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Analysis of Efficiency and Noise, Vibration, and Hardness
Characteristics of Inverter for Electric Vehicles According to
Pulse Width Modulation Technique
Do-Yun Kim

Department of Smart Mobility, Pyeongtaek University, Room 215, Science & Engineering Building,
3825 Seodong-Daero, Pyeongtaek-si 17869, Gyeonggi-do, Republic of Korea; kimdoyun@ptu.ac.kr

Abstract: This study investigates the efficiency and noise, vibration, and harshness (NVH) charac-
teristics of electric vehicle (EV) powertrains based on three key Pulse Width Modulation (PWM)
techniques: Space Vector PWM (SVPWM), Discontinuous PWM (DPWM), and Random PWM
(RPWM). The objective is to evaluate the impact of these PWM techniques on inverter and motor
efficiency, as well as their effects on NVH performance, particularly in relation to noise and vibration.
Experiments were conducted across various speed and torque levels using a motor dynamo. The
study reveals that DPWM provides the highest efficiency, outperforming SVPWM by up to 2.23%.
However, DPWM introduces more noise due to increased total harmonic distortion (THD), nega-
tively affecting NVH performance. SVPWM, on the other hand, offers a balanced trade-off between
efficiency and NVH, while RPWM demonstrates comparable noise characteristics to SVPWM, with
potential for broader harmonic distribution. The findings suggest that each PWM technique offers
distinct advantages, and their selection should depend on the required balance between efficiency
and NVH.

Keywords: electric vehicles; torque control; efficiency optimization; harmonic analysis; motor drives

1. Introduction

The automobile industry is making various efforts to reduce greenhouse gas emissions
and reduce dependence on fossil fuels by switching to electric vehicles (EVs) [1]. EVs do not
directly use fossil fuels, so they reduce greenhouse gases, have high energy efficiency, etc.
However, for smooth adoption of EVs, noise, vibration, and harshness (NVH) performance
optimization is required for higher efficiency and comfortable driving for drivers [2,3].

The efficiency of an inverter, which converts DC power into the AC power required to
drive an electric vehicle, is essential for overall powertrain performance. Various PWM
techniques are key factors in determining this efficiency. These techniques play a crucial
role not only in the efficiency of power conversion but also in the NVH (Noise, Vibration,
and Harshness) characteristics of the system, directly affecting the driver’s experience [4,5].

This paper investigates the effects of three Pulse Width Modulation (PWM) techniques—
Space Vector PWM (SVPWM), Discontinuous PWM (DPWM), and Random PWM (RPWM)—on
the efficiency and NVH characteristics of electric vehicle powertrains. These techniques
are widely applied in EV driving systems due to their distinct advantages [6,7]. Through
experimental analysis, we quantify the impact of each PWM method on motor efficiency
and acoustic performance. SVPWM is shown to improve motor efficiency by up to 15%
compared to traditional sinusoidal PWM [8]. DPWM techniques can further reduce switch-
ing losses, potentially increasing inverter efficiency by 20–30% [9]. RPWM, while less
efficient, demonstrates superior NVH performance by spreading harmonic energy across
a wider frequency spectrum, reducing the perception of tonal noise [10]. By elucidating
the trade-offs between efficiency and NVH for each technique, this study provides crucial
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insights for EV powertrain designers aiming to optimize both performance and driving
comfort.

The main purpose of this study was to evaluate and compare the efficiency of inverters,
motors, and inverter and motor integrated systems according to various PWM techniques,
and to analyze the impact of these PWM techniques on NVH, especially focusing on noise.
Through this, it is expected that a PWM technique can be selected to achieve the optimal
balance between efficiency and NVH.

The structure of this paper is as follows. Section 2 introduces existing research on EV
PWM technology, inverter performance, and NVH. Section 3 presents the method used in
the experiment and presents the experimental results. Section 4 discusses the implications
of these findings and concludes the paper with key analyses and suggestions for future
research.

2. Literature Review of EV Inverter
2.1. Overview of Electric Vehicle (EV) Inverters

Voltage source inverters are commonly used in electric vehicles to convert DC power
from the battery into AC power required for motor operation, as illustrated in Figure 1. The
inverter consists of six switches, arranged in three arms, each responsible for producing
one phase of the three-phase current. Each arm has a top and bottom switch that perform
complementary switching operations to avoid short circuits in the arms [11,12].
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Figure 1. Three-phase inverter.

Typically, the continuous SVPWM technique is used to generate three-phase voltages
efficiently. To further optimize performance, the DPWM technique can be applied to reduce
switching losses, while the RPWM technique is often employed to mitigate NVH. Each of
these techniques plays a key role in improving the inverter’s efficiency and overall driving
comfort.

2.2. Pulse Width Modulation Techniques
2.2.1. Space Vector PWM

One of the key performance indicators of PWM techniques is the magnitude of the
output voltage produced when converting a limited direct current (DC) voltage into an
alternating current (AC). Table 1 presents a comparison of the output voltages for different
PWM techniques. Among these, the 6-Step technique can achieve the highest voltage.
However, this technique operates by generating output voltages at intervals of 60 degrees
in the frequency domain, producing six distinct voltage steps over 360 degrees. Due to its
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discontinuous nature, the 6-Step technique is typically not used under normal operating
conditions [13,14].

Table 1. Comparison of output voltage sizes according to PWM technique.

No PWM Method Output Voltage P.U Voltage Ratio

1 SPWM Vdc
2 0.5 100 [%]

2 SVPWM Vdc√
3

0.5773 115.47 [%]

3 6-Step 2
π Vdc 0.6366 127.324 [%]

Among continuous PWM techniques, SVPWM is capable of generating the highest
output voltage. When compared to SPWM, which uses the same DC voltage input, SVPWM
produces an output voltage that is 15.47% higher, making it a more efficient choice for
generating alternating voltages in electric vehicle inverters.

The phase voltages Vas, Vbs, Vcs, and Vcs generated by the inverter can be expressed
in terms of the switching functions Sa, Sb, and Sc, as shown in Figure 1. These switching
functions determine the ON/OFF states of the inverter’s switches, and the resulting phase
voltages are described by Equation (1):

Vas =
Vdc
3 (2Sa − Sb − Sc)

Vbs =
Vdc
3 (2Sb − Sc − Sa)

Vcs =
Vdc
3 (2Sc − Sa − Sb)

(1)

The switching function controls the output voltages for each phase. Depending on the
combination of switching states, a total of eight possible voltage vectors can be generated
by the inverter. These eight vectors are represented graphically as a space vector in Figure 2.
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The change in the inverter’s three-phase switching command causes the command
voltage vector V∗ to rotate counterclockwise in the space vector plane (d-q axis stationary
coordinate plane), as illustrated in Figure 2. During each cycle of the command voltage, the
voltage vector completes one full rotation.

SVPWM generates the desired command voltage by using the eight available switching
vectors. Specifically, two adjacent effective voltage vectors, Vn and Vn+1, which are closest to
the command voltage vector V∗, are selected. In addition, zero-voltage vectors V0 and V7 are
used to maintain the average output voltage during each modulation period Ts.
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The time allocated to apply each vector is as follows: T1 for the first vector Vn, T2 for
the second vector Vn+1, and T0 for the zero vectors. The composition of the voltage using
the vectors Vn and Vn+1 and the zero vectors during Ts is described by Equation (2):∫ Ts

0 V∗dt =
∫ T1

0 Vndt +
∫ T1+T2

T1
Vn+1dt +

∫ Ts
T1+T2

V0,7dt,
(∴ V∗Ts = VnT1 + Vn+1T2).

(2)

Among the various Space Vector Pulse Width Modulation (SVPWM) techniques that
combine two adjacent effective voltage vectors with zero-voltage vectors, the symmetrical
space vector voltage modulation method stands out for its efficiency and balanced perfor-
mance. This method involves placing the effective vector application time T1 + T2 exactly
at the center of one cycle of voltage modulation Ts, thereby achieving symmetry within
the modulation cycle. As a result, the effective voltage vector is positioned at the center,
while the zero vectors are located at the beginning and end of the cycle. This symmetrical
arrangement ensures that the ripple of the phase current within each cycle maintains a
symmetrical shape, thereby reducing the number of switching events required [15,16].

Figure 3 illustrates the switching status in the sector 1 area, providing a visual repre-
sentation of how the symmetrical SVPWM operates. In this figure, the top switch of phase
A remains ON while the bottom switch stays OFF, and phases B and C perform comple-
mentary switching operations [17]. This coordinated switching pattern is fundamental to
maintaining the symmetry and minimizing harmonic distortions in the output voltage. By
ensuring that all three-phase switches undergo switching operations within each modu-
lation cycle, symmetric SVPWM is classified as a continuous modulation method. This
continuous approach not only enhances voltage utilization but also contributes to smoother
motor operation and reduced electromagnetic interference (EMI).
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Symmetric SVPWM is the most widely used SVPWM technique due to its ability to
balance efficiency and NVH performance. By maintaining continuous switching across all
phases and achieving a symmetrical current ripple, this method optimizes the inverter’s
performance, making it highly suitable for electric vehicle applications where both efficiency
and driving comfort are paramount.

2.2.2. Discontinuous PWM

Unlike the continuous voltage modulation method, DPWM is a technique designed to
reduce the number of switching events by switching only two of the three inverter phases.
The main goal of applying DPWM is to increase the efficiency of the inverter by reducing
switching losses. However, the harmonic characteristics vary depending on the placement
of the non-switching discontinuous section.
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In the discontinuous modulation method, the symmetry of the effective voltage vector
is lost, but the number of switching operations is reduced to two-thirds of the continuous
modulation method. When the discontinuous section is inserted at an optimal position—
especially in areas with a high voltage modulation index—it can result in better harmonic
performance than continuous modulation methods, even when operating at the same
switching frequency. In regions with a low modulation index, however, the loss of symme-
try in the effective voltage vector can lead to an increase in harmonic distortion compared
to continuous modulation techniques [18–20].

Reflecting on these characteristics, research has been conducted into various discontin-
uous section placements, resulting in six distinct DPWM techniques: 60◦, 60◦ + 30◦, 60◦ −
30◦, 30◦, +120◦, and −120◦ DPWM. Each technique has different harmonic characteristics
based on the placement of the non-switching phase.

Figure 4 shows the switching status of DPWM in sector 1. In this example, the top
switch of phase A remains ON, the bottom switch remains OFF, and phases B and C
perform the necessary switching operations.
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The three-phase inverter can be configured with a 120◦ discontinuous modulation
section, during which no switching occurs in one phase over a cycle of the command
voltage. Although the discontinuous section can be placed at any position within the
command voltage cycle, it is generally positioned near the maximum phase current. This is
because switching losses are proportional to the amount of current flowing through the
switch, and placing the discontinuous section at the point of maximum current helps to
reduce switching losses.

To achieve optimal efficiency, the placement of the discontinuous section must be
adjusted based on the load status. Under different load conditions, the discontinuous
section may need to be rearranged to further reduce losses and maintain performance.

In the 60◦ discontinuous modulation method, switching is not performed during
the 60◦ section of the modulation cycle where the phase voltage reaches its maximum
or minimum value. This approach is especially useful for applications like UPS systems,
grid-connected inverters, and permanent magnet synchronous motor drives, where the
voltage and current are controlled to be nearly in phase. By eliminating switching in these
sections, switching losses can be minimized.

Figure 5a provides an example of the a-phase pole voltage command used to im-
plement this modulation method. During the 60◦ section where the phase static voltage
command V∗

as is at its most positive, the upper switch of phase A remains on, and the pole
voltage command V∗

an is set to Vdc/2. Conversely, during the most negative 60◦ section, the
lower switch is kept on by fixing the pole voltage command at −Vdc/2.
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In the case of an R+XL load, such as an induction motor, the current lags behind the
input voltage. This lagging current is a typical characteristic of inductive loads. The main
goal of using the discontinuous modulation method is to reduce switching losses when the
current reaches its maximum value.

To address the current flowing to the ground in relation to the phase voltage, a
60◦ + 30◦ discontinuous modulation method is applied. In this technique, switching is
avoided during the 30◦ delayed section, resulting in discontinuous modulation within the
60◦ to 120◦ portion of the cycle. This helps to minimize switching losses, especially when
dealing with a lagging current.

Figure 5b illustrates the space vector diagram for the 60◦ + 30◦ discontinuous modula-
tion method, along with the sectors where discontinuous modulation is applied.

The 30◦ discontinuous modulation method is widely regarded as the best approach
for reducing harmonic losses. In this technique, the discontinuous modulation area added
to one complete cycle covers a total of 120◦. However, in the 30◦ discontinuous modulation
method, this area is distributed across four specific regions.

The four areas where discontinuous modulation is performed are as follows:
30◦ to 60◦, 120◦ to 150◦, 210◦ to 240◦, and 300◦ to 330◦.
This division allows for optimized performance in minimizing harmonic distortions.

Figure 5d illustrates the space vector diagram for this modulation method, showing the
sectors where discontinuous modulation occurs.

The 120◦ discontinuous modulation method is a technique where switching is avoided
for one-third of a cycle (120◦). This method is suitable for low-cost systems due to its ability
to reduce switching frequency and complexity.

However, there are some drawbacks. The +120◦ and −120◦ discontinuous modulation
methods result in uneven switching losses between the upper and lower switches of the
inverter. While the +120◦ method effectively reduces the switching losses in the lower
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switch, and the −120◦ method focuses on the upper switch, this imbalance can be a
disadvantage. Although the overall switching losses are reduced, this method does not
offer any significant improvement in the inverter’s maximum output performance.

Figure 5e illustrates the space vector diagram for the +120◦ discontinuous modulation
method and highlights the sectors where discontinuous modulation occurs.

Figure 5f shows the space vector diagram for the −120◦ discontinuous modulation
method and highlights the sectors where discontinuous modulation is applied.

2.2.3. Random PWM

When controlling an inverter using the PWM technique, harmonics tend to concentrate
in the output voltage within specific frequency bands, particularly those corresponding
to the switching frequency and its multiples, as well as the associated sidebands. These
harmonics can lead to undesirable effects such as noise and vibration. To mitigate these
issues, RPWM has emerged as a promising technique that reduces the impact of harmonics
without increasing the overall switching frequency [21].

RPWM operates by introducing random variables to alter the inverter’s switching pat-
tern, effectively dispersing the harmonic spectrum across a broader frequency range. This
is significant because the ripple in the phase current typically exhibits peaks at frequencies
tied to the inverter’s switching frequency, the output voltage frequency, and the natural
characteristics of the load. Such specific frequency ripples can induce vibrations and noise
in connected loads [22,23].

Moreover, with the rising concern over EMI due to power converters, RPWM offers a
valuable solution by spreading high-frequency components—often concentrated around
the switching frequency and its harmonics—across a wider frequency band. This results in
a more symmetrical current profile, minimizing potential EMI issues.

In this paper, we have implemented a Random PWM technique that maintains a
constant switching frequency while utilizing offset voltage modulation. This approach
is particularly advantageous as it simplifies implementation; it involves merely adding a
randomization function to the offset voltage, based on the previously established offset
voltage modulation with SVPWM. Importantly, this can be achieved without the need
for additional hardware or complex algorithms, making it an efficient choice for practical
applications.

The voltage modulation method utilizing offset voltage is an integrated approach that
facilitates the easy implementation of various existing voltage modulation techniques. As
depicted in Figure 6, this method integrates Random RPWM by incorporating a random
function into the pole voltage calculated for SVPWM in the context of SVPWM.
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The offset voltage (V∗
sn) generated through this randomization process is represented

mathematically in Equation (3), showcasing how the random function influences the overall
voltage modulation. V∗

sn is calculated as follows:

V ′′
sn = −

V∗
max + V∗

min
2

+ Vrd (3)

2.3. Contemplation of Harmonics in General PWM Techniques

The primary objective of the PWM technique is to control the switches in each phase
to generate a fundamental wave voltage with the same magnitude and frequency as the
command voltage. Various PWM techniques have been developed, starting with sinusoidal
PWM (SPWM). The performance of a PWM technique is evaluated based on its ability to
linearly output the voltage within the constraints of the DC link voltage and the harmonic
characteristics of the output voltage. The voltage modulation index (MI), defined in
Equation (4),

Vp−h = Vhsin
(

Mm f ± N
)
[2π f0t +∅h], (4)

is used to describe the output voltage magnitude for each phase in PWM techniques.
Compared to SPWM, SVPWM has a voltage modulation index approximately 1.155 times

higher, meaning it utilizes the DC link voltage more effectively. However, the output voltage
of the inverter contains harmonics concentrated around specific frequencies—specifically
the switching frequency fc, its multiples M, and the sidebands at N f0.

Equation (4) represents the harmonic components of the pole voltage Vp caused by
PWM switching, where f0 is the fundamental frequency of the output voltage, and m f is
the frequency modulation index, which is the ratio of the switching frequency to the
fundamental frequency, as defined in Equation (5):

m f =
fc

f0
(5)

Here, M and N are integers, and their sum (M + N) must be odd. The harmonic orders
from Equation (4) are as follows:

m f m f ± 2 m f ± 4 m f ± 6 . . .
2m f + 1 2m f ± 3 2m f ± 5 2m f ± 7 . . .

3m f 3m f ± 2 3m f ± 4 3m f ± 6 . . .
(6)

Among these harmonic components, those of order m f are the largest. In other
words, the harmonic components associated with the switching frequency fc are the most
dominant. Figure 7 illustrates the harmonic distribution of pole voltages for general PWM
techniques.
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The harmonic characteristics for the line voltage and phase voltage are further detailed
in Figure 8. In a three-phase inverter driving system, harmonic components that are
multiples of three are effectively removed from the line-to-line voltage calculated as the
difference between pole voltages. Since these components are in phase within each phase
voltage, they do not contribute to the line voltage.

If the frequency modulation index m f is set to a multiple of three, all harmonics that
are multiples of m f can be eliminated from the line voltage, leading to a reduction in
the overall harmonic content. Consequently, the largest harmonic component m f is also
removed, resulting in the following harmonic components:
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Figure 8 illustrates the harmonic distribution of the line voltage when m f is a multiple
of three. These harmonics, concentrated in specific frequency bands, contribute to noise,
vibration, and electromagnetic interference issues.
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As a method to evaluate the harmonic-spectrum spread effect of the random PWM
technique, the harmonic spread factor (HSF), a concept derived from standard deviation in
probability theory, can be applied. The HSF is calculated using the following formula:

HSF =

√√√√ 1
N − 1

N

∑
j>1

(
Hj − H0

)2 (8)

In these equations, Hj refers to the magnitude of the j-th individual harmonic, and H0
represents the average of N − 1 harmonics. An ideal harmonic diffusion effect is achieved
when the HSF equals 0, which corresponds to the condition of ideal white noise. The
equation for H0 can be expressed as follows:

H0 =
∑N

j>1 Hj

N − 1
(9)

Additionally, an analysis of total harmonic distortion (THD) is necessary to examine
the impact of harmonic characteristics when applying the Random PWM technique. THD
is expressed by the following equation:

THD =

√
∑N

j>1 V2
j

V1
(10)
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where V1 is the root mean square (rms) value of the output voltage fundamental wave,
and Vj represents the rms value of the j-th harmonic. This analysis provides insight into
how effectively the Random PWM technique can minimize harmonic distortions while
maximizing efficiency.

3. Experimental Results
3.1. Efficiency Measurements

The efficiency test was conducted using a motor dynamo, with power measurements
taken by Yokogawa’s WT3000 power meter. The experimental procedure first presents
the inverter’s efficiency by analyzing its performance based on varying speed and torque
values. Following this, the motor efficiency is evaluated under similar conditions. Finally,
the combined efficiency of the inverter and motor system is presented, showcasing how
the entire system performs across different operational ranges. This stepwise approach
allows for a detailed comparison of each component’s efficiency and their integrated
performance. Figure 9 illustrates the command voltage patterns for SVPWM, DPWM, and
RPWM techniques, highlighting their distinct characteristics. In SVPWM, the command
voltage is represented by a rotating voltage vector that covers the full 360-degree space,
aiming for continuous modulation to maximize voltage utilization while maintaining
balanced switching across all three phases.

DPWM, on the other hand, introduces non-switching periods in the command voltage,
where only two out of the three phases are actively switching, effectively reducing switching
losses. This results in distinct discontinuous sections in the command voltage. Lastly,
RPWM incorporates random variations in the switching pattern of the command voltage,
dispersing harmonics across a wider frequency spectrum. This technique aims to reduce
the concentration of harmonics in specific frequency bands, thereby improving NVH and
reducing EMI. Figure 9 visually captures these differences in the modulation behavior of
each technique.
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The experimental conditions are shown in Table 2.

Table 2. Experimental conditions.

Parameters Value Unit

DC Voltage 400 V
Speed range 1000~10,000 rpm
Torque range 20~300 Nm

Pole pair 4 -
Ld/Lq/Rs 0.168/0.632/0.0135 mH/mH/Ω

3.1.1. Inverter Efficiency Results

In Figure 10, the inverter efficiency results according to the PWM technique are
presented based on speed and torque. Figure 10a shows the efficiency (%) obtained when
applying the SVPWM technique. In contrast, Figure 10b displays the efficiency (%) results
of the highest performing PWM technique chosen from the DPWM and RPWM methods.
Figure 10c provides a comparative analysis of the techniques, where number 1 represents
SVPWM, numbers 2 to 7 represent different DPWM methods, and number 8 corresponds
to RPWM. The results indicate that the PWM technique has the highest efficiency based on
speed and torque measurements. Finally, Figure 10d highlights the efficiency difference
between the PWM technique selected in Figure 10b and the baseline SVPWM in Figure 10a.
As demonstrated by these test results, the inverter’s efficiency is highest when applying
the DPWM technique, showing an improvement ranging from a minimum of 0.35% to a
maximum of 2.23% compared to SVPWM.
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3.1.2. Motor Efficiency Results

In Figure 11, the motor efficiency results according to the PWM technique are analyzed
based on speed and torque. Figure 11a illustrates the efficiency (%) when the SVPWM
technique is applied. Figure 11b presents the efficiency (%) for the PWM technique that
achieved the highest efficiency among the DPWM and RPWM techniques. In Figure 11c, the
test results compare the best performing techniques, where number 1 represents SVPWM,
numbers 2 through 7 represent various DPWM methods, and number 8 represents RPWM.
Figure 11d highlights the efficiency difference between the PWM technique selected in
Figure 11b and the baseline SVPWM in Figure 11a.

The results demonstrate that overall, the motor’s efficiency is highest when using the
SVPWM technique. Although RPWM and DPWM show higher efficiency in certain regions,
the DPWM technique primarily reduces switching loss, but at the cost of increasing the
THD of the output current. It is noted that the difference in efficiency between the various
PWM techniques is less than 0.89%, indicating that the impact of switching technique on
motor efficiency is minimal.
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   Speed(rpm)

Torque(Nm)

300 83.10 89.51 92.09 %
280 83.20 89.62 92.19
260 85.55 90.93 93.19
240 87.59 92.03 93.97 94.15
220 88.39 92.46 94.28 94.55
200 89.76 93.20 94.74 95.10 94.00
180 90.75 93.74 95.07 95.50 94.58
160 91.02 93.86 95.13 95.57 94.69 93.69
140 91.85 94.22 95.33 95.79 95.04 94.08 92.54
120 92.44 94.47 95.47 95.95 95.29 94.35 93.02 92.04
100 92.71 94.59 95.53 96.02 95.40 94.48 93.25 92.35
80 93.06 94.54 95.40 95.74 95.22 94.34 93.06 92.14 91.18 90.32
60 93.47 94.49 95.25 95.42 95.01 94.17 92.85 91.90 91.13 90.20
40 93.87 94.43 95.10 95.10 94.79 94.00 92.63 91.65 91.07 90.07
20 94.17 94.26 94.93 94.66 94.38 93.63 92.16 91.56 90.72 89.97

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

   Speed(rpm)

Torque(Nm)

300 8 8 8 SVPWM 1
280 1 8 8 30˚DPWM 2
260 8 8 1 60˚DPWM 3
240 1 8 1 1 60˚+30˚DPWM 4
220 1 8 1 1 60˚-30˚DPWM 5
200 1 1 1 1 1 +120˚DPWM 6
180 1 1 1 1 8 -120˚DPWM 7
160 1 8 1 1 1 1 RPWM 8

140 1 8 1 1 1 8 8
120 1 8 1 1 1 8 1 1
100 1 8 1 1 1 8 1 1
80 8 8 1 1 1 6 1 1 2 4
60 8 8 1 1 1 6 1 1 2 4
40 8 8 1 1 1 6 1 1 8 1
20 8 8 1 1 1 6 1 1 8 1

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

   Speed(rpm)

Torque(Nm)

300 0.01 0.02 0.50 RDPWM-SWPWM(%)
280 0.00 0.03 0.14
260 0.27 0.08 0.00 0.00
240 0.07 0.05 0.00 0.00
220 0.00 0.04 0.00 0.00 0.00
200 0.00 0.01 0.00 0.00 0.00
180 0.00 0.00 0.00 0.00 0.04 0.00
160 0.00 0.01 0.00 0.00 0.03 0.00 0.01
140 0.00 0.04 0.00 0.00 0.02 0.03 0.01 0.00
120 0.00 0.06 0.00 0.00 0.01 0.05 0.00 0.00 0.00
100 0.00 0.07 0.00 0.00 0.00 0.06 0.00 0.00 0.00
80 0.03 0.06 0.00 0.00 0.00 0.13 0.00 0.00 0.21 0.04
60 0.06 0.05 0.00 0.00 0.00 0.21 0.00 0.00 0.55 0.02
40 0.08 0.03 0.00 0.00 0.00 0.29 0.00 0.00 0.89 0.00
20 0.11 0.07 0.00 0.00 0.00 0.29 0.00 0.00 0.80 0.00

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

   Speed(rpm)

Figure 11. Comparison of motor efficiency measurement results by speed and torque with SVPWM,
RPWM, and DPWM applied.

3.1.3. Inverter and Motor Efficiency Results

Figure 12 presents the results of measuring the efficiency of the combined inverter
and motor system based on different PWM techniques as a function of speed and torque.
Figure 12a shows the system efficiency (%) when SVPWM is applied, while Figure 12b
displays the experimental efficiency (%) for the PWM technique that achieved the highest
efficiency among the DPWM and RPWM techniques. Figure 12c highlights the PWM
technique with the highest efficiency, selected after comparing the results from SVPWM,
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DPWM, and RPWM, where number 1 represents SVPWM, numbers 2 through 7 corre-
spond to various DPWM techniques, and number 8 represents RPWM. Finally, Figure 12d
compares the efficiency of the selected DPWM and RPWM techniques from Figure 12b
with the baseline SVPWM.

The results indicate that the overall system efficiency is highest when the DPWM
technique is applied. Although SVPWM and RPWM show competitive efficiency in some
regions, the maximum efficiency difference between the PWM techniques is less than 2.13%.
The DPWM technique consistently outperforms the others, demonstrating its effectiveness
in reducing switching losses while maintaining high system efficiency.
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120 84.15 89.85 92.24 93.39 92.64 91.59 90.19 89.29
100 84.41 89.97 92.31 93.49 92.80 91.75 90.43 89.59
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   Speed(rpm)

Torque(Nm)

300 75.94 84.92 88.43 %
280 76.11 85.05 88.72
260 78.44 86.50 89.80
240 80.48 87.73 90.73 91.26
220 81.28 88.21 91.09 91.83
200 82.62 89.03 91.68 92.56 91.37
180 83.59 89.63 92.11 93.09 92.17
160 83.92 89.77 92.19 93.19 92.3 91.12
140 84.91 90.21 92.43 93.48 92.68 91.63 90.00
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   Speed(rpm)

Torque(Nm)

300 7 7 4 SVPWM 1
280 7 7 4 30˚DPWM 2
260 3 7 7 60˚DPWM 3
240 3 7 4 4 60˚+30˚DPWM 4
220 3 7 4 4 60˚-30˚DPWM 5
200 3 4 4 4 4 +120˚DPWM 6
180 3 4 4 4 4 -120˚DPWM 7
160 3 4 4 4 2 4 RPWM 8

140 3 4 4 4 2 6 4
120 3 4 4 4 2 5 4 4
100 3 4 4 4 2 6 4 2
80 4 4 4 4 6 6 4 4 8 4
60 4 4 4 4 6 6 4 4 8 3
40 4 4 4 4 6 6 4 4 8 1
20 4 4 4 4 6 6 4 4 8 1

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

   Speed(rpm)

Torque(Nm)

300 1.52 1.04 0.54 RDPWM-SWPWM(%)
280 1.35 0.68 0.61
260 1.56 0.66 0.37
240 1.28 0.58 0.33 0.29
220 1.18 0.55 0.31 0.34
200 1.11 0.53 0.30 0.33 0.37
180 1.06 0.53 0.30 0.32 0.46
160 1.13 0.55 0.31 0.32 0.44 0.33
140 1.33 0.62 0.34 0.30 0.36 0.37 0.35
120 1.46 0.68 0.36 0.31 0.31 0.40 0.33 0.29
100 1.53 0.70 0.37 0.31 0.28 0.41 0.33 0.18
80 1.75 0.83 0.38 0.39 0.35 0.55 0.35 0.26 0.43 0.32
60 2.02 0.99 0.39 0.50 0.43 0.71 0.37 0.35 0.66 0.16
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20 2.18 1.09 0.39 0.33 0.66 1.03 0.58 0.31 0.71 -0.31
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Figure 12. Comparison of inverter and motor integrated system efficiency measurement results by
speed and torque with SVPWM, RPWM, and DPWM applied.

3.2. NVH Measurements
Noise Frequency Analysis and Impact of PWM Techniques on NVH

The NVH experiment was designed to assess the noise and vibration effects of different
PWM techniques. The motor was tested under 50% torque, while the speed was swept from
1000 rpm to 11,000 rpm. The analysis included eight types of PWM—SVPWM, DPWM
(selected from Section 3.1.3 for maximum system efficiency), and RPWM—with SVPWM
serving as the baseline for comparison. The setup for the NVH measurement adhered to
IEEE standards, with microphones placed 1 m from the motor surface at three locations,
Left Hand (LH), Right Hand (RH), and Top Side, as shown in Figure 13. For maximum
power output conditions, powertrain performance typically takes priority over NVH
characteristics. Therefore, NVH speed sweep tests are generally conducted at continuous
power rather than maximum power. Accordingly, this NVH test was conducted at 50%
continuous torque, aligning with industry standards for realistic NVH assessment.
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Figure 13. Environmental setup for NVH measurement.

The NVH Test Chamber (semi-anechoic chamber) technical specifications are as fol-
lows Table 3.

Table 3. The NVH Test Chamber technical specifications.

Parameters Value Unit

Chamber dimensions 8.5/8.5/4.5 M
Noise floor 20 dB(A)

Lower frequency limit 100 Hz

The Dyno(Dynamo) system technical specifications are as follows in Table 4.

Table 4. Dyno system technical specifications.

Parameters Value Unit

Maximum power 1000 kW
Maximum DC voltage 1200 V

Maximum current 1200 V
Speed range −24,000~24,000 rpm

Maximum torque (nominal) 1200 Nm

As shown in Figure 14a, the NVH performances of RPWM and SVPWM are at similar
levels, while SVPWM demonstrates superior NVH performance compared to DPWM. This
finding aligns with the known characteristic of DPWM, which increases THD, thus leading
to higher noise and vibration levels.
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Figure 14. NVH experimental results for inverter and motor integrated system.

Figure 14b shows the NVH characteristics of SVPWM, DPWM, and RPWM by order. It
highlights the variation in the size of the noise components generated by inverter switching
depending on the PWM technique. Among the three PWM techniques, DPWM exhibited
the poorest noise characteristics, while SVPWM and RPWM demonstrated similar levels of
noise. In all test cases, DPWM was consistently shown to have inferior NVH performance
compared to the baseline, regardless of the conditions.
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4. Conclusions

This paper has presented a comparative analysis of the efficiency and NVH perfor-
mance of various PWM techniques, including SVPWM, DPWM, and RPWM, for an electric
vehicle inverter and motor system. The experimental results demonstrated that DPWM
showed the highest efficiency, outperforming SVPWM by up to 2.23%. However, the
efficiency benefits of DPWM were countered by its higher noise levels, as its increased
THD negatively affected NVH performance. In contrast, SVPWM exhibited balanced
performance with solid efficiency and NVH characteristics, making it a strong candidate
for applications where noise is a key concern. RPWM, while showing similar NVH perfor-
mance to SVPWM, offered the potential for noise reduction across a wider frequency band
due to its ability to distribute harmonics.

The results also highlighted the impact of switching techniques on both system effi-
ciency and noise. DPWM, while efficient, showed inferior NVH performance compared to
SVPWM and RPWM, with significant noise generation from inverter switching components.
This confirms the trade-off between efficiency and NVH performance, particularly when
choosing switching techniques for practical applications.

In the case of RPWM, there is a possibility of NVH performance changing depending
on the gain factor, and additional experiments are needed while adjusting the factor. Further
investigations into the optimal settings for RPWM could improve its NVH performance
without sacrificing efficiency, making it a promising technique for future research.
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