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Abstract: Electric vehicles (EVs) are becoming increasingly popular, due to their beneficial environ-
mental effects and low operating costs. However, one of the main challenges with EVs is their short
battery life. This study presents a comprehensive approach for predicting the Remaining Useful
Life (RUL) of Nickel Manganese Cobalt-Lithium Cobalt Oxide (NMC-LCO) batteries. This research
utilizes a dataset derived from the Hawaii Natural Energy Institute, encompassing 14 individual
batteries subjected to over 1000 cycles under controlled conditions. A multi-step methodology is
adopted, starting with data collection and preprocessing, followed by feature selection and outlier
elimination. Machine learning models, including XGBoost, BaggingRegressor, LightGBM, CatBoost,
and ExtraTreesRegressor, are employed to develop the RUL prediction model. Feature importance
analysis aids in identifying critical parameters influencing battery health and lifespan. Statistical
evaluations reveal no missing or duplicate data, and outlier removal enhances model accuracy. No-
tably, XGBoost emerged as the most effective algorithm, providing near-perfect predictions. This
research underscores the significance of RUL prediction for enhancing battery lifecycle management,
particularly in applications like electric vehicles, ensuring optimal resource utilization, cost efficiency,
and environmental sustainability.

Keywords: electric vehicle; battery; remaining useful life; machine learning; regression; prediction
model

1. Introduction

Electric vehicles (EVs) predominantly utilize lithium-ion (Li-ion) batteries, chosen
for their exceptional characteristics, including high energy density, absence of memory
effect, extended lifespan, and versatility in charging and discharging [1]. Despite these
advantages, the automotive industry faces challenges from dynamic weather conditions,
increased air pollution due to vehicle emissions, and uncertainties in renewable energy
supply chains [2].

The energy stored in EV batteries offers a promising solution to environmental con-
cerns and uncertainties. Decarbonizing the transportation sector depends on advancements
in, and the widespread adoption of, EVs with enhanced range, safety, and reliability. Yet, the
use of Li-ion batteries presents obstacles, including capacity degradation, environmental
implications, and challenges in end-of-life management [3].

The concept of RUL is pivotal in predictive maintenance and reliability engineering,
representing the estimated time or usage before a component, device, or system is anticipated
to either fail or no longer meet its operational criteria [4]. In the EV battery context, predicting
RUL involves employing machine learning algorithms, based on multiple factors.
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After approximately 6.5 years of consistent operation, an EV battery’s capacity typi-
cally decreases by about 10%, which presents a significant challenge [5]. Predicting RUL
and monitoring capacity degradation are complex tasks, especially considering Li-ion
batteries” gradual capacity decline over charge and discharge cycles [6]. These tasks fall
under the domain of battery management systems (BMSs).

Accurately forecasting the intricate and non-linear trajectory of battery capacity degra-
dation is essential. Machine learning (ML) offers substantial advantages in predicting EV
battery life, thus facilitating efficient trip planning for owners and aiding manufacturers in
designing longer-lasting batteries and optimal charging methods [7-10].

Given the non-linear and multifaceted factors affecting battery performance, ML
methodologies are invaluable for addressing engineering the challenges related to battery
degradation. Overcoming scalability and time limitations, ML techniques provide precise,
non-invasive solutions.

The electrification of transportation infrastructure is pivotal, as it addresses the dual
imperatives of sustainable energy and cost-effective mobility. This study seeks to estab-
lish a robust and accurate methodology for anticipating EV battery life, benefiting both
manufacturers and owners, and fostering global sustainable development.

Problem Definition

The primary objective of this study is to forecast the RUL of lithium-ion (Li-ion)
batteries—an essential task with significant real-world applications. Predicting RUL is piv-
otal for industries that heavily rely on Li-ion batteries, as it facilitates proactive maintenance
strategies and efficient resource allocation. To achieve this, our dataset encompasses critical
features, such as the cycle index, discharge time, and maximum voltage discharge. The
target variable, RUL, which signifies the battery’s remaining operational lifespan, enables
the creation of a robust and precise prediction model with these features.

2. Related Work

J.-H. Chou et al. [11] tackle the challenging task of predicting the RUL of lithium-ion
batteries. They propose a hybrid method based on transfer learning, integrating empirical
mode decomposition, support vector regression, and bidirectional long short-term memory
with attention mechanism models. This approach significantly enhanced RUL prediction
accuracy, particularly for batteries with higher cycle numbers, and demonstrating relative
error values of 6.96%, 0.6%, and 6.25% for different charging policy target batteries.

J. Zhao et al. [12] address the challenges of predicting battery capacity for electric vehi-
cles (EVs). Utilizing feature-based machine learning on a dataset comprising 420 cells and
9 battery packs, they design a two-step noise reduction method and employ a stacking en-
semble learning approach. Their models achieve a Mean Absolute Percentage Error (MAPE)
of 0.28% and a Root Mean Square Percentage Error (RMSPE) of 0.55% for capacity estima-
tion, with an average error of 1.22% in predicting RUL. This study contributes to accurate
and physically consistent predictions within the intricate context of EV battery systems.

C. Zoerr et al. [13] focus on lithium plating in lithium-ion batteries during fast charging
in embedded systems. They introduce a novel charging procedure, based on the correla-
tion between negative electrode polarization and anode potential, effectively mitigating
lithium plating risks. This validated approach, used under various conditions, leverages
an anode potential regulation, derived from a Newman-type P2D modeling framework,
and showcasing a significant reduction in the risks of lithium plating.

D. A. Najera-Flores et al. [14] present a groundbreaking end-to-end deep learning
framework for rapid lithium-ion battery RUL prediction. By emphasizing temporal pat-
terns and cross-data correlations from raw data, like terminal voltage, current, and cell
temperature, the approach achieves predictions 25X faster with a noteworthy 10.6% mean
absolute error rate improvement.

D. Zapata Dominguez et al. [15] delve into the influence of manufacturing processes
on graphite blend electrodes with silicon nanoparticles for lithium-ion batteries (LiBs).
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The study investigates correlating input/output parameters to discern the interrelation
of properties in silicon/graphite blends, thus shedding light on viscosity, slurry rheology,
and porosity thresholds, as well as their effects on electrode stability, ionic resistance, and
cycling life.

G. Zhao et al. [16] highlight the escalating importance of lithium-ion battery health in
transportation electrification. They propose an innovative approach that integrates Gaus-
sian process regression, transfer learning, and gated recurrent neural network techniques
to predict RUL. This method optimizes health indicators, implements online model correc-
tion, and introduces a self-correction strategy, thus enhancing accuracy beyond traditional
methods, which is crucial for predictive maintenance in battery management.

M. Soltani et al. [17] investigate the degradation behavior and end-of-life prediction
of lithium titanate oxide (LTO) batteries. The study explores temperature, current rate,
and cycle depth impacts on capacity degradation and cycle life, employing a feed-forward
neural network model for accurate health state and end-of-life predictions. Their research
underscores factors affecting LTO battery performance and lifespan, revealing accelerated
degradation under high temperatures and current rates, with cycle depth significantly
influencing cycle life.

A. B. Colak [18] examines the impacts of road gradient and coolant flow on electric
vehicle battery-powered electronic components using a machine learning approach. The
study emphasizes the pivotal role of data quantity in enhancing predictive accuracy for
artificial neural networks (ANNSs), suggesting that adequate data are paramount for optimal
performance, while acknowledging the computational resources required for training
larger datasets.

X. Guo et al. [19] introduce a novel CEEMDAN-CNN BiLSTM approach for predicting
the RUL of lithium-ion batteries. By merging Complete Ensemble Empirical Mode De-
composition with Adaptive Noise, 1D CNN, and BiLSTM, this model surpasses baseline
models on the NASA battery dataset. Its robustness to noisy, non-stationary data positions
it as a promising tool for bolstering battery management systems, ensuring safe operations,
and prolonging battery lifespan.

D. Li et al. [20] propose a novel approach for predicting battery thermal runaway
faults in electric vehicles (EVs) using abnormal heat generation (AHG) and deep learning
algorithms. Their model, trained on diverse AHG profiles, accurately forecasts the time
to thermal runaway, paving the way for preventive measures through which to enhance
EV safety.

In our proposed research, we evaluated and compared the performance of various
machine learning algorithms, including XGBoost, BaggingRegressor, LightGBM, CatBoost,
and ExtraTreesRegressor. This comprehensive analysis provides insights into the suit-
ability of different algorithms for predicting the RUL of Li-ion batteries. Our analysis
delves deeper into scalability concerns across various battery types and conditions. This
research considers multiple battery health indicators, such as discharge time, reduction
in voltage, max discharge voltage, min charging voltage, time at 4.15 V, constant current
time, and charging time. Analyzing the relationships between these indicators and RUL
provides a holistic understanding of the factors influencing battery longevity. This research
incorporates hyperparameter tuning, using the GridSearchCV method, to optimize the
performance of machine learning models. This approach acknowledges the importance of
tuning external configurations to enhance the accuracy of RUL predictions.

3. Materials and Methods

Figure 1 presents the block diagram of the proposed RUL prediction model. The
process commences with data collection and preprocessing, which is succeeded by feature
selection and outlier removal. The GridSearchCV method is employed for hyperparameter
optimization using five-fold cross validation. The XGBoost, BaggingRegressor, LightGBM,
CatBoost, and ExtraTreesRegressor machine learning algorithms are utilized to develop the
RUL prediction model for predicting a battery’s RUL. Subsequently, regression performance
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metrics are employed to evaluate the model’s effectiveness. Finally, a feature importance
analysis is conducted to identify the most influential features within the dataset.

Data Pre-processing
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Figure 1. Proposed RUL prediction model.

3.1. Data

The dataset originates from a study conducted by the Hawaii Natural Energy Institute,
focusing on 14 individual Nickel Manganese Cobalt-Lithium Cobalt Oxide (NMC-LCO)
18,650 batteries, each with a nominal capacity of 2.8 Ah. The term “18,650” denotes a
specific battery size specification, measuring approximately 18 mm in diameter and 65 mm
in length.

These batteries underwent an intensive cycling regimen, enduring over 1000 cycles at a
controlled temperature of 25 °C. The charging and discharging protocols were standardized,
utilizing a constant current-constant voltage (CC-CV) charge rate set at a C/2 rate, i.e., they
were charged at half the battery’s capacity per hour. Additionally, they were discharged at
arate of 1.5 C, i.e,, discharging the battery at 1.5 times its capacity per hour.
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To extract meaningful insights and facilitate predictive modeling, specific features
were derived from the original dataset. These features highlight the voltage and current
behaviors observed throughout each battery cycle [21]. The meticulously chosen features
provide essential information, aiming to effectively forecast the RUL of these batteries,
a pivotal metric for assessing battery health. NMC-LCO batteries are commonly used
in various applications, including electric vehicles. The chemistry and behavior of these
batteries in the dataset could provide insights into the degradation patterns and lifespans
of similar batteries used in EVs. The batteries in the dataset underwent over 1000 cycles,
which is analogous to the kind of cycle life testing EV batteries would undergo. This
extensive cycling provides a rich dataset for understanding how these batteries degrade
over time and cycles.

Table 1 describes the features of the RUL dataset, which was used to develop the
prediction model. Table 2 provides statistical descriptions for various features in the
dataset. It can be observed that some time entries show negative values, indicating that
there could have been errors or anomalies during the data collection process.

Table 1. Dataset description.

Features Description
Cycle Index Denotes thg sequential number of the battery cycle, providing a chronological order
of observations.
Discharge Time (s) Represents the duration (in seconds) of the discharge phase for each cycle.

Decrement 3.6-3.4 V (s)

Denotes the time (in seconds) for the battery voltage to decrement from 3.6 V to 3.4 V
during discharge.

Max. Voltage Discharge (V)

Represents the maximum voltage (in volts) observed during the discharge process of
the battery.

Min. Voltage Charging (V)

Indicates the minimum voltage (in volts) observed during the charging process of
the battery.

Time at 4.15V (s)

Represents the duration (in seconds) the battery remains at a voltage level of 4.15 V.

Time Constant Current (s)

Denotes the time constant (in seconds) of the current during the battery cycle.

Charging Time (s) Indicates the time taken (in seconds) for the battery to be charged fully.
RUL This is the target variable, representing the remaining operational lifespan in terms of the
cycles remaining in the battery.
Table 2. Dataset statistics.

Feature Count Mean std Min 25% 50% 75% Max

Cycle Index 15,064 556.155 322.378 1 271 560 833 1134
Discharge Time (s) 15,064 4581.27 33144 8.69 1169.31 1557.25 1908 958,320
Decrement 3.6-3.4 V (s) 15,064 1239.78 15,039.6 —397,646 319.6 439.239 600 406,704

Max. Voltage Discharge (V) 15,064 3.90818 0.091 3.043 3.846 3.906 3.972 4.363

Min. Voltage Charging (V) 15,064 3.5779 0.1237 3.022 3.488 3.574 3.663 4.379
Time at 4.15 V (s) 15,064 3768.34 9129.55 —113.58 1828.88 2930.2 4088.33 245,101
Time Constant Current (s) 15,064 5461.27 25155.8 5.98 2564.31 3824.26 5012.35 880,728
Charging Time (s) 15,064 10,066.5 26415.4 5.98 7841.92 8320.42 8763.28 880,728

RUL (Cycles) 15,064 554.194 322.435 0 277 551 839 1133

3.2. Data Prepreocessing

The data were examined for missing and duplicate values. After preprocessing, it
was observed that there were no missing or duplicate instances present in the dataset.
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Ensuring that there are no missing or duplicate records helps to maintain the integrity of
the dataset. Any missing values could lead to biased analyses or inaccurate predictions,
especially in machine learning models [22]. Removing duplicates ensures that each record
in the dataset is unique [23]. This is particularly important when conducting statistical
analyses or training machine learning models, as redundant data can affect the efficiency
and accuracy of these processes. In this dataset, no missing or duplicate instances were
found. After the preprocessing stage, the dataset contained 15,064 instances and 8 features,
excluding the target feature.

3.3. Feature Selection

Figure 2 displays the heatmap of the RUL dataset. The heatmap reveals that the RUL
and cycle index have a correlation coefficient of —1. Additionally, the maximum voltage at
discharge correlates with RUL at 0.78, while the minimum voltage during charging has
a correlation of —0.76 with RUL. Other features exhibit low correlations with the target
variable, RUL. It is to be observed that there is an inverse relationship between the cycle
index and RUL values. For instance, when the cycle index is 1, the RUL is 1112; conversely,
when the RUL is 1, the cycle index is 1112. Similarly, if the RUL is 1113, the cycle index
becomes 0.
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Figure 2. Heatmap of RUL dataset.

This inverse correlation suggests that the cycle index alone might not provide action-
able insights about the actual health or remaining life of the battery, as its value could be
misleading. If the model is trained with the cycle index as a feature, it might inadvertently
learn this inverse relationship too strongly, leading to overfitting. Overfitting occurs when
a model learns the noise or random fluctuations in the training data, reducing its ability
to generalize to new, unseen data [24]. By relying heavily on the cycle index, the model
might not perform well on real-world data, for which this inverse relationship may not
hold or other factors may play significant roles. To mitigate this, the decision was made
to exclude the cycle index feature from the model. This decision also considers potential
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Boxplot for Discharge Time (s)

external factors or material degradation that could influence RUL. If the model becomes
overly dependent on the cycle index, it may not account for these other important variables
or external influences, leading to inaccurate predictions. After the feature selection process,
the dataset contained 15,064 instances and 7 features, excluding the target feature.

3.4. Outlier Removal

Figure 3 presents data that contain outliers, focusing on various features related to
battery performance and health. Outliers can significantly skew statistical measures, such
as the mean and standard deviation, making them less representative of the typical behavior
of the dataset. Outliers can distort predictive models, leading to less accurate predictions.
Models trained on datasets with outliers might generalize poorly to new, unseen data [25].
By removing outliers, the performance of predictive models can be enhanced, ensuring
they provide more precise estimations of RUL. Outliers can introduce noise, making it
challenging to interpret patterns, trends, or anomalies in the data [26]. Outliers might not
represent the typical behavior of the battery lifecycle or performance. Figure 4 showcases
the same metrics as Figure 3, on the same dataset, in which outliers have been removed.
The following is the process involved in outlier removal.

Step 1: Calculate the Interquartile Range (IQR):

The IQR is a measure of statistical dispersion and is computed as the difference
between the third quartile (Q3) and the first quartile (Q1). Mathematically,

IOR=Q3 — Q1.

Step 2: Define the lower and upper bounds:

Using the IQR, lower and upper bounds are defined to identify outliers. The lower bound
is calculated as (Q1 — 1.5 x IQR), and the upper bound is calculated as Q3 + (1.5 x IQR). Any
data point below the lower bound or above the upper bound is considered an outlier.

Step 3: Filter outliers:

After determining the lower and upper bounds for each column, the code filters the
dataframe (df) to retain only those rows for which the values for each column lie within
the calculated bounds. The dropna() method is then used to remove any rows that contain
NaN (missing) values, which might have arisen during the filtering process. After the
outlier removal process, the number of instances became 14,445.

Boxplot for Decrement 3.6-3.4V (s)

" * X/ » “» ¢ ¢ 1 /e ¢ (2K XX K KK
0 200 400 600 800 1000 (I) 1(I)0 2(‘)0 3(I)0 4(‘)0 S(I)O 6(I)0
Discharge Time (s) Decrement 3.6-3.4V (s)
(a) (b)

Figure 3. Cont.
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Figure 3. Data with outliers: (a) duration of discharge, in seconds; (b) time taken for a specific voltage
decrement within a range from 3.6 V to 3.4 V, in seconds; (c) highest voltage level during the discharge
process, in volts; (d) lowest voltage level observed during the charging phase, in volts; (e) time at

4.15V, in seconds; (f) time constant current, in seconds; (g) charging time, in seconds; and (h) RUL

of battery.
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Figure 4. Cont.
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Boxplot for Charging time (s) Boxplot for RUL

82,5 85.0 875 90.0

92.5 95.0 97.5 100.0 0 200 400 600 800 1000

Charging time (s) RUL
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Figure 4. Data without outliers: (a) duration of discharge, in seconds; (b) time taken for a specific
voltage decrement within a range from 3.6 V to 3.4 V, in seconds; (c) highest voltage level during
the discharge process in volts; (d) lowest voltage level observed during the charging phase, in volts;
(e) time at 4.15 V, in seconds; (f) time constant current, in seconds; (g) charging time, in seconds; and
(h) RUL of battery.

Table 3 provides a comparative analysis of skewness and kurtosis values for vari-
ous battery performance features, both before and after outlier removal. Prior to outlier
removal, features such as Discharge Time, Decrement 3.6-3.4 V, Time at 4.15 V, Time Con-
stant Current, and Charging Time had high skewness and kurtosis values. These values
indicated distributions that were highly right-skewed, with heavy tails and pronounced
peaks. Post outlier removal, the skewness values generally shifted closer to zero, or became
negative, when compared to their initial values. A skewness value nearing zero signifies a
more symmetrical distribution [27]. Consequently, the diminished or negative skewness
post removal implies that the feature distributions became more balanced and symmetrical.
Similarly, the kurtosis values were predominantly reduced in the ‘After Removal of the
Outliers’ column, relative to their initial counterparts. This reduction suggests a decrease
in the peakedness or tail heaviness of the data. A negative kurtosis value indicates a distri-
bution with lighter tails than the normal distribution, whereas a positive value suggests
heavier tails [28]. Observing these decreased kurtosis values, it becomes evident that the
datasets post outlier removal exhibit distributions that are less peaked and possess lighter
tails, aligning more closely with a normal distribution or displaying fewer extreme values.
After removing the outliers, we used 14,445 instances with 7 features, excluding the target
variable ‘RUL’, for ML model development.

Table 3. Comparison of skewness and kurtosis values for battery performance features before and

after outlier removal.

Before Outlier Removal (15,064 Instances) After Removal of the Outliers

Feature (14,445 Instances)
Skew Kurtosis Skew Kurtosis
Discharge Time (s) 16.300 339.993 —0.154 —1.170
Decrement 3.6-3.4 V (s) 9.986 253.344 0.241 —0.899
Max. Voltage Discharge (V) —0.530 11.564 —0.079 —0.966
Min. Voltage Charging (V) 0.329 1.145 0.213 —0.235
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Table 3. Cont.

Before Outlier Removal (15,064 Instances) After Removal of the Outliers

Feature (14,445 Instances)
Skew Kurtosis Skew Kurtosis
Time at 4.15V (s) 16.238 340.628 —0.106 —1.206
Time Constant Current (s) 24.723 696.544 —0.138 —-1.171
Charging Time (s) 22.770 587.790 —0.125 —0.654
RUL (Cycles) 0.006 —1.208 —0.012 —1.202

3.5. Machine Learning Model Development
3.5.1. Data Splitting

The RUL dataset was divided into a training set and a test set, using an 80:20 ratio.
Specifically, 11,556 instances were allocated for training, while 2889 instances were set
aside for testing. The features used to develop the RUL prediction model included the
following: Discharge Time (s), Decrement 3.6-3.4 V (s), Maximum Voltage Discharge (V),
Minimum Voltage Charging (V), Time at 4.15 V (s), Time Constant Current (s), and Charging
Time (s). This data splitting is crucial for evaluating the model’s performance across various
scenarios, enhancing its reliability and applicability in real-world settings [29].

3.5.2. ML Model Selection

Model selection is a critical phase that involves choosing the most suitable machine
learning algorithm or model architecture tailored for a specific task. Experimenting with
multiple models and assessing their performance on a test set is essential for making an
informed choice [30]. Model training, a crucial step in the development process, involves
the model learning from training data and adjusting parameters for accurate predictions.

Advanced ML algorithms, namely XGBoost, BaggingRegressor, LightGBM, CatBoost,
and ExtraTreesRegressor were evaluated to determine the most appropriate one for the
RUL prediction model.

XG Boost

XG Boost, or Extreme Gradient Boosting [31], is a powerful machine learning algorithm
known for its efficiency in regression tasks. Its primary strength lies in its ability to handle
complex datasets and reduce overfitting. By incorporating a regularization component into
its loss function, XG Boost can make accurate predictions at each decision-making step,
ensuring optimal performance in RUL prediction, for which precision is crucial.

Using the universal function, the estimated model can be obtained using the follow-
ing equation:

. t A(t-1
7= Yoy fulx) = 010 + fi(x) (1)
where,
9! = forecasts at stage ¢
ft(x;) = alearner at stage ¢
x; = the input variable
yf“”: forecasts at stage t — 1

BaggingRegressor

BaggingRegressor, short for Bootstrap Aggregating Regressor [32], is ideal for reducing
variance and preventing overfitting by training multiple instances of a predictor and
averaging their outputs. For RUL battery prediction, for which the dataset might have
various sources of noise and inconsistency, BaggingRegressor can enhance prediction
stability by combining multiple models, ensuring more reliable and robust estimations.
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LightGBM

LightGBM is a gradient boosting framework that excels in handling large datasets
efficiently and quickly [33]. Its ability to handle categorical features and its high training
speed make it suitable for RUL prediction tasks, especially when dealing with a vast
number of battery-related variables. The algorithm’s efficient memory usage and parallel
training capabilities further enhance its suitability for complex regression problems like
RUL prediction.

The LightGBM method takes, as input, a supervised training set X and a loss function
L(y, f(x)) whose anticipated value is to be minimized f (x). It is given in Equation (2).

f = argmincE, xL(y, f(x)) )

CatBoost

CatBoost is designed to tackle categorical variables effectively, making it apt for
datasets in which feature types are diverse [34]. For RUL battery prediction, for which
understanding the nuances of each variable type is critical, CatBoost’s inherent ability to
handle categorical data without extensive preprocessing can be advantageous. Additionally,
its robust handling of overfitting and out-of-the-box compatibility with various data formats
make it a favorable choice.

ExtraTreesRegressor

ExtraTreesRegressor, an ensemble learning method, combines multiple decision tree
predictors to provide accurate regression outcomes [35]. Its randomized decision-making
process, coupled with feature randomness, ensures reduced variance and overfitting,
making it suitable for noisy datasets. Given the inherent variability and unpredictability
in RUL battery data, ExtraTreesRegressor can provide stable and accurate predictions by
leveraging ensemble techniques.

3.5.3. Hyper Parameter Optimization with k-Fold Cross Validation

Optimizing hyperparameters is vital for refining a machine learning model tailored
for RUL prediction, ensuring the most effective configurations for the given battery dataset.
While parameters adapt based on the data provided during training, hyperparameters are
values set prior to this phase. To fine-tune our model for RUL forecasting, we employed
GridSearchCV, a renowned method that systematically evaluates a range of specified
hyperparameter values [36], incorporating a 5-fold cross validation strategy. Table 4 shows
the optimal hyperparameters that have been obtained using GridSearchCV with five-fold
cross validation.

Table 4. Best hyperparameters of ML algorithms on RUL prediction.

ML Algorithm Best Hyperparameters
XGBoost ‘learning_rate”: 0.1, ‘max_depth”: 10, ‘n_estimators”: 200
BaggingRegressor ‘max_features”: 1.0, ‘max_samples”: 1.0, ‘n_estimators’: 100
LightGBM ‘learning_rate”: 0.1, ‘max_depth”: 7, ‘n_estimators”: 200, ‘num_leaves’: 121
CatBoost ‘learning_rate”: 0.1, ‘max_depth”: 10, ‘n_estimators”: 200
ExtraTreesRegressor ‘max_depth”: 10, ‘max_features”: ‘auto’, ‘min_samples_leaf”: 1, ‘min_samples_split”: 2,

‘n_estimators’: 200

3.5.4. Performance Evaluation Metrics for RUL Regression Models

The evaluation metrics for assessing the performance of the regression model include
the Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and the R-squared value. The formulas for calculating these metrics are provided,
with y; representing actual values, and y, representing predicted values for a set of ‘n’
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instances. The R-squared value, derived from the coefficient of determination, measures
the proportion of the variance in the dependent variable that is predictable from the
independent variables [37].

The MAE is determined using Equation (3).

The MSE is determined using Equation (4).

2
MSE = M )
The RMSE is determined using Equation (5).
2
RMSE — || Wi %) - ) ()
The R-Squared, or coefficient of determination, is calculated by Equation (6).
2
X (yi —7i)

Here, ¥; is the mean of all of the actual values.

4. Results and Discussion

Table 5 provides a comparative analysis of various ML algorithms’ performance
metrics when predicting the RUL values of batteries. The metrics evaluated include the
MAE, MSE, RMSE, and R-Squared for both the training and test datasets. The XGBoost
algorithm exhibits the lowest MAE and RMSE values across both the training and test sets,
indicating its superior accuracy in predicting RUL. Additionally, the R-Squared values
are exceptionally high, suggesting a near-perfect fit of the model to the data. While the
BaggingRegressor algorithm performs well, especially in the training set, it demonstrates
slightly higher MAE and RMSE values compared to XGBoost. However, its R-Squared
values remain consistently high, indicating strong predictive capability. The LightGBM
algorithm shows a noticeable increase in the MAE, MSE, and RMSE values for both the
training and test sets, compared to the previous models. Still, the R-Squared values are
above 0.995, suggesting a reliable predictive model. The CatBoost algorithm presents higher
error metrics, with the MAE, MSE, and RMSE values surpassing those of the previous
models. The R-Squared values slightly decrease, indicating a relatively less accurate
prediction, compared to other models. Among the evaluated models, ExtraTreesRegressor
exhibits the highest error metrics for both the training and test sets. The R-Squared values
are slightly lower than those of the other models, implying a less optimal fit to the data.

Table 5. Comparison of performance of ML algorithms on RUL prediction.

Training Set Test Set
ML Algorithm MAE MSE RMSE R-Squared MAE MSE RMSE R-Squared
XGBoost 2.243 10.628 3.260 0.999 8.191 245.993 15.684 0.997
BaggingRegressor 3.268 42.456 6.515 0.999 8.517 272.162 16.497 0.997
LightGBM 9.121 187.071 13.677 0.998 12.597 416.982 20.419 0.995
CatBoost 15.15 431.900 20.782 0.995 17.122 574.958 23.978 0.994

ExtraTreesRegressor 19.375 720.336 26.839 0.992 21.336 862.952 29.376 0.991
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XGBoost appears to be the most effective algorithm for RUL prediction, followed
by BaggingRegressor, LightGBM, CatBoost, and, finally, ExtraTreesRegressor. Figure 5
presents an in-depth visualization and analysis of RUL prediction for batteries using the
XGBoost machine learning algorithm. In Figure 5a, the Actual Vs Predicted Plot graphically
compares the actual RUL values of the batteries against the RUL values predicted by the
XGBoost algorithm. Ideally, in an accurate predictive model, all data points would lie
along a diagonal line, representing a perfect match between the actual and predicted values.
Deviations from this line indicate discrepancies or errors in the model predictions. In
Figure 5b, the residual plot depicts the differences between the actual RUL values and the
corresponding predicted values. Essentially, the vertical distances between data points and
the horizontal reference line (typically at y = 0) showcase the magnitudes and directions of
errors. A well-performing model would show residuals randomly scattered around this
line, without forming any discernible patterns.
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Figure 5. RUL prediction using XGBoost ML algorithm: (a) actual vs. predicted plot, (b) residual
plot, and (c) residual histogram.

Figure 5c displays the residual histogram of the XGBoost algorithm-driven RUL
prediction model. This histogram offers a distribution of the prediction errors, providing
insights into their spread and frequency. A bell-shaped curve centered at zero would
indicate that the model’s errors are both randomly distributed and unbiased.

Figure 6 illustrates the Feature Importance Plot. It shows the relevance or importance
of various features in predicting the RUL values of batteries. A score closer to 1 suggests
high importance, while a score closer to 0 indicates lower importance. Features with higher
importance scores can be crucial for ensuring that the model generalizes well to unseen
data. The “Time at 4.15 V (s)” feature stands out, with the highest score of 0.8219, making
it the most significant feature for predicting RUL among all of the listed features. The
“Time Constant Current (s)” feature has a score of 0.0979; this feature holds significant
importance. The “Decrement 3.6-3.4 V (s)” feature has a score of 0.0013; this feature has
the least importance among all the listed features, and its contribution to predicting RUL
is minimal.

While high-importance features are valuable, it is essential to ensure that they do not
introduce biases into the model or lead to overfitting. Over-reliance on a single feature
(even if it is highly predictive) might make the model less robust or less generalizable.
Therefore, a balanced consideration of all features, including those with lower scores,
is crucial.

The outcome of this research will help to achieve sustainable advancements in electric
vehicle infrastructure. This research suggests that accurate prediction of RUL enables
proactive maintenance and resource optimization, leading to cost savings and increased
operational efficiency for industries relying on Li-ion batteries. Li-ion batteries are integral
components in various industries, particularly in electric vehicles. Predicting the RUL
values of these batteries is crucial for implementing proactive maintenance strategies.
Accurate RUL prediction enables optimal resource utilization by allowing industries or
other applications to schedule maintenance precisely when needed. This can result in
cost savings and increased operational efficiency. Understanding and predicting RUL
contribute to extending the lifespans of Li-ion batteries. This is critical for sustainable
development, as longer-lasting batteries reduce the environmental impact associated with
frequent replacements and disposal. For electric vehicle owners, accurate RUL predictions
facilitate efficient trip planning. This research aligns with the ongoing transformation at the
intersection of technology and industry. Comparative analysis of various machine learning
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algorithms provides valuable insights into their performance in predicting RUL. Identifying
superior algorithms, like XG Boost in this case, establishes benchmarks for future research
and applications in similar domains. This study acknowledges the environmental impact of
Li-ion batteries and proposes that accurate RUL predictions may reduce concerns related to
battery disposal. Sustainable practices, driven by technological advancements, are crucial
to minimizing environmental footprints.

Feature Importance - RUL Prediction Using XGBoost
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Figure 6. Feature importance plot.

5. Conclusions

This study systematically navigates through challenges in predicting the RUL values
of Li-ion batteries, emphasizing the significance of ML approaches. Various ML algorithms
are evaluated, with XGBoost demonstrating superior performance in RUL prediction. The
results highlight the efficacy of the XGBoost algorithm in minimizing errors and accurately
predicting RUL. These findings are instrumental for both manufacturers and owners,
fostering efficient trip planning and facilitating the development of longer-lasting batteries.

This research contributes to the transformative intersection of technology and industry,
paving the way for sustainable advancements in electric vehicle infrastructure. Considering
the focus on sustainable development and the environmental impact of electric vehicles,
there could be a hypothesis that accurate prediction of RUL contributes to extending battery
lifespan, thereby reducing the environmental concerns associated with battery disposal.
There may be a hypothesis suggesting that accurate prediction of RUL enables proactive
maintenance and resource optimization, resulting in cost savings and increased operational
efficiency for industries relying on Li-ion batteries. The limitations of this research include
the quality and availability of data, which can significantly impact the performance of ma-
chine learning models. This research also may not account for variations in environmental
conditions that could impact battery performance. Factors like temperature, humidity, and
usage patterns may influence RUL, but were not explicitly addressed.
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