Design Analysis of High-Power Level 4 Smart Charging Infrastructure Using Next-Generation Power Devices for EVs and Heavy Duty EVs
Abstract
:1. Introduction
Research Contributions and Paper Structure
2. Proposed Mega Power Smart Fast-Charging Infrastructure
3. Design Considerations
3.1. Stage 1: LCL Input Filter
3.2. Stage 2: AC/DC Power Converter
3.3. Stage 3: DC/DC Power Converter
3.4. High-Frequency Transformer Design Consideration
3.5. Output Filter Values
3.6. Design Summary
4. Simscape System Model
5. Simulation Analysis and Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leroutier, M.; Quirion, P. Air Pollution and CO2 from Daily Mobility: Who Emits and Why? Evidence from Paris. Energy Econ. 2022, 109, 105941. [Google Scholar] [CrossRef]
- Ilahi, T.; Zahid, T.; Zahid, M.; Iqbal, M.; Sindhila, A.; Tahir, Q. Design Parameter and Simulation Analysis of Electric Bike Using Bi-Directional Power Converter. In Proceedings of the 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, Turkey, 12–13 June 2020; pp. 1–6. [Google Scholar]
- Town, G.; Taghizadeh, S.; Deilami, S. Review of Fast Charging for Electrified Transport: Demand, Technology, Systems, and Planning. Energies 2022, 15, 1276. [Google Scholar] [CrossRef]
- Hardman, S.; Jenn, A.; Tal, G.; Axsen, J.; Beard, G.; Daina, N.; Figenbaum, E.; Jakobsson, N.; Jochem, P.; Kinnear, N.; et al. A Review of Consumer Preferences of and Interactions with Electric Vehicle Charging Infrastructure. Transp. Res. Part D Transp. Environ. 2018, 62, 508–523. [Google Scholar] [CrossRef]
- Gupta, V.; Konda, S.R.; Kumar, R.; Panigrahi, B.K. Multiaggregator Collaborative Electric Vehicle Charge Scheduling Under Variable Energy Purchase and EV Cancelation Events. IEEE Trans. Ind. Inform. 2018, 14, 2894–2902. [Google Scholar] [CrossRef]
- Chakraborty, S.; Vu, H.N.; Hasan, M.M.; Tran, D.D.; El Baghdadi, M.; Hegazy, O. DC-DC Converter Topologies for Electric Vehicles, Plug-in Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends. Energies 2019, 12, 1569. [Google Scholar] [CrossRef]
- Carley, S.; Siddiki, S.; Nicholson-Crotty, S. Evolution of Plug-in Electric Vehicle Demand: Assessing Consumer Perceptions and Intent to Purchase over Time. Transp. Res. Part D Transp. Environ. 2019, 70, 94–111. [Google Scholar] [CrossRef]
- De Santis, M.; Silvestri, L.; Forcina, A. Promoting Electric Vehicle Demand in Europe: Design of Innovative Electricity Consumption Simulator and Subsidy Strategies Based on Well-to-Wheel Analysis. Energy Convers. Manag. 2022, 270, 116279. [Google Scholar] [CrossRef]
- Krueger, H.; Cruden, A. Integration of Electric Vehicle User Charging Preferences into Vehicle-to-Grid Aggregator Controls. Energy Rep. 2020, 6, 86–95. [Google Scholar] [CrossRef]
- Leijon, J.; Boström, C. Charging Electric Vehicles Today and in the Future. World Electr. Veh. J. 2022, 13, 139. [Google Scholar] [CrossRef]
- Pearton, S.J.; Ren, F.; Tadjer, M.; Kim, J. Perspective: Ga2O3 for Ultra-High Power Rectifiers and MOSFETS. J. Appl. Phys. 2018, 124, 220901. [Google Scholar] [CrossRef]
- Lee, I.; Kumar, A.; Zeng, K.; Singisetti, U.; Yao, X. Modeling and Power Loss Evaluation of Ultra Wide Band Gap Ga2O3 Device for High Power Applications. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 4377–4382. [Google Scholar] [CrossRef]
- Su, W.; Eichi, H.; Zeng, W.; Chow, M.-Y. A Survey on the Electrification of Transportation in a Smart Grid Environment. IEEE Trans. Ind. Inform. 2012, 8, 1–10. [Google Scholar] [CrossRef]
- Liang, X.; Srdic, S.; Won, J.; Aponte, E.; Booth, K.; Lukic, S. A 12.47 KV Medium Voltage Input 350 KW EV Fast Charger Using 10 KV SiC MOSFET. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 17–21 March 2019; pp. 581–587. [Google Scholar] [CrossRef]
- Accelerate Vehicle Electrification with the Smallest, Lightest Power Modules|Vicor|Automotive. Available online: https://www.vicorpower.com/resource-library/ebook/auto-ebook (accessed on 8 October 2023).
- Savio Abraham, D.; Verma, R.; Kanagaraj, L.; Giri Thulasi Raman, S.R.; Rajamanickam, N.; Chokkalingam, B.; Marimuthu Sekar, K.; Mihet-Popa, L. Electric Vehicles Charging Stations’ Architectures, Criteria, Power Converters, and Control Strategies in Microgrids. Electronics 2021, 10, 1895. [Google Scholar] [CrossRef]
- Coban, H.H.; Lewicki, W.; Sendek-Matysiak, E.; Łosiewicz, Z.; Drożdż, W.; Miśkiewicz, R. Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System. Energies 2022, 15, 8218. [Google Scholar] [CrossRef]
- Ismail, A.; Abdel-Majeed, M.S.; Metwly, M.Y.; Abdel-Khalik, A.S.; Hamad, M.S.; Ahmed, S.; Hamdan, E.; Elmalhy, N.A. Solid-State Transformer-Based DC Power Distribution Network for Shipboard Applications. Appl. Sci. 2022, 12, 2001. [Google Scholar] [CrossRef]
- Cervero, D.; Fotopoulou, M.; Muñoz-Cruzado, J.; Rakopoulos, D.; Stergiopoulos, F.; Nikolopoulos, N.; Voutetakis, S.; Sanz, J.F. Solid State Transformers: A Critical Review of Projects with Relevant Prototypes and Demonstrators. Electronics 2023, 12, 931. [Google Scholar] [CrossRef]
- Yan, X.; Esqueda, I.S.; Ma, J.; Tice, J.; Wang, H. High Breakdown Electric Field in β-Ga2O3/Graphene Vertical Barristor Heterostructure. Appl. Phys. Lett. 2018, 112, 032101. [Google Scholar] [CrossRef]
- Urooj, S.; Alrowais, F.; Teekaraman, Y.; Manoharan, H.; Kuppusamy, R. IoT Based Electric Vehicle Application Using Boosting Algorithm for Smart Cities. Energies 2021, 14, 1072. [Google Scholar] [CrossRef]
- Acharige, S.S.G.; Haque, M.E.; Arif, M.T.; Hosseinzadeh, N.; Hasan, K.N.; Oo, A.M.T. Review of Electric Vehicle Charging Technologies, Standards, Architectures, and Converter Configurations. IEEE Access 2023, 11, 41218–41255. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Z.; Yang, L.; Yao, J.; Chen, J.; Zhang, J.; Wei, W.; Guo, Y.; Tang, W. β-Ga2O3-Based Power Devices: A Concise Review. Crystals 2022, 12, 406. [Google Scholar] [CrossRef]
- Meraj, S.T.; Yahaya, N.Z.; Lipu, M.S.H.; Islam, J.; Haw, L.K.; Hasan, K.; Miah, M.S.; Ansari, S.; Hussain, A. A Hybrid Active Neutral Point Clamped Inverter Utilizing Si and Ga2O3 Semiconductors: Modelling and Performance Analysis. Micromachines 2021, 12, 1466. [Google Scholar] [CrossRef] [PubMed]
- Razzak, T.; Xue, H.; Xia, Z.; Hwang, S.; Khan, A.; Lu, W.; Rajan, S. Ultra-Wide Band Gap Materials for High Frequency Applications. In Proceedings of the 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Ann Arbor, MI, USA, 16–18 July 2018; pp. 17–19. [Google Scholar] [CrossRef]
- Zhang, Y.; Palacios, T. (Ultra)Wide-Bandgap Vertical Power FinFETs. IEEE Trans. Electron Devices 2020, 1, 1–12. [Google Scholar] [CrossRef]
- Ilahi, T.; Izhar, T.; Qaisar, S.M.; Shami, U.T.; Zahid, M.; Waqar, A.; Alzahrani, A. Design and Performance Analysis of Ultra-Wide Bandgap Power Devices-Based EV Fast Charger Using Bi-Directional Power Converters. IEEE Access 2023, 11, 25285–25297. [Google Scholar] [CrossRef]
- Richardson, D.B. Electric Vehicles and the Electric Grid: A Review of Modeling Approaches, Impacts, and Renewable Energy Integration. Renew. Sustain. Energy Rev. 2013, 19, 247–254. [Google Scholar] [CrossRef]
- Hossein Motlagh, N.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of Things (IoT) and the Energy Sector. Energies 2020, 13, 494. [Google Scholar] [CrossRef]
- Kombo, O.H.; Kumaran, S.; Bovim, A. Design and Application of a Low-Cost, Low- Power, LoRa-GSM, IoT Enabled System for Monitoring of Groundwater Resources With Energy Harvesting Integration. IEEE Access 2021, 9, 128417–128433. [Google Scholar] [CrossRef]
- Savari, G.F.; Krishnasamy, V.; Sathik, J.; Ali, Z.M.; Abdel Aleem, S.H.E. Internet of Things Based Real-Time Electric Vehicle Load Forecasting and Charging Station Recommendation. ISA Trans. 2020, 97, 431–447. [Google Scholar] [CrossRef]
- Suresh Kumar, R.; Rajesh, P.K.; Joys Nancy, J.; Abirami, S.; Vishnu Murthy, K. IoT-Based Monitoring and Management of Electric Vehicle Charging Systems for DC Fast Charging Facility. In Internet of Things for Industry 4.0: Design, Challenges and Solutions; Kanagachidambaresan, G.R., Anand, R., Balasubramanian, E., Mahima, V., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 147–159. ISBN 978-3-030-32530-5. [Google Scholar]
- Majic, G.; Despalatovic, M.; Terzic, B. LCL Filter Design Method for Grid-Connected PWM-VSC. J. Electr. Eng. Technol. 2017, 12, 1945–1954. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, X.; Yu, C.; Shao, Z.; Zhao, W.; Ni, H. LCL-Filter Design for Grid-Connected Three-Phase PWM Converter Based on Maximum Current Ripple. In Proceedings of the 2013 IEEE ECCE Asia Downunder, Melbourne, VIC, Australia, 3–6 June 2013; pp. 631–635. [Google Scholar] [CrossRef]
- Liserre, M.; Blaabjerg, F.; Hansen, S. Design and Control of an LCL-Filter-Based Three-Phase Active Rectifier. IEEE Trans. Ind. Appl. 2005, 41, 1281–1291. [Google Scholar] [CrossRef]
- Frisfelds, K.; Krievs, O. Design of a Three-Phase Bidirectional PWM Rectifier with Simple Control Algorithm. Latv. J. Phys. Tech. Sci. 2019, 56, 3–12. [Google Scholar] [CrossRef]
- Han, J.; Zhou, X.; Lu, S.; Zhao, P. A Three-Phase Bidirectional Grid-Connected AC/DC Converter for V2G Applications. J. Control Sci. Eng. 2020, 2020, 8844073. [Google Scholar] [CrossRef]
- Pressman, A.; Billings, K.; Morey, T. 3-Half-Bridge and Full-Bridge Topologies, Switching Power Supply Design, 3rd ed.; Mcgraw-hill: New York, NY, USA, 2009; pp. 111–115. ISBN 9780071482721. [Google Scholar]
- Guo, Z.; Yu, R.; Xu, W.; Feng, X.; Huang, A.Q. Design and Optimization of a 200-KW Medium-Frequency Transformer for Medium-Voltage SiC PV Inverters. IEEE Trans. Power Electron. 2021, 36, 10548–10560. [Google Scholar] [CrossRef]
- Rashid, M.H.; Rashid, H.M. Magnetic Design Considerection, Power Supplies Chapter 13, Power Electronics: Circuits, Devices & Applications, 4th ed.; Electrical and Computer Engineering; Taylor & Francis: Oxford, UK, 2017; ISBN 9780849334184. [Google Scholar]
- Czarkowski, D. Converters. In Power Electronics Handbook, 4th ed.; Rashid, M.H., Ed.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 275–288. ISBN 978-0-12-811407-0. [Google Scholar]
- Tejado, I.; Torres, D.; Pérez, E.; Vinagre, B.M. Physical Modeling Based Simulators to Support Teaching in Automatic Control: The Rotatory Pendulum. IFAC-PapersOnLine 2016, 49, 75–80. [Google Scholar] [CrossRef]
- Xu, B.; Lu, L.; Gong, D. Research on Real-Time Simulation of Power Electronic Circuits Based on Simscape. J. Phys. Conf. Ser. 2022, 2196, 012025. [Google Scholar] [CrossRef]
- Srdic, S.; Lukic, S. Toward Extreme Fast Charging: Challenges and Opportunities in Directly Connecting to Medium-Voltage Line. IEEE Electrif. Mag. 2019, 7, 22–31. [Google Scholar] [CrossRef]
Sr | Type of Material | Band Gap (eV) | Density (g/cm3) | Critical Field (MV/cm) | Peak Rated Voltages | Peak Rated Current |
---|---|---|---|---|---|---|
1 | Si | 1.1 | 2.3 | 0.3 | 1 kV | ≈100 A |
2 | SiC (WBG) | 3.3 | 6.12 | 3.1 | 10 kV | ≈1000 A |
3 | GaN (WBG) | 3.5 | 3.2 | 4.9 | 10 kV | ≈1000 A |
4 | AIN/AlGaN (UWBG) | ~6 | 3.3 | 15.4 | 100 kV | ≈10,000 A |
5 | Β-Ga2O3 (UWBG) | 4.9 | 6.4 | 10.3 | 100 kV | ≈10,000 A |
Parameter | Specification |
---|---|
Maximum power (Pmax) | 350 KW each |
High-frequency transformer (HFT) core | UF 240/480/60 × 2 |
Maximum magnetic flux density (Bmax) | 0.2 T (tesla) |
Bus voltages (V) | 2500 V max. |
Topology constant (K1) | 0.017 |
Wave constant (K) | 4 |
High-frequency transformer (HFT) turns | 17 |
Transformer area product (Ap) | 7776 cm4 |
Core area (Ac) | 36 cm2 |
Parameter | Specification |
---|---|
) | 1 MW (≈3 × 350 kW) |
1400 V rms, 50 Hz | |
) | 2500 V max |
Charging mode 1 (EV) | 1200 V/800 A |
Charging mode 2 (HEV) | 2000 V/500 A |
) | 20 kHz, 50 kHz |
Average current across each MOSFET (AC/DC converters) | 146 A |
Average current across each MOSFET (DC/DC converters) | 133 A |
) | = 10 μF |
) | 0.3 mH, 1 μF |
Manufacturer | DC Voltage Range (V) | Max. Current (A) | Power (kW) |
---|---|---|---|
EVbox Tronics 100 | ≈50–500 | 200 | 100 |
EVTEC espresso and charge | ≈170–500 | 300 | 150 |
Tesla Supercharger V3 | ≈880–970 | 640 | 250 |
ABB Terra HP GEN III | ≈150–920 | 500 | 350 |
Tritium PK350 | ≈200–920 | 500 | 350 |
Proposed | ≈360–2000 | 800 | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilahi, T.; Izhar, T.; Zahid, M.; Rasool, A.; Tsamaase, K.; Zahid, T.; Khan, E.M. Design Analysis of High-Power Level 4 Smart Charging Infrastructure Using Next-Generation Power Devices for EVs and Heavy Duty EVs. World Electr. Veh. J. 2024, 15, 66. https://doi.org/10.3390/wevj15020066
Ilahi T, Izhar T, Zahid M, Rasool A, Tsamaase K, Zahid T, Khan EM. Design Analysis of High-Power Level 4 Smart Charging Infrastructure Using Next-Generation Power Devices for EVs and Heavy Duty EVs. World Electric Vehicle Journal. 2024; 15(2):66. https://doi.org/10.3390/wevj15020066
Chicago/Turabian StyleIlahi, Tehseen, Tahir Izhar, Muhammad Zahid, Akhtar Rasool, Kelebaone Tsamaase, Tausif Zahid, and Ehtisham Muhammad Khan. 2024. "Design Analysis of High-Power Level 4 Smart Charging Infrastructure Using Next-Generation Power Devices for EVs and Heavy Duty EVs" World Electric Vehicle Journal 15, no. 2: 66. https://doi.org/10.3390/wevj15020066
APA StyleIlahi, T., Izhar, T., Zahid, M., Rasool, A., Tsamaase, K., Zahid, T., & Khan, E. M. (2024). Design Analysis of High-Power Level 4 Smart Charging Infrastructure Using Next-Generation Power Devices for EVs and Heavy Duty EVs. World Electric Vehicle Journal, 15(2), 66. https://doi.org/10.3390/wevj15020066