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Abstract: Pavement defect detection technology stands as a pivotal component within intelligent
driving systems, demanding heightened precision and rapid detection rates. Addressing the com-
plexities arising from diverse defect types and intricate backgrounds in visual sensing, this study
introduces an enhanced approach to augment the network structure and activation function within
the foundational YOLOv5 algorithm. Initially, modifications to the YOLOv5′s architecture incorpo-
rate an adjustment to the Leaky ReLU activation function, thereby enhancing regression stability and
accuracy. Subsequently, the integration of bi-level routing attention into the network’s head layer op-
timizes the attention mechanism, notably improving overall efficiency. Additionally, the replacement
of the YOLOv5 backbone layer’s C3 module with the C3-TST module enhances initial convergence
efficiency in target detection. Comparative analysis against the original YOLOv5s network reveals
a 2% enhancement in map50 and a 1.8% improvement in F1, signifying an overall advancement in
network performance. The initial convergence rate of the algorithm has been improved, and the
accuracy and operational efficiency have also been greatly improved, especially on models with
small-scale training sets.

Keywords: YOLOv5; attention mechanism; BiFormer; C3-TST; activation function

1. Introduction

Automatic driving technology is also following the rapid development of information
technology, computer technology, automation technology, and artificial intelligence technol-
ogy. In the development process of automatic driving technology, to meet the requirements
for vehicle suspension adjustment—aiming to provide a better ride experience and extend
the mechanical life—the demand for accurate and fast intelligent pavement defect detection
is also growing rapidly. Pavement defect detection is characterized by strong timeliness,
diverse detection environments, rich and effective information, and complex environmental
factors. Analyzing vehicle suspension video data (obtained through cameras or sensors
installed to monitor the vehicle suspension system in real-time during driving) is crucial
for acquiring real-time road information, and this research holds immense significance for
advancing autonomous driving technology.

Roads are an important part of the modern transportation system, which is of great
importance to social and economic development. However, road surface defects, such
as potholes, cracks, road wear, and damage (see Figure 1 for complex road defects), not
only endanger driving safety but also lead to vehicle damage and traffic congestion [1].
The vehicle-borne pavement defect detection technology will help road maintenance de-
partments plan and implement maintenance work more effectively. Through real-time
monitoring of road conditions, managers can accurately determine which road sections
need maintenance and what maintenance measures should be taken. This helps to reduce
resource waste, improve work efficiency, and extend the service life of roads. The vehicle
suspension’s mechanical system can also be dynamically adjusted to enhance the driv-
ing experience and extend its mechanical life. Therefore, the real-time monitoring and
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evaluation of the condition of road surfaces are very important for road maintenance and
driving safety. Detection technology based on computer vision is highly valuable due to its
efficiency and accuracy [2].
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Pavement defect detection technology utilizes sensors and vehicle-based systems
to non-invasively identify pavement issues. These sensors encompass a range of tech-
nologies, including cameras, laser scanners, radars, ultrasonic sensors, and inertial nav-
igation systems. They capture road images, point cloud data, or vibration information,
transmitting them to the vehicle’s computer system for analysis. Real-time processing of
sensor-generated data is essential to extract details about pavement defects, such as their
location, size, type, and severity. Leveraging computer vision algorithms centered around
target detection, due to their accuracy and stability, holds significant application value in
related fields.

Research on target detection technology can be traced back to the 1980s. Early methods
mainly relied on hand-designed features and traditional machine learning algorithms, such
as edge detection, color features, and template matching. These methods perform well
in specific scenes, but their detection ability for complex backgrounds and multi-scale
objects is limited. To deal with the problem of multi-scale objects, researchers introduced
sliding window technology, which involves sliding a window across the image and using a
classifier to determine whether the window contains the target. A representative of this
method is the Viola-Jones [3] detector, which has achieved success in face detection using
Haar features and the AdaBoost classifier. However, these methods are still limited by the
selection of features and the demand for computing resources.

In 2012, AlexNet [4] was successfully applied to the ImageNet large-scale visual
recognition challenge, marking a breakthrough in convolutional neural networks (CNNs) in
the task of image recognition. The method of deep learning has been gradually introduced
into the field of target detection. Driven by deep learning, more rapid and accurate target
detection methods have emerged. In 2016, YOLO (you only look once) proposed a real-
time target detection method, which modeled the target detection task as a regression
problem and simultaneously generated predictions for the location and category of targets.
The current main two-stage target aggregation algorithms include Fast R-CNN [5], Faster
R-CNN [6], Mask R-CNN [7], SPP Net [8], etc. Mainstream one-stage target aggregation
networks include SSD [9], EfficientDet [10], and YOLO [11–15].

This preserves the advantages of swift detection. Among the target aggregation
algorithms, the YOLO series algorithm currently stands as the most extensively utilized
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one. Having undergone multiple iterations, it has gradually enhanced its accuracy while
also increasing the number of parameters. As the preferred lightweight network, YOLOv5s
stands out as the most easily deployable network for embedded devices. In this paper,
YOLOv5 has undergone modifications to better suit the detection of road defects and
address the inefficiency in recognizing road defects within complex environments.

In the research of road defect detection technology, past researchers have conducted
studies to varying extents on traditional methods, deep learning methods, and integrated
methods [16–20]. Among these, deep learning methods have shown great potential due to
their outstanding feature learning capabilities, the ability to automatically extract features
related to road defects, the capacity to handle different types of road defects, and the
potential for achieving strong performance and generalization through end-to-end training.

Currently, road defect detection algorithms face various challenges. Firstly, due to the
diversity and complexity of road defects, algorithms encounter difficulties in accurately
identifying various defect situations, including but not limited to cracks, potholes, and
pavement damage. Secondly, the robustness of algorithms is crucial, given the variability
in lighting, weather conditions, and traffic situations in real road environments, as these
factors can impact the surface features and visibility of defects. Additionally, the acquisition
and annotation of large-scale datasets pose challenges, as obtaining road defect data
requires substantial time and resources, and ensuring accurate labeling of data is essential.
Furthermore, real-time performance and efficiency are critical concerns, especially in
scenarios such as highways where algorithms need to process large amounts of data
rapidly and make accurate judgments. Consequently, the development of road defect
detection algorithms necessitates a comprehensive consideration of factors such as accuracy,
robustness, data availability, and real-time capabilities.

In previous research on deep learning methods, researchers often directly adopted
generic models such as YOLOV5S and YOLOV5N, introducing relevant data related to
road defects for training and making adjustments mainly at the parameter level. This
has left significant room for optimization in terms of accuracy, recognition efficiency, and
lightweight modeling. To address this, we took an approach focused on the network
structure. We attempted to improve the shortcomings of previous research by adding, mod-
ifying, and optimizing network modules. Thus, a breakthrough in algorithmic efficiency
and lightweight modeling was achieved.

To validate the effectiveness of the modules used in our algorithm, we took YOLOV5S,
a widely used baseline model, and conducted simulated experiments on the same dataset
and environment. This was done to verify the enhancements provided by our algorithm.
Additionally, we conducted ablation experiments on each module separately to confirm
the effectiveness of each individual component. Simultaneously, we determined a recom-
mended range of parameters through numerous comparative experiments. The aim was to
assist users in optimizing the utilization of our model in their experiments. Furthermore,
we conducted stress tests on the model, offering insights into its relative effectiveness when
operating under limited computational resources.

In order to meet the experimental requisites and uphold the precision and objectivity
of the study, we employed databases previously utilized in relevant research and collected
additional datasets within mainland China for experimentation. Detailed information on
the data sources and other pertinent databases is presented in the Section 4 of this paper.
This approach seeks to concurrently validate the model’s effectiveness in comparison with
prior models and account for potential idiosyncrasies in mainland China’s road conditions.

Firstly, the C3 module in the head of the backbone layer in the YOLOv5 network is
replaced by the C3-TST module, and the defect features are captured and enhanced by the
C3-TST module. Secondly, the attention mechanism established by BiFormer is introduced
into the head layer of the network structure to further improve the efficiency and detection
accuracy. Thirdly, the activation function of Leaky ReLU is added to the network structure
of YOLOv5, which further improves the stability and accuracy of regression. Finally, the
performance of various improvement algorithms is tested on publicly available and self-
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constructed datasets, the result data are plotted, and the data are analyzed in conjunction
with the images.

2. Materials and Methods
Introduction to the YOLOv5 Algorithm

The YOLO series is a typical representative of a single-stage structure detection algo-
rithm, which was iteratively developed for the fifth generation of YOLOv5. It can change
the model structure by adjusting the width and depth of the network to take into account
the detection accuracy and speed. The network structure of the original YOLOv5 includes
an input layer, backbone layer, neck layer, and head layer, as shown in Figure 2.
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The backbone layer is responsible for extracting feature representation from the input
layer and usually uses lightweight architectures such as cspparknet53 or cspparknetlite. The
head layer is responsible for target detection at different scales. YOLOv5 realizes multi-scale
detection by performing detection on feature maps with different depths. This is achieved
by introducing anchor boxes of different sizes and feature pyramids into the network. This
design enables the model to detect targets of different sizes and proportions at the same
time. For each anchor box, the detection head will return the position information of the
target bounding box, usually including the central coordinates, width, and height of the
bounding box. At the same time, it also predicts the target category probability score of
each bounding box. Since the output of each detection head has different resolutions when
detecting on multiple scales, it is necessary to associate them with anchor boxes and map
their output to the same size as the input image to obtain the final detection result [1].

YOLOv5 uses multiple loss terms to balance the regression accuracy of the target
position, the classification accuracy of the target category, and the attention to difficult
samples. It consists of three main parts—CLS, obj, and box. Box (bounding box loss): the
purpose is to correct the predicted border position so that it is as close to the real value
as possible. YOLOv5 uses the mean square error (MSE) to calculate the loss of this part.
Obj (objectness loss): the goal of this loss function is to better distinguish which areas
contain detection targets and which areas do not. This is calculated by the predicted object
confidence. For regions containing targets, the model will be forced to predict a high
confidence level; for regions without targets, the model will predict a lower confidence. Cla
(class loss): this part of the loss function aims to correct the predicted category to make it
conform to the real category as much as possible. Cross entropy loss is usually used for
calculation [21].
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3. Implemented YOLOv5 Algorithm
3.1. Adjust Model Activation Function

In vehicle sensor videos, YOLOv5 performs poorly in detecting road defects. The
main reason is the complexity and diversity of the road environment and the wide variety
of road defects, which are often difficult to discern manually from images. Therefore, the
effect of target aggregation is optimized by adjusting the YOLOv5 activation function.

In the original YOLOv5 backbone network cspparknet53, the Mish activation function
is used. The Mish function is a self-regularized activation function. Its mathematical
expression is as follows:

f (x) = x·tanh(softplus(x)) (1)

The advantage of the Mish function is that it can improve the performance of neural
network models, especially for deeper network structures, which can yield better perfor-
mance than ReLU and some of its variants. In the last part of the network, YOLOv5 uses
the Leaky ReLU activation function as the default activation function. The mathematical
expression of Leaky ReLU is as follows:

f (x) = max(0.01x, x) (2)

when x < 0, the slope of the activation function is 0.01, which improves the stability of
the model.

Leaky ReLU (Leaky rectified linear unit) [22,23] is a variant of the traditional ReLU
(rectified linear unit) activation function. The value of ReLU is 0 in the interval where its
activation output is negative, which may cause neurons to die in this interval; that is, the
neurons may become unable to transfer and learn the gradient. This problem is called
“ReLU death”. For the deep learning model with a high learning rate, this may lead to
more neuron death and ultimately affect the performance of the model. Figure 3 shows
their respective function graphs.
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The solution proposed to address this issue is the Leaky ReLU activation function,
expressed mathematically as f (x) = max (0.01x, x). When x < 0, this function introduces a
small non-zero slope (e.g., 0.01), allowing negative activations to propagate forward, effec-
tively preventing the problem of neuron ‘death’ observed in traditional ReLU. Compared
to ReLU, Leaky ReLU enhances the model’s expressive capacity by providing a non-zero
output for negative intervals. In practical applications, it exhibits remarkable robustness.

We use Leaky ReLU to replace the original Mish activation function in the improved
network backbone layer. This makes our model more efficient and accurate in dealing with
the problem of road defect detection, and the overall system can be more lightweight.

3.2. C3-TST Block

Almost all existing models are based on CNNs and use convolution or pooling op-
erations in the backbone layer. Due to the local connectivity of convolution, this kind of
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backbone is often more suitable for local information and ignores global information [24,25].
This makes this kind of model often perform poorly on surface defect images in practice.

Inspired by Vit, we use self-attention at the end of the trunk to capture and extract
richer context information and image features. We use Swin Transformer blocks [26]
to create the C3-TST block. Instead of directly applying global self-attention to high-
resolution images, we employ an attention mechanism based on shift windows. Direct
global self-attention requires a significant number of parameters, resulting in substantial
computational and memory overhead. This makes it challenging for the model to learn,
train, and deploy, especially on edge devices. To solve this problem, we refer to the
implementation idea of C3STR and use C3-TST to divide the image into non-overlapping
windows of the same size, performing local self-attention within each window. At the same
time, a hierarchical attention strategy is adopted to obtain more effective key information
from a global perspective. Through the segmentation strategy of region and level, we are
able to achieve effective attention to global information while reducing parameters.

A twin Swin Transformer block (TST) is composed of the following parts: two-
layer normalization layers (Norm), one shift-window attention layer (SWA), one bi-level-
attention layer (bi-attention), and one multi-layer perceptron (MLP) layer [27,28]. The
normalization layers are used to normalize the input data, making the data stable and
easy to process. The shift window attention layer is designed to calculate the shift window
attention. The MLP layer is used to integrate attention information, extract features, and
change image dimensions.

It is worth noting that, inspired by st-ca_YOLOv5, we use paired Swin Transformer
blocks to build C3-TST modules [29], as shown in Figure 4.

World Electr. Veh. J. 2024, 15, 102 6 of 16 
 

3.2. C3-TST Block 
Almost all existing models are based on CNNs and use convolution or pooling 

operations in the backbone layer. Due to the local connectivity of convolution, this kind 
of backbone is often more suitable for local information and ignores global information 
[24,25]. This makes this kind of model often perform poorly on surface defect images in 
practice. 

Inspired by Vit, we use self-attention at the end of the trunk to capture and extract 
richer context information and image features. We use Swin Transformer blocks [26] to 
create the C3-TST block. Instead of directly applying global self-attention to high-
resolution images, we employ an attention mechanism based on shift windows. Direct 
global self-attention requires a significant number of parameters, resulting in substantial 
computational and memory overhead. This makes it challenging for the model to learn, 
train, and deploy, especially on edge devices. To solve this problem, we refer to the 
implementation idea of C3STR and use C3-TST to divide the image into non-overlapping 
windows of the same size, performing local self-attention within each window. At the 
same time, a hierarchical attention strategy is adopted to obtain more effective key 
information from a global perspective. Through the segmentation strategy of region and 
level, we are able to achieve effective attention to global information while reducing 
parameters. 

A twin Swin Transformer block (TST) is composed of the following parts: two-layer 
normalization layers (Norm), one shift-window attention layer (SWA), one bi-level-
attention layer (bi-attention), and one multi-layer perceptron (MLP) layer [27,28]. The 
normalization layers are used to normalize the input data, making the data stable and 
easy to process. The shift window attention layer is designed to calculate the shift window 
attention. The MLP layer is used to integrate attention information, extract features, and 
change image dimensions. 

It is worth noting that, inspired by st-ca_YOLOv5, we use paired Swin Transformer 
blocks to build C3-TST modules [29], as shown in Figure 4. 

 
Figure 4. Framework diagram of two successive Swin Transformer blocks. 

By combining SWA and bi-attention, the model is able to integrate different attention 
patterns and capture global features during this process. This solves the problem of the 
original model’s difficulty in paying attention to global information. 

What is more, by designing C3-TST in this way, we can obtain a model with better 
performance, fewer parameters, and a more stable convergence process, and we can 
prevent model degradation as the network depth increases. C3-TST consists of three 
convolutional blocks and n × twin Swin Transformer blocks (TSTs), as shown in Figure 5. 
And the original C3 block structure is shown in Figure 6. 

Figure 4. Framework diagram of two successive Swin Transformer blocks.

By combining SWA and bi-attention, the model is able to integrate different attention
patterns and capture global features during this process. This solves the problem of the
original model’s difficulty in paying attention to global information.

What is more, by designing C3-TST in this way, we can obtain a model with better
performance, fewer parameters, and a more stable convergence process, and we can prevent
model degradation as the network depth increases. C3-TST consists of three convolutional
blocks and n × twin Swin Transformer blocks (TSTs), as shown in Figure 5. And the original
C3 block structure is shown in Figure 6.

SiLU(x) = x · σ(x)

σ(x) =
1

1 + e−x
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Figure 5. The structure of the C3-TST module.
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Each convolutional block consists of a 1 × 1 convolutional layer, a batch normalization
layer, and a Silu activation function. The input feature is divided into two parts: the first
part consists of a convolutional block and n × TST processing, and the second part is
processed by a sub-convolutional block. After adding the two parts, another convolutional
block is used to restore the original number of channels. This enables the C3-TST block to
adapt to channels and become more versatile [30,31].

3.3. Bi-Level-Routing Attention Head

For actual natural images, road defects may be quite diverse. It is difficult to extract
the direction and position information in the image based on the CNN model. The existing
attention mechanism in the application of surface defect detection is not flexible and
portable. Therefore, it is difficult for the model to detect small defects accurately and
quickly in practice.

To alleviate the scalability problem of MHSA (multi-head self-attention), some previ-
ous methods proposed different sparse attention mechanisms [32,33], in which each query
only focused on a small number of key-value pairs, rather than all. However, these methods
have two common problems:

1. They use manual static mode (unable to adapt);
2. They share the sample set of key-value pairs in all queries (it is impossible for them

not to interfere with each other).

Therefore, we use BiFormer to construct the attention mechanism to capture the
perceptual information about the channel, direction, and position.

BiFormer uses overlapping block embedding in the first stage and a block merging
module in the second to fourth stages to reduce the input spatial resolution and increase the
number of channels. Then, it uses continuous BiFormer blocks for feature transformation.
It should be noted that at the beginning of each block, the depth convolution is used
to implicitly encode the relative position information. Then, the bra module and the
multi-layer perceptron (MLP) module with the expansion rate are applied in turn for
cross-location relationship modeling and each location embedding, respectively, as shown
in Figure 7.
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After paying attention to the coordinates of these features, the head can better separate
the features along different spatial directions and retain accurate position information.
Therefore, the representation of objects of interest in the feature graph is enhanced. Thus,
the bi-level-routing attention head can monitor objects quickly and accurately.

4. Results
4.1. Dataset Preparation

During the experiment, we utilized a publicly available dataset [34]. This dataset
consists of several hundred thousand images captured within Japan using in-vehicle
mobile devices, specifically smartphones. Due to limitations in both length and relevance,
for more detailed information regarding the dataset, please refer to the provided URL link
associated with the dataset.

And in order to meet the experimental requirements, we also conducted on-site data
collection based on Chinese road conditions. The data collection process was as follows:

A. For the acquisition of the dataset, we used real-time driving videos of the road in
a certain region of China, used FFmpeg v6.1.1 software to cut the video screen into
pictures, and selected the effective part of the total 1.45 g data for use.

B. We used Labellmg v1.8.1 software to complete the labeling task and carried out
preliminary data cleaning.

The experimental environment can be found in the appendices (Figure A2 and Table A1).
It is important to note that, within the current research landscape, the optimal hy-

perparameters for the model cannot be precisely determined through exact mathematical
formulas. We have iteratively conducted experiments to obtain relatively favorable pa-
rameters and recommend that readers use parameters within a similar range. However, it
should be acknowledged that the possibility of achieving even more optimal parameters
cannot be excluded. For a more nuanced parameter optimization, optimization algorithms
such as genetic algorithms can be employed.

4.2. Evaluation Index

For the sake of comparison with the widely employed original YOLO model, this
experiment opted for the evaluation criteria outlined in the initial YOLO model paper [35]:
mAP (mean average precision). This metric was used as the benchmark for comparison
against the baseline.

“mAP” is a commonly utilized metric for evaluating the performance of object de-
tection models. It serves as a comprehensive measure assessing the accuracy of object
identification and localization in object detection tasks.



World Electr. Veh. J. 2024, 15, 102 9 of 16

mAP amalgamates information from precision–recall curves, providing a comprehen-
sive evaluation of detection results across different object classes. Its computation involves
the following steps:

A. Calculation of Precision and Recall: For each class, the model computes precision and
recall at varying confidence thresholds. Precision signifies the proportion of correctly
identified positive samples out of all predicted positives, while recall denotes the
fraction of true positives detected by the model.

B. Precision–Recall Curve: precision–recall curves are constructed based on the com-
puted precision and recall values across different confidence thresholds.

C. AP Computation (Average Precision): The area under the precision–recall curve is
calculated for each class, representing the average precision (AP) value for that class.

D. mAP Calculation: mAP is obtained by averaging the AP values across all classes,
offering an overall assessment of the model’s performance across the entire dataset.

E. mAP serves as a holistic performance metric, providing a unified evaluation of
detection outcomes for diverse object classes, thereby offering a comprehensive
assessment. In the context of training and optimizing object detection models,
achieving a high mAP typically indicates superior performance in detecting objects
across multiple categories.

In the pursuit of training object detection models, optimizing the model to enhance
mAP is a common objective. This involves adjusting the model architecture, refining loss
functions, and employing data augmentation techniques, among other strategies aimed at
improving the model’s detection capabilities.

The other evaluation parameters and their specific meanings used in this experiment
are as follows:

Precision: indicates how many of the samples predicted as positive categories in the
model are positive categories. It is used to evaluate the classification accuracy of the model,
especially when the cost of false positive examples is high.

Recall: measures how many of the real positive category samples of the model are
successfully predicted as positive categories. The recall rate is used to evaluate whether
the model can capture all positive samples, especially when the cost of false negative cases
is high.

F1 score: the harmonic average of accuracy and recall rate, which provides an indicator
for a comprehensive evaluation of model performance. The F1 score is suitable for handling
unbalanced datasets and considering the balance of accuracy and recall rate.

Percision =
TP

TP + FP
·100% (3)

Recall =
TP

TP + FN
·100% (4)

F1 =
2·(P·R)
P + R

·100% (5)

TP (True Positives): True positives indicate that the model correctly predicts samples
of the positive class as positive.

FP (False Positives): False positives represent cases where the model incorrectly
predicts samples of the negative class as positive.

FN (False Negatives): False negatives occur when the model incorrectly predicts
samples of the positive class as negative.

4.3. Ablation Study

To study the effectiveness of the proposed model components, we conducted ablation
studies on datasets in a large number of experiments. We used YOLOv5s [25] as the baseline
and set up two comparative experiments.
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During the training process, we divided the dataset to be processed into multiple
batches, each containing 320 images, for the purpose of grouping training and testing.

In our ablation experiment, we trained our model alongside the YOLOv5s and
YOLOv5n models, pushing them to their limits using the same dataset and rounds of
training. Specifically for our model, we individually trained it based on the original model
while adding each new component (as depicted in the figure; for example, ‘YOLOv5 +
Leaky ReLU’ signifies a new model incorporating a modified Leaky ReLU function, and
the same principle applies to other models). To assess the effectiveness and applicability of
each component, we also conducted separate training for every combination thereof.

The specific process of the ablation experiment is as follows:

a. Feature ablation:

Eliminate one or more features one by one or in batches, and retrain the model. This
means that in each experiment, a feature or combination of features will be removed.

b. Model evaluation:

For each ablation experiment, evaluate the model performance using the test set.
Compare the performance of the model before and after ablation, such as accuracy, precision,
recall, F1 score, and other indicators.

Table 1 and the figure for quantitative comparison are as follows (Table 1):

Table 1. Evaluation parameters of different models.

P/% R/% Map-50/% F1/%

YOLOv5n 90.0 90.3 91.7 38.1
YOLOv5s 90.2 90.9 94.4 44.2

YOLOv5 + Leaky ReLU 93.7 94.2 95.5 43.5
YOLOv5 + Leaky ReLU + C3-TST 91.2 95.3 95.4 39.6

YOLOv5 + Leaky ReLU + C3-TST + bi-head 89.8 96.3 96.4 46.0

Effectiveness of Leaky ReLU: after improving the activation function, the presented
data significantly improved all indicators; P and R increased by 3.5% and 3.3%, respectively,
compared with the baseline; map and F1 increased by 2.7% and 6.1%. The contribution of
the optimized activation function is confirmed.

Effectiveness of C3-TST: adding C3-TST to various indicators did not produce a
significant improvement in accuracy, but the overall judgment stability can be significantly
improved by observing the data. See Figure A1 for details.

Effectiveness of bi-head: after comparing (5), (3), and (1), it can be seen that bi-head
has significantly improved the indicators of the model, and the use of C3-TST ensures the
lightness of the model.

The figures below shows the results of the final model YOLOv5s and YOLOv5n after
100 epochs (Figures 8–10). Appendix A contains additional training results data and
corresponding diagrams (Figure A1). These data demonstrate that the model exhibits
strong stability.

Examples of training, testing, and results can be found in the appendices (Table A1
and Figure A2).

Building upon this foundation, we conducted stress tests on the model to address
potential unexpected events in real-world scenarios, such as insufficient voltage or reduced
computing power due to hardware aging. By operating the model with the application
memory limited to below thirty percent (as well as under reduced voltage conditions),
the experimental results still ensured accuracy in the majority of situations. In cases of
insufficient computing power, the model prioritizes attention on more severe road damage
to minimize the impact of similar events (Figure A3). However, comprehensive resolution
of such issues may still require optimization in the mechanical structure or the addition of
auxiliary equipment.
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5. Discussion

In previous research on autonomous vehicle decision-making, researchers paid more
attention to the dynamic interaction with surrounding vehicles, such as the prediction of
vehicle intention based on MSNE. The related research fields are relatively mature [21,36,37].
Pavement defect detection is more frequently used in the field of road maintenance [38,39].
The related algorithms are mostly medium- and high-level deep learning networks and
common recognition modules. There are also self-vehicle trajectory inference methods
similar to RSC [40]. Compared with previous research, The algorithm used in this paper
has specificity for the problem of road defect detection, and the design is lightweight.
It can maintain recognition speed without sacrificing accuracy and is suitable for use
in vehicle suspension preview systems. A large number of experimental results show
that our method is effective and superior to the existing methods. However, due to the
relatively small sample size and short training time, the model in this paper still has some
room for improvement. At the same time, the problem of video capture devices being
covered by stains in bad weather means that it still needs to be integrated with mechanical
design to achieve stable effects in real-world environments. An important future research
direction is computer vision recognition of non-visible light imaging, which can be used
as a supplement in special cases. Similarly, the network structure of this model still has
room for further optimization, and future work will focus on further research into attention
mechanisms and the development of lightweight parameters.

6. Conclusions

In this paper, we propose an improved YOLOv5 model based on the Swin Transformer
block and bi-head and focus on the field of road defect detection. The model is named
TST-BI YOLOv5 and has excellent performance in real-time road monitoring. By using the
Swin Transformer block to design the C3-TST module, we embedded the C3-TST module
into the end of the trunk to enhance the ability to extract non-local feature information.
To improve the detection accuracy and facilitate the detection of multiple obstacles, we
introduced bi-level-routing attention to form a bi-head structure in the detection head.
Specifically, we use lightweight modules such as Swin Transformer block and bi-level
attention to improve the detection accuracy and minimize the change in the number of
model parameters.
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From the conclusive results, it is evident that our research still has certain shortcomings
and areas open for optimization. These include the algorithm’s diminished performance af-
ter extensive training and the necessity for better equilibrium between recognition accuracy
and efficiency. To address these challenges, a viable solution lies in dynamically selecting
and invoking algorithms based on the system’s available resources. During the model
construction, specific classifications were assigned to certain special road defects (such as
speed bumps, barriers, etc.), enabling the model to possess identification capabilities for
these particular obstacles. However, for obstacles not utilized during training, the model
only possesses basic recognition abilities, and its generalization capability is relatively
weak. This issue can be addressed by augmenting the model’s training dataset. Similarly,
we will continue our research to further enhance the algorithm.
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