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Abstract: Aiming at the problem that the vibration signals of rolling bearings in high-speed rail
traction motors are often affected by noise when they are in a fault state, which makes it very difficult
to extract the fault features during fault diagnosis and causes obstruction in fault classification. The
article proposes a rolling bearing fault diagnosis based on optimized variational mode decomposition
(VMD) combined with signal features and an improved convolutional neural network (CNN). The
golden jackal optimization (GJO) algorithm is employed to optimize the key parameters of the VMD,
enabling effective signal decomposition. The decomposed signals are then filtered and reconstructed
using criteria based on kurtosis and interrelationship measures. The time-domain features of the
reconstructed signals are computed, and the feature vectors are constructed, which are used as inputs
to the deep learning network; the CNN combined with the support vector machine (SVM) network
model is used for the extraction of the features and the classification of the faults. The experimental
results show that the method can effectively extract fault features in noise-covered signals, and the
accuracy is also significantly improved compared with traditional methods.

Keywords: bearing fault diagnosis; golden jackal optimization algorithm; variational mode
decomposition; convolutional neural network; support vector machine

1. Introduction

Rolling bearings represent a crucial element in the functionality of mechanical equip-
ment, with a diverse range of applications, and in the actual production process, bearings
may fail due to friction, wear and tear, the lubrication not being timely, and so on [1]. If we
cannot find out in time if it has failed, not only leads to a decline in the use of, performance,
and life of the bearings, but also may even cause all equipment fail [2], which will pro-
duce serious economic losses [3]. Therefore, the timely and effective diagnosis of faults in
rolling bearings is of paramount importance in order to guarantee the safety of industrial
production and to ensure the economic benefits that derive from it [4].

Rolling bearing failure, signals containing complex features, as well as the presence
of a fault frequency modulation signal [5], alongside the poor working environments and
the fault signal being covered by noise, results in our acquisition of the vibration signal
becoming complex and difficult to analyze, which leads to the fault characteristics being
difficult to extract [6]. To effectively extract the fault characteristics from the vibration
signal, the signal noise reduction process becomes particularly important [7]. Fault diagno-
sis methods in noisy environments include several approaches such as signal processing,
feature extraction, and anti-noise machine learning models. Currently, the most commonly
employed signal processing methods include wavelet transform (WT), Empirical Mode
Decomposition (EMD), and VMD. Band-pass filtering and wavelet transform techniques
can effectively suppress noise in a specific frequency range [8]. Among them, wavelet
transforms can decompose the signal in the time-frequency domain, which makes it easier
to extract the fault characteristics; however, its decomposition results are susceptible to
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noise, and the decomposition quality is difficult to guarantee. Literature [9] uses Empirical
Wavelet Transform (EWT) to extract the fault features in the signal and utilizes an Inde-
pendent Component Analysis (ICA) algorithm for noise reduction to complete the fault
diagnosis. However, the wavelet decomposition introduces the problem of it being difficult
to choose the wavelet basis function, which leads to the general effect of this method in prac-
tical applications [10]. Literature [11] uses EMD as a signal decomposition method, which
is a time-frequency analysis method that can be adaptively decomposed. Although the
EMD decomposition method has been widely used in processing signals, it still suffers from
certain defects, including the fact that different modal functions overlap with each other,
as well as the existence of end-point effects. For these questions, Literature [12] proposed
Ensemble Empirical Mode Decomposition (EEMD), literature [13] proposed Complemen-
tary Ensemble Empirical Mode Decomposition (CEEMD), and literature [14] proposed
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN).
Although these methods improve on some of the existing problems, they all introduce
auxiliary noise signals to the process so that there is still residual noise in the result that
cannot be completely eliminated [15].

To mitigate the drawbacks of the aforementioned EMD-like methods in the signal
decomposition process, literature [16] demonstrated VMD, which enables adaptive signal
decomposition, an algorithm that is supported by strict mathematical theory compared
to EMD and avoids the generation of modal aliasing. VMD has attracted much attention
in noise-resistant fault diagnosis. VMD can decompose a signal into a number of modal
functions with specific frequency bands and exhibits strong robustness under a wide range
of noise conditions. The efficacy of VMD decomposition is largely contingent upon the
penalty factors α and K. The choice of these two parameters is particularly important [17].
When the method was first proposed, the parameters were mainly selected artificially
through a large number of tests as well as through expert experience, and this selection
method includes many limitations and is somewhat left to chance [18]. To address this
problem, A considerable number of experts and scholars, both domestic and international,
introduced intelligent optimization algorithms for the adaptive selection of parameters.
Literature [19] uses a whale optimization algorithm to adaptively select the influence
parameters (K, α) of VMD and extracted the energy entropy as the input features of the
support vector machine; Literature [20], the Sparrow optimization algorithm was employed
to optimize the K and α of the VMD. Subsequently, the fuzzy entropy of the components
was calculated and used as the feature input of the support vector machine so as to complete
the diagnosis of the fault. The above optimization algorithms, although they can all be
optimal for the parameters (K, α), tend to have slower convergence and poorer accuracy
when it comes to the later stages of the iteration, which results in the selection of parameters
being trapped in a locally optimal solution [21]. The GJO not only has a strong optimization
ability, but can also avoid the problem of falling into the local optimal solution during
the optimization.

Feature extraction is a key step in fault diagnosis, especially in noisy environments,
where it becomes challenging to extract effective fault features from noise interference.
Common feature extraction methods include time-domain features, frequency-domain
features, time-frequency domain features, and signal decomposition-based techniques. In
the time domain, kurtosis and skewness are widely used features. Kurtosis measures the
sharpness of a signal, and for fault signals, particularly bearing fault signals, it typically has
a high kurtosis value [22]. Skewness, on the other hand, detects the degree of asymmetry
in the signal, and in certain types of faults, skewness features also provide good discrimi-
native ability [23]. In the frequency domain, common features include spectral amplitude
characteristics, peak frequency, and harmonic components. Bearing faults typically mani-
fest as energy peaks in specific frequency bands of the spectrum, such as rolling element
frequency or inner race frequency, which show prominent energy peaks [24]. By applying
the Fourier transform, time-domain signals can be converted to frequency-domain signals,
thereby extracting these features. However, in the presence of strong noise, spectral analysis
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may not accurately capture these features because noise is usually spread across a wide
frequency range, masking the fault characteristic frequencies. In this paper, time-domain
features are extracted from the signal to construct a feature matrix, which aids in better
analyzing its fault characteristics.

In recent years, deep learning has developed rapidly and has been successfully ap-
plied to the field of mechanical fault diagnosis. Deep learning can utilize the network
to automatically extract features from the provided data, thus reducing the reliance on
experience. Convolutional neural network, as a classical deep learning network, can handle
one-dimensional time series data and two-dimensional image data and is suitable for
extracting and learning features from the raw mechanical signals collected [25]. Meanwhile,
since in the traditional convolutional neural network, its classification layer is composed
of an fc and a SoftMax [26], the fc may lead to overfitting because of its large number
of parameters and SoftMax is not as good as the support vector machine (SVM) in the
multi-classification problem. Therefore, a CNN is used for feature extraction and a support
vector machine is used as a classifier, which are combined to accomplish the fault diagnosis
of bearings.

In this paper, the issue of bearings being susceptible to noise-induced deterioration
during operation presents a challenge in the process of identifying and diagnosing faults.
Due to the fact that the conventional fault diagnosis model exhibits a relatively low level
of accuracy, a bearing fault diagnosis method combining time-domain features and a
CNN-SVM method with GJO-optimized VMD is proposed. Firstly, the GJO is used to
complete the adaptive adjustment of VMD to realize the VMD decomposition, and the
correlation coefficient and the craggy criterion are used to filter and retain the signals that
contain important features for reconstruction; then, the nine time-domain indexes of the
reconstructed signals are computed to construct the feature matrix, which constitutes the
input for the CNN-SVM to perform the feature extraction and the classification of the faults.
Finally, a model with better obtained fault signal diagnosis is obtained.

2. Methods
2.1. Golden Jackal Optimization Algorithm

Golden Jackal Optimization [27] is an intelligent optimization algorithm designed
to emulate the cooperative hunting behavior observed in both male and female jackals.
The golden jackal is a very intelligent and social animal, and its hunting behavior shows
collaborative and strategic characteristics. The golden jackal algorithm has a strong global
search capability (by simulating the predation and tracking behavior of the golden jackal,
the algorithm has a strong global search capability and can effectively avoid falling into a
local optimum); GJO is able to achieve rapid convergence (GJO is able to avoid premature
convergence while maintaining search efficiency due to the development and exploration
phases of the algorithm); the method is easy to combine with other algorithms (GJO can
be combined with other algorithms to form hybrid optimization algorithms to improve
the overall performance); and GJO can handle multi-objective optimization problems (in
practice, many problems often have multiple optimization objectives, and GJO can handle
multi-objective optimization problems to find a suitable solution among the multiple
objectives, which is especially important in practical applications).

The GJO algorithm comprises three fundamental stages: searching, encircling, and
attacking the prey.

(1) Initialization

Population initialization:

Y0 = Ymin + rand·(Ymax − Ymin) (1)

where Y0 represents the initial position of the population. The random number rand, which
takes on values of 0, 1, or any number between them, is used to denote a random variable.
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The prey matrix Prey is denoted as follows:

Prey =

Y1,1 · · · Y1,n
...

. . .
...

Ym,1 · · · Ym,n

 (2)

where the variable m represents the number of praises, n expresses the dimension of the
problem, and Ym,n expresses the nth-dimensional position of the m-th prey.

Adaptation matrix for all prey:

FOA =

 f (Y1,1 · · · Y1,n)
...

. . .
...

f (Ym,1 · · · Ym,n)

 (3)

where f () is the fitness function.
The best fitness value is designated as the male jackal, while the second best is desig-

nated as the female jackal.

(2) Searching for prey:

The female jackal mainly follows the male during the search phase.

Y1(t) = YM(t)− E·|YM(t)− r1·Prey(t)| (4)

Y2(t) = YFM(t)− E·|YFM(t)− r1·Prey(t)| (5)

where t is the current iteration number, YM(t) denotes the position of the male jackal at the
t-th iteration, YFM(t) represents the position of the female jackal at the t-th iteration, Prey(t)
indicates the position of the prey at the t-th iteration, Y1(t) denotes the position of the male
jackal once updated after the t-th iteration, and Y2(t) represents the position of the female
jackal once updated after the t-th iteration.

E denotes the energy of the prey escape, which is calculated as follows:

E = E1·E0 (6)

E0 = 2·r − 1 (7)

E1 = c1·(1 −
t
T
) (8)

where E0 denotes the initial state of prey energy, E1 denotes the descending process of prey
energy, r is a random number between 0 and 1, and c1 takes the value of 0.5. The symbol t
represents the current number of iterations, whereas T denotes the maximum number of
iterations. r1 is a random number from the Lévy distribution with the following formula:

r1 = 0.5·LF(y) (9)

LF(y) = 0.01·(µ·σ)/
(∣∣∣v(1/β)

∣∣∣) (10)

σ =

Γ(1 + β)·sin(πβ/2)

Γ( 1+β
2 )·β·(2

β−1
2 )

1/β (11)

where and v are random numbers between (0, 1) and the value of β is 1.5.
Ultimately, the updated formula for the position where the golden jackal is located is

Y(t + 1) = ((Y1(t) + Y2(t)))/2 (12)

(3) Surrounding and attacking prey
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The golden jackal surrounding and attacking its prey can be represented by the
following formula:

Y1(t) = YM(t)− E·|r1·YM(t)− Prey(t)| (13)

Y2(t) = YFM(t)− E·|r1·YFM(t)− Prey(t)| (14)

Ultimately, the update of the position of the golden jackal remains as per Equation (12).

2.2. Principle of Variational Modal Decomposition

The goal of VMD is to decompose a complex signal into a number of modal functions
with narrowband spectra. Specifically, given signal f (t), we wish to find a number of modal
functions uk(t) and their corresponding center frequencies, such that

f (t) = ∑K
K=1 uk(t) (15)

where K is the number of modal functions.
VMD specific steps:
(1). Construct the constrained variational model used to accomplish the signal decom-

position as follows:  min
{uk,ωk}

∑k

∥∥∥δt[(δ(t) +
j

πt )uk(t)]e−jwkt
∥∥∥2

2

s.t.∑k uk = f (t)
(16)

where f (t) is the original signal and the Hilbert transform.
(2). The introduction of a quadratic penalty factor, α, and the Lagrange multiplier

operator enables the transformation of the constrained variational problem into an uncon-
strained variational problem.

L({uk}, {ωk}, λ) = α∑k

∥∥∥∥δt[(δ(t) +
j

πt
)uk(t)]e−jwkt

∥∥∥∥2
2 +

∥∥∥∥∥ f (t)− ∑
k

uk(t)

∥∥∥∥∥2
2+ < λ(t), f (t)− ∑k uk(t) > (17)

(3). Use the alternating direction multiplier method to update the sum alternately.

un+1
k (ω) =

f (ω)− ∑i ̸=k ui(ω) + λ(ω)
2

1 + 2α(ω − ωk)
2 (18)

ωn+1
k =

∫ ∞
0 ω|uk(ω)|2dω∫ ∞

0 |uk(ω)|2dω
(19)

(4). Finding the Lagrange multiplication operator after alternating updates.

λn+1(ω) = λn(ω) + τ( f (ω)− ∑k un+1
k (ω)) (20)

(5). The VMD iteration stops when the decomposed modes satisfy the following equation:

∑k

∥∥∥un+1
k − un

k

∥∥∥2
2/∑k ∥un

k ∥
2
2 < ϵ (21)

2.3. GJO Optimization VMD

The minimum envelope entropy is chosen as the objective function to optimize the
process as follows:

(1) Input the fault signal, given the relevant parameters in the GJO, and the range of
(k, α) in the VMD.

(2) The VMD decomposition of the fault signal is performed according to the given
parameters, in which the value of the minimum envelope entropy in each iteration
is solved and the current minimum envelope entropy and its corresponding local
optimal solution are constantly updated and saved.
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(3) Repeat (2) to keep the values updated until the maximum number of iterations is
given, thus stopping the loop and obtaining the optimal (k, α).

The GJO optimization VMD flowchart is shown in Figure 1.
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2.4. Kurtosis Criterion and Cross-Correlation Coefficient Criterion
2.4.1. Kurtosis Criterion

Kurtosis is a dimensionless parameter which can be defined as

K =
E(x − µ)4

σ4 (22)

where µ is the mean and standard deviation of x and E(t) is the expectation of t.
The normal bearing vibration signal when working has a crag value of about 3, which

approximately obeys the normal distribution, but when the bearing is faulty, the crag value
of its fault signal will increase [28].

2.4.2. Cross-Correlation Coefficient Criterion

In this paper, the joint crag and the number of interrelationships criteria are recon-
structed by taking the components that satisfy both the crag and the number of interrela-
tionships criteria in order to achieve noise reduction in actual bearing fault diagnosis.

2.5. Time-Domain Indicators

In this paper, we construct the feature matrix by calculating the time-domain metrics
of the signal reconstructed by VMD decomposition, including the mean, variance, peak,
crag, RMS, etc. Nine indicators [29] are used as inputs for the deep learning network to
provide more meaningful and interpretable data. This aids the neural network in learning
more effectively, leading to improved model accuracy and robustness.

2.6. CNN-SVM Combined Network Architecture

The CNN-SVM network combination is made by using SVM as a classifier instead
of the original output layer in the convolutional neural network. The powerful multi-
classification ability of the SVM is utilized to improve the classification ability of the normal
CNN network in order to improve the performance of the whole network. Figure 2 shows
the structure of the CNN-SVM. The process is as follows: the data are first fed into the input
layer of the network, and then the CNN is trained until the training process converges
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so that useful features can be extracted. Then, the features are input into the SVM for
classification, thus fully utilizing the advantages of both.
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2.7. Diagnostic Process

Based on the above theory, this paper introduces a fault diagnosis method combining
time-domain features with GJO-VMD and the CNN-SVM. The process is as follows:

(1) The original data are subjected to data partitioning, the partitioned data are fed into
the GJO algorithm, the fitness function of the algorithm is set as well as the various
parameters, and the optimal parameters, k and α, that are most suitable for the VMD
decomposition of each signal are determined based on the different characteristics of
the different data.

(2) The best parameters obtained are substituted into VMD for signal decomposition to
obtain the respective decomposed IMF components.

(3) The kurtosis value and cross-correlation coefficient value of each IMF component are
calculated and the component that meets both the kurtosis criterion and the cross-
correlation coefficient criterion for signal reconstruction is selected so as to obtain the
signal after noise reduction.

(4) The mean, variance, peak, magnitude, RMS, peak factor, pulse factor, waveform factor,
and margin factor of the reconstructed signal are calculated to form the feature data.

(5) The composed feature data are used as the input to the CNN-SVM network to realize
the bearing fault diagnosis.

The flowchart is shown in Figure 3.
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3. Results
3.1. Public Dataset Testing

(1) Experimental data

The Case Western Reserve University (CWRU) bearing dataset, the authoritative
public dataset in the field of bearing fault diagnosis, was used for testing. The model of
the bearings used in the experiment is SKF6205, and the sampling frequency is 12 kHz,
the rotational speed is 1797 r/min, and the load is 0HP. The data of the inner ring, outer
ring, and rolling body failure, as well as normal data under the diameters of 0.1778 mm,
0.3556 mm, and 0.5334 mm are selected for a total of 10 kinds of conditions; 120 groups of
samples are taken for each kind of condition, and the length of the sample for each kind of
sample is 2048. The experimental platform is Matlab software (The version is R2023) for
diagnosis and analysis.

(2) Construct the feature data vector

The bearing data were processed using GJO-VMD to filter and reconstruct the compo-
nents containing important fault features and construct the feature data vectors. In the GJO
optimization VMD process, the parameters of GJO were set as follows: the population size
was 20, the maximum number of iterations was 20, the range of k was 100–2500, the range
of α was 3–10, and the number of optimization variables was 2. The results are shown
in Table 1.

Table 1. Optimal parameters for VMD.

Fault Diameter Typology (k, α)

0 Normal (10, 1847)
0.1778 mm Inner ring failure (3, 2500)
0.1778 mm Rolling body failure (10, 754)
0.1778 mm Outer ring failure (4, 100)
0.3556 mm Inner ring failure (4, 2304)
0.3556 mm Rolling body failure (10, 1213)
0.3556 mm Outer ring failure (10, 2352)
0.5334 mm Inner ring failure (5, 1621)
0.5334 mm Rolling body failure (3, 2099)
0.5334 mm Outer ring failure (7, 196)

To demonstrate the effectiveness of the GJO algorithm, this paper selects the data of
the inner ring fault with a diameter of 0.5334 mm as the comparison data and compares
the two algorithms, the GJO algorithm, the GWO algorithm, and the PSO algorithm,
obtaining the convergence curves, as shown in Figure 4, which shows the superiority of the
GJO algorithm.

The best value (5, 1621) obtained from the optimization is brought to VMD for de-
composition, and the obtained time domain and frequency domain diagrams are shown
in Figure 5, from which it can be obtained that the five components obtained from the
decomposition are uniformly distributed in each frequency from low to high according to
the center frequency, that there is no occurrence of modal mixing phenomena existing in
the EMD method, and that the GJO-VMD method decomposes the signal with better effect.

To enable the more efficient extraction of fault features from the fault signal, the
component signals are screened by calculating the kurtosis value of each component and
the cross-correlation coefficient between the component and the original signal.

Based on the fact that the vibration signal of a bearing under normal conditions ap-
proximately follows a normal distribution with a kurtosis value around three, when a
fault occurs in the bearing, the kurtosis value significantly increases. According to this
theory, when the kurtosis value of certain IMF components exceeds three, it indicates that
these components contain substantial impact components. This means that a considerable
amount of fault-related impact content from the original signal is included in these compo-
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nents. By reconstructing these components, the resulting signal shows a significant increase
in kurtosis. The more pronounced the fault, the greater the increase in kurtosis.

The cross-correlation coefficient is defined as the correlation between each IMF compo-
nent and the original signal. It is determined using the autocorrelation of the original signal,
with the magnitude of the correlation coefficient between each component and the original
signal serving as the criterion for selecting relevant components. It can be observed that
the magnitude of this value is directly proportional to the richness of the fault information
represented by the component.
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The kurtosis values and cross-correlation coefficient values of the five components
obtained from the computational decomposition are presented in Table 2. As can be seen
from Table 2, IMF1 and IMF2 are reconstructed as their kurtosis values are greater than
three and the cross-correlation coefficient values are greater than the other components.
Calculate the time-domain information and generate the feature data, which are used as
inputs to the CNN-SVM model to help the model learn better, so as to improve the accuracy
and robustness of the model.
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(3) Fault diagnosis

Divide the data into a training set (70%), a verification set (20%), and a test set (10%).
The parameters of the model are shown in Table 3. The learning rate of the network was set
to 0.01, and the maximum number of iterations was 150, resulting in the confusion matrix
of the model, as shown in Figure 6, and the classification outcomes for the test set samples
are illustrated in Figure 7. All except categories six achieve 100% accuracy, and the average
accuracy also reaches 99%, with a running time of 21.56 s, which is also relatively efficient.

Table 2. Kurtosis and cross-correlation coefficient.

Component Steepness Correlation Number

IMF1 4.2514 0.7536
IMF2 3.5846 0.4531
IMF3 2.4561 0.2847
IMF4 2.7615 0.2354
IMF5 2.6513 0.2411

Table 3. Model structural parameters.

Network Layer Parameter Setting

Convolutional layer 1 16@3X1, Step 1
Pooling layer 1 3X1, Step 2

Convolutional layer 2 32@2X1, Step 1
Pooling layer 2 2X1, Step 2

Convolutional layer 3 64@2X1, Step 1
Pooling layer 3 2X1, Step 2

Flatten -
SVM -

(4) Model Comparison

To demonstrate the superiority of the GJO-VMD method combined with the time-
domain features and CNN-SVM model, it is compared with the CNN, LSTM, BILSTM,
VMD-CNN, VMD-CNN-SVM, and GJO-VMD-CNN-SVM models for comparison, and
the parameter settings of the network models are all the same as those presented in this
paper. In order to avoid the interference caused by random factors, this paper will perform
the training of different models several times to verify the generalization of the model
and its robustness. The model comparison is shown in Table 4. The confusion matrix and
classification results are shown in Figure 8. The superiority of the model can also be seen in
the final results.

Table 4. Comparison of model accuracy.

Model Precision/% Recall/% F1-Score Average Accuracy/%

CNN 89 87 0.87 87.33
LSTM 96 96 0.96 96.00

BILSTM 97 97 0.97 97.00
CNN-SVM 93 93 0.93 93.00

VMD—CNN 91 91 0.91 91.00
VMD—CNN—SVM 95 95 0.94 95.67

GJO—VMD—CNN—SVM 96 96 0.95 96.67
GJO-VMD combining time

domain features and
CNN-SVM

99 99 0.99 99.05
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From the data in the table, it can be seen that the average accuracy of the GJO-VMD
method combined with time-domain features and the CNN-SVM bearing fault diagnosis
model proposed in this paper is significantly improved compared to the other models after
multiple trainings, and the superiority of the model can also be concluded.

3.2. Public Dataset Testing Experimental Verification

(1) Experimental data presentation and processing

This paper proposes a model and assesses its feasibility, as can be seen after testing
and using the publicly available dataset, which will now be further verified using the
experimental data measured by the experimental equipment provided by the Changchun
University Mechanical Laboratory (Changchun, China).

The experimental equipment shown in Figure 9 includes bearing type SKF6007 deep
groove ball bearings, and the bearing failure types include inner ring failure, outer ring
failure, rolling element failure, and a normal state. The motor speed of the experimental
bench is set to 2000 r/min, the load is 1000 N, and the sampling frequency is 20 kHz. One
hundred and twenty sets of samples are taken for each state, and the sample length of
each set of samples is 2048. The optimal parameters corresponding to the VMDs for the
four states are optimized using GJO as (5, 715), (3, 885), (4, 925), and (9, 1218), respectively.
The obtained optimal parameters are substituted into VMD for decomposition and then
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reconstructed using the kurtosis and the cross-correlation coefficient; the nine time-domain
features of the reconstructed signals are computed once to construct the feature matrix,
which is inputted into the CNN-SVM model.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 12 of 26 
 

CNN-SVM 93 93 0.93 93.00 

VMD—CNN 91 91 0.91 91.00 

VMD—CNN—SVM 95 95 0.94 95.67 

GJO—VMD—CNN—SVM 96 96 0.95 96.67 

GJO-VMD combining time domain 

features and CNN-SVM 
99 99 0.99 99.05 

 

  

(a1) (b1) 

  

(a2) (b2) 

  

(a3) (b3) 

Figure 8. Cont.



World Electr. Veh. J. 2024, 15, 544 13 of 25
World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 13 of 26 
 

  

(a4) (b4) 

  

(a5) (b5) 

  

(a6) (b6) 

Figure 8. Cont.



World Electr. Veh. J. 2024, 15, 544 14 of 25
World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 14 of 26 
 

  

(a7) (b7) 

Figure 8. (a) CNN. (b) CNN. (a1) LSTM. (b1) LSTM. (a2) BILSTM. (b2) BILSTM. (a3) CNN-SVM. 

(b3) CNN-SVM. (a4) VMD-CNN. (b4) VMD-CNN. (a5) VMD-CNN-SVM. (b5) VMD-CNN-SVM. 

(a6) GJO-VMD-CNN-SVM. (b6) GJO-VMD-CNN-SVM. 

From the data in the table, it can be seen that the average accuracy of the GJO-VMD 

method combined with time-domain features and the CNN-SVM bearing fault diagnosis 

model proposed in this paper is significantly improved compared to the other models 

after multiple trainings, and the superiority of the model can also be concluded. 

3.2. Public Dataset Testing Experimental Verification 

(1) Experimental data presentation and processing 

This paper proposes a model and assesses its feasibility, as can be seen after testing 

and using the publicly available dataset, which will now be further verified using the ex-

perimental data measured by the experimental equipment provided by the Changchun 

University Mechanical Laboratory (Changchun, China). 

The experimental equipment shown in Figure 9 includes bearing type SKF6007 deep 

groove ball bearings, and the bearing failure types include inner ring failure, outer ring 

failure, rolling element failure, and a normal state. The motor speed of the experimental 

bench is set to 2000 r/min, the load is 1000 N, and the sampling frequency is 20 kHz. One 

hundred and twenty sets of samples are taken for each state, and the sample length of 

each set of samples is 2048. The optimal parameters corresponding to the VMDs for the 

four states are optimized using GJO as (5, 715), (3, 885), (4, 925), and (9, 1218), respectively. 

The obtained optimal parameters are substituted into VMD for decomposition and then 

reconstructed using the kurtosis and the cross-correlation coefficient; the nine time-do-

main features of the reconstructed signals are computed once to construct the feature ma-

trix, which is inpu�ed into the CNN-SVM model. 

Figure 8. (a1) CNN. (b1) CNN. (a2) LSTM. (b2) LSTM. (a3) BILSTM. (b3) BILSTM. (a4) CNN-SVM.
(b4) CNN-SVM. (a5) VMD-CNN. (b5) VMD-CNN. (a6) VMD-CNN-SVM. (b6) VMD-CNN-SVM.
(a7) GJO-VMD-CNN-SVM. (b7) GJO-VMD-CNN-SVM.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 15 of 26 
 

 

Figure 9. Diagram of experimental equipment. 

(2) Analysis of experimental results 

The experimental results are presented using visualization, as shown in Figure 10, 

the confusion matrix obtained after the model training is completed, as shown in Figure 

11, and the classification results are shown in Figure 12. As can be seen in the figure, the 

model proposed in this paper reaches 99.17% in terms of diagnostic accuracy, and the time 

was 23 s; the diagnostic efficiency of the model is also fully in line with the application of 

the requirements of the model. The model not only demonstrates a good performance in 

the public dataset, but, in the actual experiments, can also provide good diagnostic results, 

which proves that the model can be completely applied to actual bearing fault diagnosis 

experiments. 

 

Figure 10. Visualization of training results. 
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(2) Analysis of experimental results

The experimental results are presented using visualization, as shown in Figure 10, the
confusion matrix obtained after the model training is completed, as shown in Figure 11,
and the classification results are shown in Figure 12. As can be seen in the figure, the
model proposed in this paper reaches 99.17% in terms of diagnostic accuracy, and the time
was 23 s; the diagnostic efficiency of the model is also fully in line with the application
of the requirements of the model. The model not only demonstrates a good performance
in the public dataset, but, in the actual experiments, can also provide good diagnostic
results, which proves that the model can be completely applied to actual bearing fault
diagnosis experiments.
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(3) Model comparison

Using these data, the proposed model in this paper is compared again with other
models. The model comparisons are shown in Table 5, and the comparison results are
illustrated in Figure 13. Observing the results, it is evident that the performance of this
model still surpasses that of the other models.
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Table 5. Comparison of model accuracy.

Model Precision/% Recall/% F1-Score Average Accuracy/%

CNN 91 91 0.91 90.83
LSTM 96 96 0.95 95.83

BILSTM 98 98 0.98 98.33
CNN-SVM 93 93 0.92 92.50

VMD—CNN 92 92 0.92 91.67
VMD—CNN—SVM 95 95 0.95 95.00

GJO—VMD—CNN—SVM 98 98 0.97 97.50
GJO-VMD combining time domain features and CNN-SVM 99 99 0.99 99.17

(4) Model comparison

To intuitively validate the feasibility of the model under noisy conditions, additional
noise was introduced into the original data to conduct experiments evaluating the model’s
feasibility across different noise levels. The signal-to-noise ratio (SNR) is defined as the
ratio of the power of the signal (Power of Signal) to the power of the noise (Power of
Noise) [30]. The formula is expressed as follows:

SNR = 10log10
Psignal

Pnoise
(23)

Different values of the SNR represent different conditions. When the SNR is pos-
itive, it indicates that the signal strength is greater than the noise strength, simulating
an environment with moderate noise. However, when the SNR is negative, it implies
that the noise strength exceeds the signal strength, indicating significant signal degra-
dation and simulating a harsher environment. Based on these conclusions, four distinct
SNR values of −4, −2, 2, and 4 were added to simulate various environments. The time-
domain representations of the original signal and the signals with different SNR levels are
shown in Figure 14, ordered from top to bottom as the original signal, SNR = 4, SNR = 2,
SNR = −2, and SNR = −4.
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Figure 14. (a) The time-domain waveform of the bearing under normal conditions. (b) The time-
domain waveform of the bearing in an inner race fault condition. (c) The time-domain waveform
of the bearing in an outer race fault condition. (d) The time-domain waveform of the bearing in a
rolling element fault condition.
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After adding noise with different SNR levels to the original signal, the proposed
model was used to perform fault diagnosis for each case. The resulting confusion matrix is
shown in Figure 15. The confusion matrix indicates that despite the signal being affected by
environmental and machine vibration noise, along with the added white noise, the model
still achieved an accuracy of approximately 90%. This demonstrates the model’s feasibility
under real-world operating conditions.
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4. Discussion

To minimize the impact of noise in fault diagnosis and the consequent problem of
the difficulty in extracting the fault features, as well as the issue of the low accuracy of the
traditional models, the proposed fault diagnosis method of GJO-VMD combining time-domain
features and the CNN-SVM is of great significance in solving the above problems.

(1) In this paper, GJO is used to optimize VMD in order to select the key parameters,
PSO and GWO algorithms are compared, and the results demonstrate that the GJO
algorithm converges rapidly and maintains high accuracy.

(2) The VMD-decomposed signals are filtered and reconstructed using the kurtosis and
cross-correlation coefficient, and the nine time-domain features of the reconstructed
signals are calculated while simultaneously constructing the feature vectors, which
serve as inputs for the neural network so that the neural network can be provided
with more meaningful and easy-to-interpret inputs, which then help the model to
learn better, thus improving the accuracy and robustness of the model.
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(3) The SVM is utilized to replace the SoftMax classifier in the traditional CNN network
to improve the classification ability of the CNN network, which is more conducive to
the problems mentioned in this paper.
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