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Abstract: Taking a Vienna rectifier as the research object, the power mathematical model based on a
switching function is established according to its working principle. A sliding mode variable structure
control algorithm based on the reaching law is examined in order to address the issues of the slow
response speed and inadequate anti-interference of classical PI control in the face of abrupt changes in
the DC-side load. In response to the sluggish convergence rate and inadequate chattering suppression
of classical integer order sliding mode control, a fractional order exponential reaching law sliding
mode, direct power control approach with rapid convergence is developed. The fractional calculus is
introduced into the sliding mode control, and the dynamic performance and convergence speed of the
control system are improved by increasing the degree of freedom of the fractional calculus operator.
The method of including a balance factor in the zero-sequence component is employed to address the
issue of the midpoint potential equilibrium in the Vienna rectifier. Ultimately, the suggested control is
evaluated against classical PI control through simulation analysis and experimental validation. The
findings indicate that the proposed technique exhibits rapid convergence, reduced control duration,
and enhanced robustness, hence augmenting its resistance to interference.

Keywords: Vienna rectifier; sliding mode control; equilibrium of midpoint potential; fractional order
control; zero-sequence component

1. Introduction

The significance of power electronics technology in the energy management and
power transmission systems of electric vehicles has increased in tandem with the rising
global energy demand and the rapid progression of electric vehicle technology. Rectifiers
are a crucial element of the electric vehicle charging system and are vital for the AC/DC
conversion process [1,2]. But existing rectifier technologies are limited by energy efficiency
bottlenecks, a poor power factor, and harmonic pollution, which not only jeopardize the
grid power quality but also make it difficult to achieve the high efficiency, safety, and
stability requirements for EV charging systems [3,4].

The Vienna rectifier has become a central subject of investigation in power electronics
owing to its unique three-level neutral point-clamped structure [5]. This three-level AC/DC
converter offers advantages over traditional PWM (Pulse Width Modulation) rectifiers,
including a reduced number of switches, a simpler topology, diminished voltage stress
on power-switching devices, the elimination of dead time settings, and enhanced power
density. This enables the fulfillment of the need for the rapid charging of electric vehicles
while concurrently improving the system efficiency and power quality [6,7]. In recent years,
the Vienna rectifier has been widely employed across various energy sectors, including
electric vehicle charging stations, power exchange apparatus, aviation power supplies, and
wind power generation systems.

Currently, the control technique of the Vienna rectifier is a significant focus of scholarly
attention within the industry. The primary control objectives of the rectifier are as follows:
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first, to rapidly align the output voltage of the DC side with the goal voltage value; second,
to guarantee stable operation at a unit power factor; third, to uphold the balance of the
neutral point potential [8,9]. For control objectives one and two, the prevalent control
methods are PI (Proportional–Integral) control and sliding mode control. Among these, PI
control was the earliest control system integrated with PWM, and its straightforward design
and ease of implementation are its notable features. A PI controller can augment stability
and enhance the dynamic performance of the system in diverse operating situations [10].
The introduction of phase lag in the high-frequency domain may result in a reduction
in the system response speed and induce oscillation. Extended deviations may result in
integrator saturation, thereby reducing control effectiveness. In instances of substantial
disturbances or rapid load fluctuations, the performance of the PI controller may be less
effective than that of more advanced control methods [11]. Yang et al. employed a hybrid
control technique integrating PI feedforward intervention and repeated control to enhance
the quality of the input current waveform; nevertheless, following a load disturbance,
the duration required for the DC-side output voltage to revert to the goal value was
comparatively prolonged [12]. Wang et al. introduced a double closed-loop PI control
system that mitigates current zero-crossing distortion, enhancing the grid-side power
factor; nevertheless, it neglects the issue of DC-side voltage overshoot during rapid load
changes [13]. Song et al. suggested that the voltage outer loop employs a PI controller,
while the current inner loop utilizes an enhanced hysteresis control method. Despite its
simplicity, the variable switching frequency complicates the circuit parameter design [14].
He et al. implemented the vector control of the optimized current PI regulator to satisfy the
stability performance criteria of the rectifier under varying input voltages and inductance
conditions; however, they did not address the circuit’s dynamic performance [15]. With the
increasing prevalence of Vienna rectifiers, the contexts of their application have become
increasingly diverse, accompanied by escalating dynamic and static requirements. The
rectifier is a sophisticated system characterized by nonlinearity, significant time variability,
and strong coupling. Achieving the necessary control effect using the typical double
closed-loop PI control technique is challenging [16,17].

Numerous researchers and experts from both domestic and foreign institutions have
studied the rectifier and its cascade system in great detail using modern control method-
ologies in order to overcome the problems with the current three-phase rectifier. Because
of its quick response, insensitivity to changes in parameters and disturbances, ease of
physical implementation, and absence of a need for online system identification, the sliding
mode variable structure control is the most representative [18,19]. The control is essen-
tially a unique form of nonlinear control, characterized by the discontinuity of its control
mechanism. The difference between this control strategy and others is that the system’s
‘structure’ is not fixed; instead, it can dynamically adjust according to the system’s cur-
rent state (including deviations and their derivatives), intentionally modifying itself to
ensure the system adheres to a specified ‘sliding mode’ state trajectory [20]. The literature
suggests using sliding mode control on a three-phase rectifier to regulate the DC-side
output voltage [21]. Wang et al. proposed a nonlinear sliding mode variable control for
the voltage outer loop, which is unaffected by parameter variations and is straightforward
to implement [22]. Ma et al. employed a sliding mode proportional resonant composite
control technique. The enhanced electric sliding mode variable structure was employed for
voltage outer-loop control, enabling a rapid response to voltage fluctuations and enhancing
the system’s dynamic performance and durability [23]. Yang et al. developed an adaptive
voltage outer-loop sliding mode control technique utilizing an RBF (Radial Basis Function)
neural network, which substantially diminishes switching losses and improves the system’s
resistance to interference [24]. Despite the aforementioned advantages of sliding mode
control, it is not devoid of shortcomings. When the system’s trajectory intersects with the
switching surface, its velocity is not infinite; rather, inertia causes the moving point to
traverse the switching surface, resulting in jitter vibrations that superimpose on the ideal
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sliding mode surface. Consequently, the inherent discontinuous switching characteristics
of sliding mode variable structure control induce jitter vibrations in the system [25].

Professor Gao Weibing devised a method for chattering eradication in China. This
approach employs the exponential order reaching rule to guarantee the dynamic quality
of the sliding mode convergence process and can mitigate the high-frequency jitter of
the control signal. Nonetheless, the significant rate of the system motion point moving
toward the switching surface will still induce chattering. This work offers a fractional
order exponential reaching law by including a fractional order calculus operator in the
exponential reaching law to successfully address these issues. Utilizing sliding mode
variable derivatives of a non-integer order mitigates the jitter phenomenon during the
convergence process while sustaining a high convergence speed throughout the entire
duration. A comparative analysis with alternative methods substantiates the efficacy of the
proposed control strategy [26,27].

The third control target, the midpoint potential balance, can be divided into the
following three categories:

1. The influence on the midpoint potential is counterbalanced by varying the action time
of positive and negative redundant small vectors;

2. The variation in the neutral point potential is directly incorporated into the closed-loop
control and modified through feedback;

3. The zero-sequence component is incorporated into the modulation wave to mitigate
the variation in the midpoint potential [28–30].

In this paper, based on the idea of injecting a zero-sequence component into the carrier
modulation and adding a balance factor on the basis of the zero-sequence component,
a sliding mode direct power control strategy based on a fractional exponential reaching
law is proposed by improving the reaching law. The strategy comprehensively considers
stabilizing the output voltage, maintaining the midpoint potential balance, and maintaining
the unit power factor operation, and can meet the sliding mode accessibility, existence,
and arrival time boundedness requirements. The control rate designed according to this
strategy has good dynamic and static stability and robust performance.

The remainder of this article is structured as follows: The second portion presents the
power mathematical model of the Vienna rectifier. The third section presents the design of
the voltage outer-loop controller. The fourth portion presents the inner-loop direct power
control approach. The final portion presents the neutral point potential balance technique
with similar SVPWM (Space Vector Pulse Width Modulation) technology. The control
approach suggested in this paper is employed for simulation and experimental validation
in the sixth section. The seventh segment presents the conclusion.

2. Three-Phase Vienna Rectifier Power Mathematical Modeling

The main circuit topology of the three-phase Vienna rectifier is shown in Figure 1. ea,
eb, ec is a rectified three-phase AC power supply; ia, ib, ic is the three-phase input current for
the DC bus positive and negative currents, ip, in; La, Lb, Lc and Ra, Rb, Rc are the AC-side
filter inductors and resistors, respectively, and the sizes are Ls and Rs, respectively. In
the center is a rectifier bridge consisting of three pairs of fast-recovery diodes; Sa,b,c is the
switching function, and the structure of each of the three pairs of bidirectional switches
consists of two MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) in opposite
directions, as shown in Figure 1. Cp and Cn are for the DC side of the upper and lower filter
capacitance. The two capacitance values are equal; their value is C. The DC bus voltages of
vdc, vcp and vcn

(
vcp = vcn

)
, are the voltages of the upper and lower filter capacitors on the

DC side, respectively; RL is the output resistive load.
The Vienna rectifier is a current-driven power factor correction device. Its topology is

a three-level circuit. The voltage at both ends of the power switch tube is determined by
the state of the switch tube and the current direction of the current source side. Each phase
bridge arm can be equivalent to a positive and negative boost circuit. Taking phase a as an
example, if the input current is positive and the switch is turned off, the voltage at both
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ends of the switch is vAN = vcp(vdc/2); if the input current is negative and the switch is
turned off, the voltage at both ends of the switch is vAN = vcn(−vdc/2). No matter whether
the current is positive or negative, as long as the switch is turned on, the switch tube is
clamped at the midpoint N of the DC side.
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Assuming that the grid voltage is in an ideal equilibrium state, the bidirectional
power switch tube can be equivalent to a single-pole three-throw switch. The three-phase
switching function SK was introduced to represent the potential state of each phase switch,
and SK can be expressed as

SK =


1 Sip = 1, Sio = 0, Sin = 0
0 Sip = 1, Sio = 0, Sin = 0

−1 Sip = 1, Sio = 0, Sin = 0

K = a, b, c
i = a, b, c

(1)

Based on the three-phase grid voltage balance, the Vienna rectifier operates in a
continuous current mode, and according to the above working process, the mathematical
model can be obtained in the three-phase stationary coordinate system:

L dia,b,c
dt = ea,b,c − R · ia,b,c −

(
v(a,b,c)N + vNO

)
C

dvCp
dt = Sapia + Sbpib + Scpic − vdc

RL

C dvCn
dt = Sania + Sbnib + Scnic − vdc

RL

(2)

where Sip and Sin(i = a, b, c) denote the switching functions with positive and negative cur-
rent directions, respectively. Using the equal power transformation matrix, the mathemati-
cal model in the three-phase stationary coordinate system of Equation (2) was transformed
to the α-β two-phase stationary coordinate system, and the corresponding transformation
relationship is expressed as

[
xα

xβ

]
=

√
2
3

 1 − 1
2 − 1

2

0
√

3
2 −

√
3

2


xa

xb
xc

 (3)

The mathematical model in the α-β coordinate system obtained using the coordinate
transformation formula is as follows:
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Eα = R · Iα + L dIα

dt + Vα

Eβ = R · Iβ + L
dIβ

dt + Vβ

C dvcp
dt = Sαpiα + Sβpiβ − vdc

RL

C dvcn
dt = −Sαniα − Sβniβ − vdc

RL

(4)

In the equation, RL is the load resistance, and L and R are the inductance and resistance
of the input side, respectively. Eα, Eβ, Iα, Iβ, Vα, and Vβ are the grid-side voltage, the grid-
side current, and the voltage at both ends of the switch tube in the two-phase stationary
α-β coordinate system, respectively.

The analysis of Equation (4) showed that the Vienna rectifier still had a certain cou-
pling in the α-β coordinate system. The time-varying amount in the α-β coordinate system
was converted into the direct flow in the d-q two-phase rotating coordinate system by Park
transformation. The d-axis and q-axis were used to represent the active and reactive compo-
nents of the rectifier system, respectively. The corresponding transformation relationship is
expressed as [

xd
xq

]
=

[
cos ωt sin ωt
− sin ωt cos ωt

][
xα

xβ

]
(5)

The mathematical model in the d-q coordinate system obtained using the coordinate
transformation formula is

Ls
did
dt = −Rsid + ωLsiq − 1

2 vdchd + ud

Ls
diq
dt = −Rsiq − ωLsid − 1

2 vdchq + uq

C dvdc
dt = hdid + hqiq − 2 vdc

RL

(6)

In the equation, hd = sdp − sdn and hq = sqp − sqn, ud, uq, id, and iq are the voltage
and current components in the d-q coordinate system; ω is the AC angular frequency. The
equivalent circuit model in the d-q coordinate system can be obtained using Equation (6),
as shown in Figure 2.
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In the case of a balanced three-phase grid, based on the instantaneous power theory,
the active and reactive power of the system can be expressed in terms of the voltage and
current components in the d-q coordinate system:

P = udid + uqiq
Q = uqid − udiq

(7)

In the d-q rotating coordinate system, by reasonably selecting the initial phase of the
coordinate system, the initial phase angle of the d-axis was set to zero and coincided with
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the reference voltage vector of the grid. At this time, the q-axis component of the voltage
was equal to zero, that is, uq = 0. The calculation of Equation (7) can be obtained:

P = udid
Q = −udiq

(8)

Bringing Equation (8) into Equation (6) yielded a mathematical model of power control
with P and Q as control variables:

Ls
dP
dt = −PRs − ωLsQ − 1

2 vdchdud + u2
d

Ls
dQ
dt = −QRs + ωLs p + 1

2 vdchquq

udC dvdc
dt = hdP − hqQ − 2 vdc

RL
ud

(9)

Utilizing P and Q as control variables, the subsequent control technique can directly
modulate the active and reactive power inside the system, independent of conventional
current or voltage transformation. This direct control method not only streamlines the
control structure but also enhances the system’s tracking capability to the power target. It
responds more swiftly to abrupt shocks and decreases the control delay.

3. Design of Voltage Loop Controller
3.1. Design of Voltage Loop Fractional Order Sliding Mode Controller

A sliding mode variable structure is a kind of nonlinear structure control strategy. In
the process of using a sliding mode variable structure control strategy to control the system,
the control structure of the system is usually not fixed, but changes with the change in
the running state of the whole system. For the control quantity of a discontinuous state,
it is often judged by the S symbol of the sliding mode surface and changed according
to the corresponding switching law. This control characteristic can force the system to
move up and down with a small amplitude and high frequency along the prescribed state
trajectory under certain characteristics, that is, the so-called sliding mode or ‘sliding mode’
motion. This sliding mode can be designed and has nothing to do with the parameters
and disturbances of the system, that is, the sliding mode controller has good robustness to
external disturbances and changes in internal parameters, so the application of the sliding
mode variable structure control is very extensive.

The Vienna rectifier works under the unit power factor. When the system is stable,
the output reactive power is 0, that is, Qre f = Q = 0. According to the active power factor
correction circuit of the Vienna rectifier, the calculation formula of the output active power
can be obtained:

P = vdc · C
d vdc

2
dt

+
v2

dc
RL

(10)

where P is the output active power, RL is the load resistance, and C is the value of the
capacitance at the output.

In order to realize the tracking of DC voltage and keep it stable, as well as to improve
the rapidity, accuracy, and robustness of the control system, the sliding mode variable
structure control was selected as the outer loop of the voltage, and the state variable was
chosen as the difference between the reference value and the actual value, and the sliding
mode surface S was designed as follows:

S =

[
s1
s2

]
=

[
i∗q − iq

v∗dc − vdc

]
(11)

where v∗dc is the target voltage.
The derivation of Equation (11) was obtained:

.
S2 = −dvdc

dt
(12)
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The combination of Equations (10) and (12) can be obtained:

.
S2 =

2vdc
RL · C

− 2P
vdc · C

(13)

To weaken the jitter of the sliding mode variable structure, the exponential approach
rate was selected, that is

.
S2 = −ε0sgnS2 − k0S2 ε0 > 0, k0 > 0 (14)

In the equation, k0 and ε0 are the convergence rate exponential coefficients and the
rate at which the system converges to the switching surface, respectively;

.
S2 = −k0S2 is

the exponential convergence term, and sgn is the sign function, that is

sgn(S2) =


1 x > 0
0 x = 0
−1 x < 0

(15)

The idea of the classical integer order sliding mode control strategy is to adjust the
convergence law to make the system state quickly converge to the specified sliding mode
surface, and perform the sliding mode motion along the sliding mode surface in accordance
with the predetermined trajectory, so as to let the system error be minimized in a finite
time. The exponential convergence law can provide better convergence, but its convergence
speed may be limited by the setting of the ε0 and k0 values, which results in the system state
not being able to reach the sliding mode surface to enter the sliding mode control phase
in a finite amount of time and failing to meet the control requirements. Aiming to solve
the problem of a slow convergence speed and poor chattering suppression effect in the
integer order sliding mode control strategy, fractional order calculus was introduced into
the classical sliding mode control algorithm, that is, a fractional order calculus operator was
introduced into the exponential reaching law to form a fractional order sliding mode control
strategy. The core idea of fractional calculus is to extend the classical calculus theory to the
order other than the integer order, which has more general significance than the integer
order calculus. The increased degree of freedom through the fractional calculus operator
will improve the convergence speed of the system. At the same time, the non-integer
order derivative of the sliding mode variable can reduce the chattering phenomenon in the
reaching process. Moreover, the fractional order α can be adjusted to achieve the balance
between the response speed and the control accuracy of the system, and the robustness of
the system can be improved through its information memory characteristics.

The fractional exponential reaching law is

.
S2 = −ε0[Dαsgn(S2)]− k0 · S2 (16)

In the equation, Dα is the calculus operator, 0 ≤ α < 1 is the fractional order, and
α = 0 is the exponential reaching law of the integer order. It can be seen that when the
parameters of the sliding mode surface are determined, the fractional order sliding mode
control can still adjust the dynamic performance of the system by adjusting the fractional
order calculus operator α, while the integer order sliding mode control does not have the
ability to adjust the performance so flexibly.

At the same time, the sign function sgn(S2) is discontinuous near S2 = 0, and the
system will frequently switch positive and negative signs, resulting in high-frequency
chattering. In order to reduce this phenomenon, the saturation function sat(S2) was used
to replace the sharp switching of the sign function with a smooth transition when the value
of S2 is small. That is,

.
S2 = −ε0[Dαsat(S2)]− k0 · S2 (17)
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The saturation function sat(S2) is

sat(S2) =

{
sgn(S2) |S2| > δ
S2
δ |S2| ≤ δ

(18)

In the equation, δ is the thickness of the boundary layer; when |S2| > δ, the existence
of the fractional order ensures that the system converges to the sliding mode with a
higher speed; when |S2| ≤ δ, the sign function sgn(S2) makes the transition to the sliding
mode smoother by providing linear feedback within the boundary layer, ensuring fast
convergence while weakening the jitter.

For the improved reaching law, when S2 = 0+ and S2 = 0−, the improved reaching
law can be written as

.
S → 0 , that is, there is almost no chattering phenomenon when the

system is in the critical steady state.
Equations (13) and (17) were combined to obtain the active power command value of

the inner loop:

Pre f =
{ε0[Dαsat(S2)] + k0S2} · Cvdc

2
+

v2
dc

RL
(19)

According to the above analysis, the voltage outer-loop sliding mode variable structure
control block diagram of the Vienna rectifier can be obtained from Equation (19), as shown
in Figure 3.
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3.2. Stability of the Sliding Mode Control Law

To verify the stability of the sliding membrane system, the positive definite function
was constructed according to the Lyapunov stability theory:

V(S2) =
1
2

S2
2 (20)

The derivation of this function was obtained:
.

V(S2) = S2
.
S2 (21)

The derivative of the sliding surface was represented by the form of the fractional ex-
ponential reaching law shown in Equation (17), and Equations (17) and (21) were combined
to obtain .

V(S2) = S2[−ε0Dαsat(S2)− k0S2] (22)

Since ε0 > 0, k0 > 0, δ > 0, Equation (22) can be discussed in two cases:
When |S2| > δ,

.
V(S2) = S2

.
S2 = −k0S2

2 − ε0S2Dαsgn(S2) ≤ 0 (23)

When |S2| ≤ δ,
.

V(S2) = S2S2
2 = −k0S2

2 −
ε0S2

2Dα

δ
≤ 0 (24)
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From the above analysis,
.

V(S2) = S2
.
S2 ≤ 0 can be obtained, and only when S2 = 0,

does S2
.
S2 = 0.

If the system is S2
.
S2 ≤ 0, it is shown that the system is asymptotically stable in the

sense of Lyapunov, and then the improved sliding mode reaching law can ensure the
existence and accessibility of the sliding mode, that is, the system can reach the equilibrium
point S2 = 0 after adopting the improved sliding mode reaching law.

4. Inner-Loop Direct Power Control Strategy

The inner loop of the Vienna rectifier adopted the power control strategy and designed
the PI regulator. The method was similar to the traditional three-phase rectifier, and the
derivation process was no longer derived, and the derivation result was given directly. It
can be seen from Equation (6) that due to the existence of ωL, the d-q axis current is coupled,
resulting in the mutual coupling between the d-q axis power variables in Equation (9).
In order to eliminate the influence of the coupling term, the independent DC variables
were obtained so that the control of active and reactive components could be carried out
independently. The power inner loop was decoupled by a feedforward process, and the
decoupling control block diagram shown in Figure 4 was obtained.
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After feedforward decoupling, the two coupling terms were eliminated and the system
was transformed into a linear structure with which the design of the power inner-loop
controller was carried out. To make the system operate at the unit power factor, suppose
Qre f = 0. The PI regulator in Figure 4 was used as the power inner-loop controller to
obtain the mathematical model of the power inner-loop controller of the Vienna rectifier
as follows:  usd = −

(
kp +

ki
s

)(
Pre f − P

)
− ωLQ + u2

d

usq =
(

kp +
ki
s

)(
Qre f − Q

)
− ωLP

(25)

In the equation, usd = 1
2 vdcudhd, usq = 1

2 vdcuqhq, ki is the integral gain of the PI
regulator and kp is the proportional gain.

According to the analysis of the above content, the dynamic performance of the system
was greatly improved by using fractional order sliding mode control in the outer loop, and
its output was the reference value of the active power in the inner loop. The PI control in
the inner loop not only has a good control effect, but also simplifies the control system. The
principle diagram of the control system of the Vienna rectifier is shown in Figure 5.
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5. Neutral Point Potential Balance Strategy Based on Equivalent SVPWM

Compared with the traditional three-level rectifier, the switch combination and zero
vector distribution of the Vienna rectifier show different states. The zero vector is only
[0 0 0], while [1 1 1] and [−1 − 1 − 1] are two invalid states. The ideal way to adjust the
midpoint potential balance is to use SVPWM, which can not only improve the load-side
voltage utilization rate, but also reduce the switching loss. However, the calculation process
is more complicated. In order to avoid re-judging the sector and calculating the vector
action time, the method of injecting the zero-sequence component into the modulation
wave was adopted. At the same time, a balance factor was added to the zero-sequence
component to obtain a better midpoint potential balance ability, and the SVPWM effect was
obtained. Figure 6 is the equivalent SVPWM principle block diagram.
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Since the division of the working sectors of the Vienna rectifier and the traditional
three-level rectifier is different, it was necessary to re-divide the working sectors, as shown
in Figure 7, with −π/6 ∼ π/6 as the first large sector; a large sector was divided every
60 degrees, and then each large sector was divided into six small sectors.

The divided sectors are shown in Figure 7. Taking the first large sector as an example,
Vre f was selected as the target vector of the small sector. At this time, the three-phase
current is ia > 0, ib < 0, ic < 0. The target vector Vre f adopts the principle of nearest vector
synthesis, which is synthesized by V2, V3(V3+, V3−), and V4. According to the principle of
volt-second balance, the action time of each vector is:

V4T4 + V3T3 + V2T2 = Vre f Ts (26)
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In the equation, T4, T3, and T2 are the action time of the long vector V4, short vector
V3, and medium vector V2, respectively, and Ts is the sampling period. At the same time,
T4, T3, T2, and Ts satisfy the following relationship:

T4 + T3 + T2 = Ts (27)

We simplified Equation (26) by the real part and the imaginary part:{
|V4|T4 +

√
3

2 |V3|T3 + |V2|T2 = |Vα|Ts
1
2 |V2|T2 =

∣∣Vβ

∣∣Ts
(28)

According to m =
√

3
∣∣∣Vre f

∣∣∣/|Vdc|, the vectors in Equation (26) are normalized under
the criterion of |Vdc|. The lengths of the long vector V4, the middle vector V2, and the short
vector V3 are 2Vdc/3,

√
3Vdc/3, and Vdc/3, respectively, and are inverted to the three-phase

stationary coordinate system using Clarke’s inverse matrix, and the inversion matrix is
shown below: ua

ub
uc

 =
1√
3

 1 0
− 1

2

√
3

2

− 1
2 −

√
3

2

[mre f α

mre f β

]
(29)

In the equation, ua, ub, and uc are the variables of Vre f in the three-phase stationary co-
ordinate system, and mre f α and mre f β are the real and imaginary parts after transformation.
Substituting Equations (26) and (27) into Equation (29), the action times of V4, V3 and V2 are

T4 = (ua − ub − 1)Ts
T3 = (2 − ua + uc)Ts
T2 = (ua − ub − 1)Ts

(30)

The charging and discharging time of the upper and lower capacitors on the DC side
was adjusted by allocating the action time of the small vector redundancy pair to achieve
the midpoint potential balance, which satisfies the following relationship:

(1 − f )V3+ = f V3− (31)

In the equation, f is the time distribution coefficient of small vector redundancy to
V3+ and V3−, 0 < f < 1; the value is controlled by the difference between the upper and
lower capacitance voltages on the DC side through the pi regulator, in order to make the
switching loss decrease and harmonic content decrease; the seven-segment time allocation
mode is adopted; and there is a switching tube action for every change of vector; the start
and end are selected as positive small vectors, and the middle is selected as a negative small
vector. The modulation order with positive small vectors as initial vectors is as follows:
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V3+(1, 0, 0)− V2(1, 0,−1)− V4(1,−1,−1)− V3−(0,−1,−1)− V4(1,−1,−1)− V2(1, 0,−1)− V3+(1, 0, 0) (32)

The operating times of the three switching tubes Sa,b,c are derived from Equations (28)
and (30)–(32): 

Ta = [u∗
a − u∗

c + f (u∗
c − u∗

a) + 2 f − 1]Ts
Tb =

[
−u∗

b + u∗
c − f (u∗

c − u∗
a)− 2 f + 1

]
Ts

Tc = [− f (u∗
c − u∗

a)− 2 f + 1]Ts

(33)

Collating Equation (33) gives
da = u∗

a + d0
db = −u∗

b − d0
dc = −u∗

c − d0
d0 = 2 f − u∗

c + f (u∗
c − u∗

a)− 1

(34)

The above formula is the zero-sequence component of Vre f located in the small sector of
the first large sector A. When Vre f is located in other sectors, the zero-sequence component
corresponding to each sector can be deduced according to the above process. In order to
simplify the analysis and make it have a unified expression, the three-phase modulation
wave was redefined as follows:

Mk =

{
u∗

k u∗
k ≥ 0

u∗
k + 1 u∗

k < 0
k = a, b, c (35)

Then, the injected zero-sequence component is as follows:

d0 = f (1 − Mmax + Mmin)− Mmin (36)

The injection of the zero-sequence component yielded an analogous SVPWM effect,
facilitating the balancing of the midpoint potential.

6. Simulation and Experimental Verification
6.1. Analysis of Simulation Results

The simulation parameters in Table 1 (except the controller part) were used to verify
the effectiveness of the control algorithm proposed in this paper.

Table 1. Simulation parameters.

Parameter Numerical Value

Three-phase AC voltage effective value Vrms/V 220
Grid frequency f /Hz 50
Input inductance L/H 0.002
Input resistance R/Ω 0.05

DC reference voltage V∗
dc/V 600

Filter capacitor C/mF 3.2
Load resistance R/Ω 70

Switching frequency fs/kHz 20

The proposed control strategy was compared with the classical PI control, as shown in
Figure 8. Figure 8a,b are the DC-side voltage output waveforms of the classical PI control
strategy and the proposed control strategy, respectively. Both strategies can maintain the
stable DC-side voltage output at 600 V under steady-state conditions. It can be easily
obtained from the data in the figure that the overshoot of the classical PI control is large;
the voltage initially rises to about 650 V, the overshoot is 50 V, and there is still up-and-
down oscillation in the process of stabilizing after the overshoot, and it takes about 80 ms
to recover to stability. The initial value of the DC-side voltage of the proposed control
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strategy rises rapidly to 610 V, and then falls back and stabilizes at about 600 V, with an
overshoot of only 10 V, and it takes only 40 ms to stabilize, and after stabilization, the ripple
is very small, and the output voltage fluctuates within ±0.2 V, which indicates that the
system can be well controlled near the target voltage in the steady state. Figure 8c,d are the
voltage waveforms of the upper and lower capacitors on the DC side of the two control
strategies, respectively. Under the classical PI control, the oscillation is relatively large, and
the time required for complete stability is long. The proposed control algorithm has a small
amplitude oscillation at the initial time, but it disappears quickly. The voltage fluctuation
amplitude is small, which is always maintained within 0.5 V, and the system shows good
dynamic performance. It can be concluded that the proposed control algorithm is superior
to the classical PI control algorithm in terms of the dynamic response speed, overshoot
control, and stability. Although the classical PI control algorithm is stable in a steady state,
its initial response is slow, the overshoot and oscillation are large, and its performance is
not as good as the proposed control strategy.
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Figure 8. Voltage simulation waveforms of two control strategies. (a) The DC-side voltage waveform
of classical PI control; (b) DC-side voltage waveform of fractional order sliding mode direct power
control; (c) The upper and lower capacitor voltage waveform of classical PI control; (d) The upper
and lower capacitor voltage waveform of fractional order sliding mode direct power control.

To compare the influence of the two control algorithms on the input current waveform,
the simulation data of the grid-side current under the stable state of the two control methods
was analyzed through Fourier analysis (FFT). From the beginning of 0.02 s, five cycles
were sampled. From Figure 9, it can be concluded that the initial current of the classical
PI control strategy fluctuates greatly, the oscillation duration is long, about 0.02 s, and the
THD (Total Harmonic Distortion) in the fluctuation is more obvious; the THD = 2.29%. The
current waveform of the proposed control strategy shows obvious smoothness. Although
there is obvious oscillation at the beginning, it tends to become stable quickly in a short
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time (about 0.01 s), and the harmonic content is low; the THD = 0.81%. Compared with
Figure 9e,f, it can be seen that after using the fractional order sliding mode direct power
control algorithm, the THD value is reduced by 1.48%, the grid-side current quality is
obviously improved, and the current waveform is sinusoidal. It is proved that the proposed
control strategy is superior to the classical PI control in realizing the unit power factor,
reducing the current harmonic content, and improving the grid-side current quality.
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Figure 9. Simulation diagram of two control strategies of current and harmonics. (a) The A-phase
current and voltage waveform of classical PI control; (b) A-phase current and voltage waveform of
fractional order sliding mode direct power control; (c) Three-phase current waveform of classical PI
control; (d) Three-phase current waveform diagram of fractional order sliding mode direct power
control; (e) Harmonic content analysis diagram of classical PI control; (f) Harmonic content analysis
diagram of fractional order sliding mode direct power control.
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To verify the control performance of the classical PI control strategy and the proposed
control strategy, the system was simulated and verified at a 0.08 s load mutation. The load
resistance was 70 Ω; in order to make the load resistance value of the circuit change to an
integer value of 60 Ω, a resistor with a resistance value of 420 Ω needed to be connected
in parallel. The simulation waveform is shown in Figure 10. Figure 10a,c,e,g,i are the
simulation waveforms under the classical PI control when the load mutation occurs, and
Figure 10b,d,f,h,j are the simulation waveforms under the proposed control strategy. After
the load changes abruptly, the two control strategies can finally maintain the DC-side
voltage output of 600 V. The DC-side voltage of the classical PI control will drop to 594 V
when the load changes suddenly, resulting in a fluctuation of about 6 V, and the fluctuation
is more obvious. It takes 60 ms for the load to change abruptly to restore stability, and the
dynamic response speed is slow. The proposed control strategy will reduce the DC-side
voltage to 594 V when the load changes abruptly, and quickly stabilizes after a slight
decrease. It will only produce a fluctuation of 4 V, and then quickly returns to the target
voltage within 20 ms, and the midpoint potential balance can be quickly achieved. This
verifies that the method of fractional order sliding mode direct power control in the outer
loop can quickly force the operation trajectory of the system to move to the sliding mode
surface and improve the response speed of the system. It can be seen that in the case of
a sudden load change, the voltage recovery time of the proposed control strategy is very
fast, and the classical PI control needs a longer time to eliminate the oscillation. The new
control strategy shows a better dynamic response performance, which can better cope with
sudden changes and maintain the stability of the system.

Figure 10. Cont.
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The performance of the output DC voltage is presented in Table 2. Table 2 illustrates 
that the DC-side voltage overshoot and adjustment time of the classical PI control 

Figure 10. Simulated waveforms of the two control strategies during a sudden load change. (a) The
DC-side voltage waveform of classical PI control under a sudden load change; (b) DC-side voltage
waveform of fractional order sliding mode direct power control under a sudden load change; (c) The
upper and lower capacitor voltage waveform of classical PI control under a load mutation; (d) Voltage
waveform of upper and lower capacitors of fractional order sliding mode direct power control under
a sudden load change; (e) The A-phase current and voltage waveform of classical PI control under a
sudden load change; (f) Waveforms of A-phase current and voltage for fractional order sliding mode
direct power control under a sudden load change; (g) Three-phase current waveform of classical PI
control under a sudden load change; (h) Three-phase current waveform of fractional order sliding
mode direct power control under a sudden load change. (i) The classical PI control THD value when
the load changes suddenly; (j) The THD value of fractional order sliding mode direct power control
when the load changes suddenly.
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It can be seen from Figure 10e–j that when the load changes abruptly, the grid-side
current under the classical PI control strategy cannot quickly track the voltage change and
cannot be stabilized in time. The sinusoidal state of the grid-side current waveform is
distorted and cannot resist the system disturbance well. The input current THD of the
proposed control strategy is 0.79% after the sudden change in the load is stable, the current
distortion is small, and the grid-side current is always sinusoidal, so that the system has
better power quality and maintains system stability.

The performance of the output DC voltage is presented in Table 2. Table 2 illustrates
that the DC-side voltage overshoot and adjustment time of the classical PI control technique
are the most significant, and the grid-side current THD is also comparatively high before
and after the load mutation. When the fractional order sliding mode control algorithm
is used, the overshoot, rise time, adjustment time, and the THD of the grid-side current
before and after the load mutation are further improved, and the anti-interference ability
and dynamic performance of the system are improved.

Table 2. Comparison of control performance parameters.

Parameter Classical PI Algorithm New Algorithms

Overshoot/% 8.33 1.66
Rise time/s 0.006 0.006

Accommodation time/s 0.08 0.04
THD before load mutation/% 2.29 0.81
THD after load mutation/% 0.92 0.79

The fluctuation of the DC-side
voltage when the load
changes suddenly/V

6 4

The DC-side voltage’s
recovery stability time when

the load changes suddenly/V
0.045 0.02

6.2. System Experimental Verification

In order to verify the effectiveness of the improved sliding mode reaching law control
strategy proposed in this paper, the Vienna rectifier experimental platform shown in
Figure 11 was built. The experimental parameters are shown in Table 1. The controller used
Texas Instruments TMS320F2812DSP as the controller to perform real-time control. The
digital signal processor could communicate with the host computer through the analog
input and output channels of RL-LAB to achieve closed-loop control.

Figure 11. Vienna rectifier experimental platform.

The experimental waveforms are shown in Figure 12; through analysis, it can be seen
that both control strategies can achieve stable control performance requirements. In load
mutation experiments on the system, using the proposed control strategy, the speed of the
upper and lower capacitor voltage tracking the specified value is improved a lot relative
to the classical PI control strategy, and when the load changes, its output voltage can
still be stabilized at the specified value after very small fluctuations, and the error of the
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midpoint potential does not change a lot, with very small fluctuations, and the stability has
been optimized.
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potential error of fractional order sliding mode direct power control.

7. Conclusions

This work proposes a fractional order sliding mode control approach for the voltage
loop of a Vienna rectifier. In comparison to the classical PI control technique, the sys-
tem’s performance is markedly enhanced. Fractional order sliding mode control employs
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fractional order calculus operators to mitigate high-frequency jitter in the control signal,
decrease the response time, and preserve stability during transient situations, thereby
outperforming the linear response of classical PI control. The aforementioned simulation
comparison and experimental findings demonstrate that the proposed control strategy
effectively mitigates output voltage fluctuations on the DC side during the system initiation
and load variations, resulting in a manageable and minimal ripple in the DC-side voltage.
It facilitates expedited stability, reduced voltage fluctuations, and an enhanced load tran-
sient response, and bolsters the system’s resistance to interference. Simultaneously, it may
mitigate current harmonics on the grid side, ensure that the input current on the AC side is
sinusoidal, and enhance the power quality. This paper’s shortcoming is its failure to take
into account the potential effects of extreme or irregular conditions on the system stability.
Future studies will be carried out in the following areas.

1. The conventional sliding mode control algorithm has a chattering issue, which sig-
nificantly affects the system’s stability. Future studies will concentrate on the so-
phisticated sliding mode control algorithm to address the chattering issue associated
with conventional sliding mode control and to improve the system’s robustness in
unpredictable situations;

2. In this paper, a control method involving the injection of zero-sequence components
into the modulating waveform and the incorporation of a balance factor was em-
ployed for midpoint potential balancing. This necessitated an additional PI controller
to fine-tune the balance factor. Future research will explore a hybrid modulation
algorithm that integrates the midpoint potential with outer-loop sliding mode control,
optimizing resource utilization while enhancing control performance.
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