decoded to perform various sensing tasks. However, these fusion methods
are highly dependent on multi-sensor data alignment, and inaccurate data alignment and
synchronization can lead to a mismatch of multi-modal features in BEV representation,
ultimately reducing the robustness and accuracy of object detection.

To address the above issues, the Att-BEVFusion model proposed in this paper pre-
dicts the depth distribution for each pixel in the camera view. Each feature pixel is then
projected into multiple discrete points along the camera rays, with the associated features
rescaled based on their respective depth probabilities. This process generates a feature
point cloud, effectively spreading the features along the Z-axis. In the meantime, LIDAR
point cloud voxelization is employed to convert the point cloud features into a uniform grid,
and the associated convolution operation is performed to obtain the LIDAR BEV feature
representation. In addition, we constructed a channel attention mechanism for fusing
camera and LiDAR BEV features, along with a self-attention mechanism to enhance feature
interaction. This approach strengthens the information exchange between the camera and
LiDAR features as a way to improve detection accuracy.

3. General Structure

The overall structure of our proposed object detection for camera and LIDAR fusion in
a BEV perspective is shown in Figure 2. The Att-BEVFusion algorithm is divided into four
parts, which include (1) extracting the features from the camera inputs and transforming
them into BEV features; (2) extracting the features from the LIDAR and transforming
them into BEV features; (3) performing the features of the two under BEV fusion; and
(4) inputting the object detection head to obtain the object detection result. To project both
LiDAR and camera data into the BEV, the model performs transformations that account for
the unique characteristics of each sensor type. Specifically, firstly, a 2D feature extractor
is applied to extract features from the camera data, after which the extracted 2D features
are transformed into 3D. These 3D features are then compressed to obtain the camera’s
BEV features. The processing of laser point cloud data is as follows: the 3D laser point
cloud is first voxelized and then compressed to obtain the laser point cloud BEV features,
and the transformed camera and LiDAR features are then fed into the channel attention
mechanism, where the attention module dynamically adjusts the weights of the channel
features that make a significant contribution to the task, amplifying the impact of these
features so that they are more likely to be attended to and learned during subsequent
processing. For the deep fusion features, we adopt the BEV self-attention mechanism to
further enhance the interaction between different features, thus improving the expressive
capability of the network when dealing with multi-scale information. We will test the effect
of the attention module in later ablation experiments to assess its contribution to overall
accuracy by comparing the performance of the Att-BEVFusion model with and without the
attention mechanism.
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Our approach mainly consists of the following: 1. transformation of camera data to
BEV space features; 2. transformation of LiDAR data to BEV space features; 3. feature
fusion of the two in BEV space; 4. constructing the introduction of a channel attention
mechanism and a self-attention mechanism; and 5. inputting the detector head.

3.1. Image Feature Extraction and Construction of BEV Features

The Att-BEVFusion fusion algorithm uses Resnet101 [31] as the backbone network
to obtain rich semantic information and simultaneously introduces the feature pyramid
network (FPN) [32], which is capable of extracting features from different scales using the
pyramid structure and fusing them into a multi-scale feature representation that is suitable
for detecting objects of different sizes. As shown in Figure 3, the input data is downsampled
through three FPN blocks after passing through ResNet101 + FPN, producing feature maps
f1/8, f1/16, and f1/32. These feature maps are then upsampled using upsampling methods
and 3 × 3 convolutional layers to unify their sizes to the same size as the 1/16 downsampled
feature. This approach integrates multi-scale image features while preserving fine-grained
information. Following this, average pooling downsampling and fully connected layers
are applied, and the output feature map is obtained through a softmax function.
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The Att-BEVFusion fusion algorithm in this paper uses an implicitly supervised
approach for camera BEV feature construction, which predicts the depth distribution for
each pixel and projects the enriched image features to appropriate depth intervals in the
3D space, thus converting the image data into BEV features. Specifically, feature extraction
is first performed on the input image data to obtain a high-dimensional feature map. The
Lift–Splat–Shoot (LSS) method is applied to predict the depth distribution for each pixel in
the camera view. Each feature pixel is then dispersed into multiple discrete points along the
camera rays, with the corresponding features rescaled based on their depth probabilities to
form a feature point cloud. Finally, the Z-axis is compressed in 3D space to generate the
camera BEV features.

3.2. Transformation of LIDAR Features to BEV Features

The original LiDAR point cloud data contain rich depth information; however, due
to the large volume of data, direct processing can impose a significant computational
burden. To alleviate this burden, appropriate preprocessing of the point cloud data is
necessary. When converting point cloud data to BEV features, it is common to compress
the data along the Z-axis, which reduces the dimensionality and improves the efficiency
of subsequent processing. The voxelization method for LiDAR point clouds provides a
simplified and efficient representation of the data, accelerating the processing and feature
extraction from the point clouds. In this paper, the Att-BEVFusion approach leverages the
PointPillars [14] voxelization method to convert LiDAR point clouds into BEV features. As
shown in Figure 4, specifically, it first divides the point cloud data into voxel pillars along
the X and Y axes, resulting in P non-empty grids, each containing N point cloud data points.
Features are extracted from each point cloud data point, and ultimately, all the point cloud
features are aggregated into the voxel grid VL. A Multi-Layer Perceptron (MLP) is then
used to increase the dimensionality, producing V

′
L. Following this, a Softmax max-pooling

operation is applied to reduce the dimensionality of the point cloud samples, resulting in
a feature map with dimensions (C, P). The original coordinates are indexed based on the
centers of the point cloud pillars, yielding a pseudo-image feature representation V

′′
L in the

form of (C, H, W). Finally, a 2D backbone network is employed to elevate the dimensionality
of the BEV features, obtaining high-dimensional BEV features from the LiDAR point clouds.
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3.3. BEV Feature Fusion and Object Detection
3.3.1. Channel Attention Mechanism for Camera and LiDAR BEV Feature Fusion (CAM)

Figure 5 below shows the overall framework of the channel attention mechanism
we introduced. The channel attention mechanism incorporates two main components:
compression and excitation. The compression process includes two fully connected layers,
followed by a ReLU activation function and a Softmax activation function. The features
are first dimensionalized and then scaled, with the final weight vectors generated by a
sigmoid function to ensure that they sum to one. First, the transformed image BEV features
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and LiDAR point cloud BEV features undergo global average pooling to downscale the
feature values of each channel into a global vector. The attention layer will be weighted
according to feature importance, prioritizing spatial accuracy from LiDAR data and se-
mantic information from the camera to better adapt to the scene complexity and detection
environment. Specifically, spatial feature compression is performed on the input feature
map of dimension H × W × C, reducing it to a 1 × 1 × C feature map through global
average pooling. Next, a 1 × 1 × C feature map with channel attention is learned via a fully
connected layer. Finally, this feature map is multiplied channel by channel with the original
input feature map (H × W × C) using the attention weights, producing the final output
feature map with channel attention.
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3.3.2. Self-Attention Mechanism of Feature Fusion (SAM)

Since the SE module [29] mainly focuses on inter-channel relationships, the fused
feature maps ignore global information. To address the above problem, we introduce
the BEV self-attention mechanism to globally operate on the features. This mechanism
helps the fused features to infer their contextual positions in the overall BEV layout, thus
aggregating information related to the shape of the object.

Figure 6 illustrates the overall structure of the BEV self-attention mechanism we con-
structed. Firstly, the BEV features are transformed into three components—query, key, and
value—using linear transformations. The transposed key and query are then used for simi-
larity calculations to obtain attention weights, which are subsequently normalized using
the Softmax operation. Finally, the normalized weights are weighted and summed with
the corresponding values to obtain the final self-attention feature map. The mathematical
formulation of the self-attention mechanism is as follows:

Attention(q, k, v) = so f tmax
(

qkT
√

d

)
v (1)

3.3.3. Three-Dimensional Object Detection

The fused BEV features combine the advantages of LiDAR point cloud BEV features
and image BEV features, possessing both the rich semantic content of images and the 3D
shape and structure information of LiDAR point clouds. This fusion helps to compensate
for the limitations associated with using a single sensor. In this paper, we choose the object
detection head in the PointPallars [14] method and feed the fused BEV features into the
SSD [33] (Single Shot MultiBox Detector), which is a single-stage object detection algorithm
based on convolutional neural networks, and it can directly carry out simultaneous object
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classification and localization, thus speeding up detection, while using multiple loss func-
tions to simultaneously optimize object location and classification predictions, enabling
efficient training of the neural network.
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3.4. Loss Function

The fusion algorithm in this paper is evaluated using three losses: object classification
loss, 3D bounding box regression loss, and 3D bounding box orientation classification loss
from the PointPillars [12] method.

First, for the object classification loss, we used the Focal Loss [31] loss function to
achieve a balance of positive and negative samples and to determine the difficulty of
classifying the samples:

Lcls = −αa(1 − pa)γln(pa) (2)

where pa represents the probability of the prediction box, α is 0.25, and γ is 2.0.
In the 3D bounding box regression loss task, the output bounding box is denoted as

(x, y, z, l, w, h, θ), where x, y, z are the center coordinates of the bounding box, l, w, h are the
dimensions of the bounding box, and θ is the angle of rotation of the bounding box. The
regression residuals between the real bounding box and the predicted bounding box are
defined as follows:

∆x =
xgt − xa

da , ∆y =
ygt − ya

da , ∆z =
zgt − za

da (3)

∆w = ln
wgt

wa , ∆l = ln
lgt

la , ∆h = ln
hgt

ha (4)

∆θ = θgt − θa (5)

Here, ∗gt denotes the true value, and ∗a denotes the predicted value. da =√
(wa)2 + (la)2. In this paper, the Smooth L1 loss function is used to calculate the ge-

ometric loss, which leads to the 3D bounding box regression loss Lreg of this paper:

Lreg = ∑b∈(x,y,z,l,w,h,θ) SmoothL1(∆b) (6)
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Since the angular regression loss cannot distinguish the orientation, it will have some
impact on the accuracy of the model. Therefore, we use the 3D bounding box orientation
regression loss function Lreg_θ to solve this problem:

Lregθ
= SmoothL1

(
sin

(
θgt − θa)) (7)

where θgt denotes the true direction of the object, and θa denotes the predicted direction.
When θa = θgt ± π time, the orientation regression loss tends to 0, which avoids the above
situation and facilitates model training.

In order to solve the problem that the 3D object box orientation regression loss will
treat the prediction boxes in opposite directions as the same, we use the cross-entropy loss
function Ldir trained on the 3D bounding box orientation categories obtained from the
3D object prediction header to obtain more accurate orientation category prediction results:

Ldir = −θ
gt
dir1b(θa

dir)−
(

1 − θ
gt
dir

)
1b(1 − θa

dir) (8)

where θ
gt
dir represents the orientation truth value, and θa

dir represents the predicted orienta-
tion category.

The final total loss function of the Att-BEVFusion algorithm consists of the above four
loss functions:

Lall = λclsLcls + λreg
(

Lreg + Lregθ

)
+ λdirLdir (9)

where λcls, λreg, and λdir are fixed loss weighting factors.

4. Experimentation
4.1. Datasets

We evaluated the proposed method on nuScenes [20], a shared large-scale dataset for
automated driving. The dataset was collected from city streets in Singapore and Boston,
USA, covering a variety of complex urban transportation scenarios, with 20 s long videos
selected for each scenario, totaling about 15 h of driving data. The scenarios were selected
with due consideration of diverse driving maneuvers and traffic situations and accidents,
such as different locations, weather situations, vehicles traveling, driving rules, etc. Not
only does it provide comprehensive annotations, but it also provides rich and diverse
scenes and data for a variety of environment-aware tasks.

4.2. Evaluation Standards

We use the standard evaluation metrics of mAP (mean average precision) and detection
score NDS (nuScenes detection score) for 3D object detection evaluation. mAP is a metric
used to evaluate the overall performance, which calculates the performance evaluation of
the 11 recall points and uses the mean average precision as the metric. NDS is a metric
introduced in the NuScenes dataset to provide a more comprehensive evaluation of object
detection models in autonomous driving. This score was designed to combine multiple
aspects of performance, reflecting both the accuracy of the detected objects and the quality
of their localization, which is particularly important in self-driving applications where
precise positioning and classification of objects are crucial. NDS is calculated as follows.
NDS is calculated as follows [20]:

NDS =
1

10
[5·mAP + 4·(1 − min (1, NDSL2)) + 1·(1 − min (1, NDSL1))] (10)

where mAP denotes mean accuracy, NDSL2 denotes the position error-based metric, and
NDSL1 denotes attribute error-based metrics. Half of the NDS is based on mAP, while
the other half evaluates the quality of the detections, taking into account metrics such
as position, size, orientation, attributes, and velocity. In addition, we used the results of
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10 detection categories for detailed comparison as a more comprehensive evaluation of
3D object detection results.

4.3. Experimental Details

We tested the network on MMDetection3D [34], a PyTorch [35]-based object detection
library, which is among the most popular toolkits in the realm of object detection due to its
highly encapsulated mechanism. For the image branch, we used ResNet101 as the image
backbone; the ResNet101 architecture enables the extraction of more comprehensive and
rich semantic features due to its depth and complexity. For the LiDAR branch, the raw
point cloud can be processed using the Pointpillars [14] point cloud voxelization method.
The Pointpillars method forms a pseudo-image by dividing the point cloud into vertical
columnar regions of fixed size, mapping the features extracted in the region to a 2D space,
and finally extracting high-level features on the pseudo-image, a step similar to that used in
traditional methods. This step is similar to object detection in traditional image processing
and effectively reduces computational complexity.

For our experiments, we applied FPN to fuse multi-scale camera features to generate
feature maps of 1/16 input size, with voxel sizes of LiDAR point clouds set to 0.075 m,
0.075 m, and 0.2 m according to the experimental setup. Our training and inference were
performed on an Ubuntu 18.04 server with an I7-10700 CPU and GeForce RTX 3060 GPU.
The development language used for the experiments was Python 3.7, based on the Pytorch
deep learning structure to write the model code. The model code was written using the
AdamW [36] optimizer to optimize the parameters of the network with a learning rate of
2 × 10−4 and a weight decay of 1 × 10−2.

4.4. Test Results and Comparison

To thoroughly evaluate the performance of the Att-BEVFusion approach on the
nuScenes dataset, we compared the detection results of Att-BEVFusion with other ad-
vanced methods. As indicated in Table 1, these methods are categorized into camera-based,
LiDAR-based, and LiDAR and camera fusion-based. BEV camera-based methods only,
such as BEVDet [15], BEVFormer [37], and BEVHeight [38], LIDAR-based methods only,
such as CenterPoint [39], Deeproute [40], and TransFusion-L [41], and camera and LIDAR
fusion-based methods, such as FusionPainting [42], PointAugmenting [2], TransFusion [41],
BEVFusion [43], and BEVFusion4D [44], are compared. Our proposed Att-BEVFusion
algorithm achieves 72.0% mAP and 74.3% NDS. According to Table 1, our testing method
surpasses previous state-of-the-art approaches in most testing categories, and for the
more challenging pedestrian (Pedestrian) and bicycle (Bicycle) categories, respectively,
Att-BEVFusion achieved competitive mAPs of 91.8% and 60.0%, which outperformed all
single-sensor and multi-sensor fusion methods, a result that also demonstrates the positive
impact of our proposed fusion method on object detection. There are also a few methods
whose performance lags behind slightly, and this performance difference can be attributed
to several factors including, but not limited to, variations in the experimental setup, training
process, and dataset partitioning. And since our results were obtained under specific condi-
tions that may be different from the studies given in BEVFusion4D [44] and BEVFusion [19],
this may lead to differences in the results. It should be noted that the table also reports
the runtime per frame, and compared to the camera-only and lidar-only approaches, our
Att-BEVFusion requires additional runtime due to generating the camera features in BEV
space, so our processing is a little bit slower, although the overall performance is still good.
The overall performance improvement is attributed to the introduction of the channel
attention mechanism and the BEV self-attention mechanism for fusing LiDAR and camera
BEV features.
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Table 1. This shows the evaluation results for the nuScenes test set. L denotes a LIDAR-based method.
C denotes a camera-based method. L + C denotes a LIDAR–camera-based method. Abbreviations
stand for construction vehicle (C.V.), motorcycle (Motor.), pedestrian (Ped.), and traffic cone (T.C.).
Red and blue colors represent the optimal and sub-optimal results, respectively.

Methods Modality mAP NDS Latency (ms) Car Truck C.V. Bus Trailer Barrier Motor. Bicycle Ped. T.C.

BEVDet [15] C 42.4 47.6 - 64.3 35.0 16.2 35.8 35.4 61.4 44.8 29.6 41.1 60.1
BEVFormer [37] C 48.1 56.9 - 67.7 39.2 22.9 35.7 39.6 62.5 47.9 40.7 54.4 70.3
BEVHeight [38] C 53.2 61.0 - 68.6 44.8 27.4 42.8 48.5 69.8 54.2 45.9 57.7 72.6

CenterPoint [39] L 60.3 67.3 80.7 85.2 53.5 20.0 63.6 56.6 71.1 59.5 30.7 84.6 78.4
Deeproute [40] L 60.6 68.1 - 82.9 51.5 25.1 59.5 47.6 65.2 68.6 44.3 84.4 76.4

TransFusion-L [41] L 65.5 70.2 - 86.3 56.7 28.1 66.2 58.7 78.0 68.4 44.2 86.2 82.0

3D-CVF [45] L + C 52.7 62.4 - 83.3 45.1 15.7 48.6 49.5 65.7 51.2 30.6 74.1 62.9
FusionPainting [42] L + C 68.1 72.0 - 87.1 60.8 30.0 68.5 61.7 71.8 74.7 53.5 88.3 85.0

TransFusion [41] L + C 68.9 71.5 156.6 87.5 59.9 33.0 68.1 60.9 78.1 73.5 52.9 88.4 86.7
BEVFusion [43] L + C 70.2 72.3 - 88.6 60.1 39.3 69.8 63.8 80.0 74.1 51.0 89.2 86.5

DeepInteraction [46] L + C 70.8 73.7 - 87.7 60.4 37.9 70.6 63.8 80.4 75.4 54.5 91.7 87.2
BEVFusion [19] L + C 71.3 73.4 119.2 88.3 70.0 34.3 69.1 62.1 78.5 72.1 52.0 89.2 86.7

BEVFusion4D [44] L + C 71.9 73.7 - 88.8 64.0 38.0 72.8 65.0 79.8 77.0 56.4 90.4 87.1
Ours L + C 72.0 74.3 141.3 88.9 64.8 30.2 73.5 64.2 80.0 78.9 60.0 91.8 87.7

4.5. Ablation Experiments

To validate the efficiency and reasonableness of the designed approach module, abla-
tion experiments were conducted for camera view to BEV transformation (CBT), channel
attention mechanism (CAM) for camera and lidar BEV feature fusion, and self-attention
mechanism (SAM) for feature fusion. To shorten the time of the experiment and increase
the efficiency of 3D object detection, we utilized 1/4th of the training data of the nuScenes
dataset for the training and testing of the entire ablation experiments. Here, the average
accuracy mAP and the detection score NDS of 3D object detection are used as metrics of
approach performance, and the approach is evaluated with the baseline network. The
algorithm is assessed in comparison with the baseline network. As shown in Table 2, which
demonstrates the change in the performance of the network after adding different compo-
nents, the optimal values in each experiment are shown in boldface, where the baseline
indicates a voxelized detection structure based on LiDAR only, without point cloud and
image fusion.

Table 2. Contribution of each module to the network.

Baseline CBT CAM SAM mAP NDS Car Bicycle Ped.

a
√

-- -- -- 58.4 66.5 84.0 54.3 83.1
b

√ √
-- -- 59.2 68.2 85.2 55.6 83.6

c
√ √ √

-- 61.3 69.6 86.6 56.2 84.1
d

√ √ √ √
62.3 70.1 87.2 58.6 85.5

4.5.1. Quantitative Analyses

As can be seen in Table 2, when the CBT module is introduced into the LiDAR-only-
based detection structure, all the mAP and NDS values are increased, which demonstrates
the effectiveness of our proposed fusion approach. Particularly in terms of the accuracy of
3D object detection, some improvement is achieved: for specific categories, the car, bicycle,
and pedestrian categories are improved by 1.2%, 1.3%, and 0.5%, respectively, which is due
to the fact that LiDAR point cloud data is sparse and low resolution, containing less valid
information, which leads to the pure point cloud detection framework is difficult to have
a better performance for the detection effect of 3D objects, the more such targets need to
be supplemented by image information. After adding the CAM module, the network can
select and weight the important features in each channel more effectively, this enhances
the effectiveness of feature fusion and the quality of image BEV features, resulting in a
significant improvement in the detection accuracy presented in this paper. The car class,
bicycle class, and pedestrian class are improved by 1.4%, 0.6%, and 0.5%, respectively, in
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which the improvement is larger for the car class, but the improvement is not obvious in
the detection of small object objects such as bicycle class and pedestrian class, which may
be due to the lack of global inference in the BEV fusion feature context generated by the
introduction of the CAM, and the features distributed in different locations cannot fully
interact with each other. The BEV fusion features can only provide local information but
cannot provide global integrated reasoning, resulting in an insignificant improvement of
small object detection accuracy. After adding the SAM module, it is able to better grasp the
global information and generate feature maps that are more in line with the object location
distribution of the real scene, with 0.6%, 2.4%, and 1.4% enhancement for the car class,
bicycle class, and pedestrian class, respectively; compared to the baseline, our method
improves the mAP and NDS detection scores by 3.9% and 3.6%, respectively. This part
of the ablation experiments demonstrates the effectiveness of the modules of the network
architecture in this paper.

4.5.2. Qualitative Analysis

To demonstrate the effectiveness of the proposed method, we selected object detection
results from six images in the nuScenes test set for visualization including daytime and
nighttime urban roads, as well as complex conditions such as intersections, to highlight
the superiority of our method. As shown in Figure 7. From Figure 7a,b, it can be seen
that our method performs well even in high-traffic and densely populated areas, such as
city streets and intersections during the daytime. It also effectively detects pedestrians
and smaller objects, such as cyclists and scooter riders, and in Figure 7c,d, it can be seen
that, for vehicles in the nighttime traffic environment with complex traffic environments
and congested vehicles and pedestrians, the Att-BEVFusion algorithm is still able to carry
out accurate recognition and differentiation, accurately identifying multiple objects in
front of it, with good adaptive ability and anti-interference ability. This suggests that
the organic combination of the channel attention mechanism and the BEV self-attention
mechanism enables our method to make full use of the depth-interacting BEV fusion
features to effectively detect occluded objects.

These results highlight that our approach not only achieves great improvement in
detection performance but also still demonstrates convincing reliability when dealing with
challenges in complex scenes.
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5. Conclusions

In this paper, we propose a 3D object detection method (Att-BEVFusion) based on
BEV fusion of the camera and LiDAR. By effectively fusing the camera view features and
LiDAR point cloud features in BEV space, and combining this with the channel attention
mechanism and the self-attention mechanism, it significantly improves the accuracy and
robustness of object detection. The experimental results show that Att-BEVFusion achieves
72.0% mAP and 74.3% NDS on the nuScenes dataset, and 88.9% and 91.8% accuracy in
car and pedestrian detection tasks, respectively, which fully proves the superiority of the
method in multi-sensor fusion.

Meanwhile, the Att-BEVFusion method demonstrates significant advantages in long-
range object and small object detection, especially in complex scenarios where it still
maintains high accuracy and robustness. The method in this paper provides a reliable
multi-sensor fusion solution for autonomous driving systems and provides new research
directions for 3D object detection tasks.

In our study, the phenomenon of overlapping targets has an impact on the accuracy of
the data. However, due to time and resource constraints, we did not deal with the problem
in depth in our current work. Therefore, future research could further explore effective
methods to cope with target overlapping. Secondly, we will consider researching more
complex traffic scenes and higher-density traffic targets to improve the generalization ability
of the algorithm; in addition, we will explore more multi-modal data fusion strategies, such



World Electr. Veh. J. 2024, 15, 539 15 of 17

as incorporating radar or ultrasonic sensors, to further improve the detection accuracy and
robustness in complex environments.

In conclusion, Att-BEVFusion provides effective support for the development of
autonomous driving perception systems, and its robustness and high-precision detection
capability lay a solid foundation for the security and stability of autonomous driving.
Future research can be optimized based on this method to promote the further application
and development of autonomous driving technology.
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