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Abstract: Conducting online estimation studies of the SOH of lithium-ion batteries is indispensable
for extending the cycle life of energy storage batteries. Data-driven methods are efficient, accurate,
and do not depend on accurate battery models, which is an important direction for battery state
estimation research. However, the relationships between variables in lithium-ion battery datasets are
mostly nonlinear, and a single data-driven algorithm is susceptible to a weak generalization ability
affected by the dataset itself. Meanwhile, most of the related studies on battery health estimation
are offline estimation, and the inability for online estimation is also a problem to be solved. In this
study, an integrated learning method based on a stacking algorithm is proposed. In this study, the
end voltage and discharge temperature were selected as the characteristics based on the sample data
of NASA batteries, and the B0005 battery was used as the training set. After training on the dataset
and parameter optimization using a Bayesian algorithm, the trained model was used to predict the
SOH of B0007 and B0018 models. After comparative analysis, it was found that the prediction results
obtained based on the proposed model not only have high accuracy and a short running time, but
also have a strong generalization ability, which has a great potential to achieve online estimation.

Keywords: BMS; ensemble learning; SOH; Bayesian optimization

1. Introduction

New, pollution-free renewable energy, represented by wind and solar energy, has
difficulty generating electricity continuously and steadily. Energy storage is a crucial
factor for renewable energy to become a fully reliable primary energy source [1]. With
the characteristics of high energy density and high power density, lithium-ion batteries
are widely used in energy storage systems. The battery state of charge is an important
parameter to measure the performance of Li-ion batteries, while the SOH is a measure of a
battery’s lifetime [2]. The development of online estimation studies of the SOC and SOH
of lithium-ion batteries is essential to extend the cycle life of the batteries to reduce the
potential for accidents.

Currently, there are three main methods for SOC estimation: the time integration
method, the open-circuit voltage method, and the data-driven method. Among them,
the time integration method discretely sums the current flowing through the battery and
obtains the SOC value by simple division. The time integration method estimates the SOC
by measuring current and time. Its advantage is simplicity and directness, without the need
for additional sensors. However, due to measurement errors and integration drift, time
integration methods may lead to cumulative errors in SOC estimation. The open-circuit
voltage method measures the open-circuit voltage of the battery and obtains the charging
state according to the corresponding relationship between the open-circuit voltage and
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the charging state. Its advantage is that it is non-invasive and does not require additional
measuring equipment. Reference [3] proposed a fast and accurate method to measure the
OCV after comparing three conversion methods of differential equations, thus improving
the accuracy of SOC prediction. Reference [4] proposed a novel constant-current/constant-
voltage charging control strategy for batteries by adjusting the battery charging current
based on the estimation of the open-circuit voltage parameter. Reference [5] used the open-
circuit voltage method to obtain an SOC estimate based on the average value calculated
from the random forest output OCV-SOC curve to reduce the hysteresis effect. Wang
et al. [6] proposed a new method for calculating model parameters and estimating the state
of charge of lithium-ion batteries based on the parameter-estimated open-circuit voltage
(OCV) under multi-temperature conditions. Although the accuracy is relatively high, the
OCV method requires a long resting time to reach the equilibrium state in practical tests,
and the resting time is affected by the environmental conditions and monitoring equipment,
so it is usually used in laboratories or calibration-assisted techniques.

The data-driven method only needs to extract features using physical quantities mea-
sured during battery charging and discharging, and then uses these features to train a
model to establish a mapping model between battery data features and the SOC. Refer-
ence [7] proposed a low-dimensional classification model based on machine learning and
an equivalent circuit model, which can estimate the SOC with an accuracy of more than
93%. Reference [8] used 18 machine learning algorithms to predict the SOC and applied
different filters to improve the estimator. The Bagging and ExtraTree algorithms were found
to significantly outperform other ML methods for SOC estimation, and the Rloess filter was
found to perform well. Reference [9] processed historical capacity data using a generalized
learning system (BLS) and generated feature nodes as input layers in a neural network.
The method does not need an in-depth study of the battery aging mechanism, but requires
at least 25% of the historical capacity data. Reference [10] constructed a random forest
regression model for SOC estimation, which effectively avoids the overfitting problem and
improves the estimation accuracy and provides a reference for future research on estimation
models. Data-driven methods can more accurately capture the nonlinear characteristics of
battery behavior, but require a large amount of training data and computational resources.

SOH estimation methods can be categorized into two main groups: model-based
methods and data-driven methods. The commonly used models generally contain two
kinds: electrochemical models and equivalent circuit models. In electrochemical model-
based methods, firstly, the first-principle equations are established based on the internal
electrochemical processes of the battery, and then the exact state is calculated. Togasaki
et al. [11] proposed electrochemical impedance spectroscopy (EIS) to predict severe capacity
degradation of lithium-ion batteries due to overcharging. Zhang et al. [12] used the phase
resistance between the solid electrolyte and the thickness of the deposited layer as a
proxy for aging and developed a battery aging model using the transfer function versus
input current. Hou et al. [13] combined Maxwell–Cattaneo–Vernotte theory with Marcus–
Hush–Chidsey kinetics to establish an electrochemical–thermal model for fast and accurate
diagnoses of lithium-ion batteries. Gao Yizhao et al. proposed an SOH estimation method
for lithium batteries based on an enhanced degradation electrochemical model and a dual
nonlinear filter [14].

The following studies the use of equivalent circuit model methods: Amirs et al. from
the University of Management Sciences, Lahore, Pakistan, proposed a method for estimat-
ing battery SOH based on a dynamic equivalent circuit model. The proposed 2-RC model
has reduced computational complexity compared to the 1-RC model and outperforms the
N-RC model [15]. Based on the simplified second-order RL network, ECM, Yang Jufeng et al.
proposed an SOH estimation method based on the decoupled dynamic characteristics of
constant-current charging currents. Compared with the traditional nonlinear least squares
method, the dynamic decoupling method proposed in this paper has lower computational
effort and higher parameter identification accuracy [16]. Chen Mang et al. proposed a
comprehensive SOH estimation method based on multi-factor ECM, which has an estima-



World Electr. Veh. J. 2024, 15, 75 3 of 16

tion error of about 1% for the same model of battery [17]. Zhang et al. [18] analyzed the
impedance characteristics by means of a pseudo two-dimensional (P2D) model based on
the variation of battery impedance characteristics. Based on this, the original model was
corrected and compared with the EIS model, which reduced the prediction error by half
compared with the original model. Improved reliability is more suitable for SOH estima-
tion under real operating conditions. The model-based approach uses physical models to
describe the decay process of batteries, such as capacity decay, internal resistance increase,
etc. The accuracy of these methods is influenced by the accuracy of model parameters and
the limitations of model assumptions.

There are differences in effectiveness between model-based and data-driven methods.
Model-based methods can provide better interpretability and interpretability, but for com-
plex battery systems, more prior knowledge and parameter adjustments may be required.
Data-driven methods can better adapt to uncertainty and nonlinear features, but may lack
interpretability and generalization ability. The data-driven approach estimates the SOH by
analyzing battery operating data. Key factors include data quality, feature extraction, and
algorithm selection. High-quality data can provide more accurate estimation results, while
effective feature extraction can capture key features of battery health status. Reference [19]
is based on incremental capacity (IC) analysis and battery operating characteristics com-
bined with a regression model to correct for the bias caused by individual batteries. The
method was validated on laboratory and EV datasets, with average absolute percentage
errors of 0.29% and 3.20%, respectively. Reference [20] proposed an aging feature extraction
method based on an electrochemical model (EM) to explain the degradation mechanism
of batteries. A data-driven SOH estimation model based on health characteristics was
constructed by a machine learning algorithm. Experimental data show that the proposed
method can effectively improve the accuracy of SOH estimation in different application
scenarios and battery charging and discharging modes. The SOH estimation based on
GMO-BRNN proposed in reference [20] achieves an estimation evaluation index of less
than 1%, which is conducive to the development of EV battery prediction and health
management systems.

The above related studies were carried out based on single-parameter estimation.
However, there is a certain coupling link between the SOC and the SOH. For example,
when estimating the SOC, the variation in the maximum capacity of the battery needs to be
taken into account, and at the same time, inaccurate SOC estimation will also affect SOH
correction. It follows that there will also be some overlap in the estimation steps for these
two parameters. SOH estimation using charge state data can not achieve online estimation.
Therefore, conducting a study on the joint estimation of SOC and SOH can save certain
computational steps and has high practical significance. Both for SOC estimation and SOH
estimation, the data-driven method relies heavily on the choice of algorithm. However, a
single data-driven algorithm is susceptible to the influence of the dataset itself, which leads
to a reduced generalization ability. The integrated learning approach is particularly suitable
for large datasets and nonlinear data, and is applicable to the study of the health state of
lithium-ion batteries. Compared with a single model, the stacking algorithm can improve
the prediction performance by integrating the advantages of multiple models. It can reduce
the bias and variance of individual models and provide more stable and reliable estimation
results. In addition, stacking algorithms can also improve robustness to uncertainty and
noise through the diversity of models. However, the integrated learning approach tends to
consume a lot of computational resources and time to build high-precision models, and the
combination of Bayesian algorithms and integrated learning for training can greatly reduce
the training time.

In summary, in order to predict SOC and SOH better and more accurately, and to
reduce the loss of accuracy of the model, after analyzing the discharge data of NASA’s
batteries, temperature and end voltage were selected as training features in this study.
After that, training and testing on the dataset using LR, ENR, DTR, ETR, GBR, SVR, KNNR,
DTR, and XGBoost algorithms were carried out to compare the prediction result errors of
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different algorithms. With LR as the meta-learner, DTR/ENR/ETR/KNNR are selected
as the base learners to build the stacking integrated learning model, which is trained
using the B0005 battery data and optimized using a Bayesian algorithm to optimize the
parameters to predict the B0007 and B0018 batteries. Simulation analysis shows that
stacking exhibits better estimation stability and accuracy than a single model. Second,
this study examines the running time of the algorithm. The simulation analysis shows
that the stacking algorithm does not consume too much time for the trained ground-built
model, although it is an integrated learning approach. The trained model still has excellent
computational speed in predicting SOH. Finally, a comparison with the estimation error
results of other papers proves the effectiveness of the stacking algorithm model.

2. Algorithm Overview
2.1. Machine Learning Algorithm

The relationship between the variables in the lithium-ion battery dataset is mostly
nonlinear, so the ability to adapt to nonlinearity should be considered in the algorithm
selection of machine learning for individual learners. At the same time, integrated learn-
ing algorithms tend to consume a lot of computational resources, and the computational
speed of machine learning algorithms should also be considered in the selection of indi-
vidual learners. The main common algorithms in dealing with regression problems are
KNeighbors Regressor, Decision Tree Regressor, Elastic Net, GradientBoostingRegressor,
XGB Regressor, Lasso, Extra Tree Regressor, SVR, and Linear Regression. Table 1 lists the
advantages and disadvantages of these mainstream algorithms as well as their scope of
application. Based on the above conditions for selecting individual learners, it is considered
that elastic networks and linear regression are not selected for this study due to their weak
ability to handle nonlinear data. Since the meta-learner needs to deal with relatively large
datasets consisting of the prediction results of individual learners, XGBRegressor was
chosen as the meta-learner for this study due to its faster computational speed and its
applicability to large datasets.

Table 1. The advantages, disadvantages, and applicable conditions of common machine learn-
ing algorithms.

Model Name Advantage Disadvantage Applicability

KNeighbors Regressor Performs well on small datasets
Applicable to regression problems

Poor performance on
high-dimensional data
High computational cost for
big datasets

Small dataset

Decision Tree Regressor Good performance for nonlinear data
Easy to overfit
Poor performance on
high-dimensional data

nonlinear dataset

Elastic Net Can handle high-dimensional data
Not sensitive to noise

Poor performance on
nonlinear data
High computational cost

high-dimensional
dataset

Gradient Boosting Regressor Good performance for nonlinear data
Not sensitive to noise Sensitive to hyperparameters nonlinear dataset

XGB Regressor
Fast calculation speed
High accuracy
Performs well on big datasets

Sensitive to hyperparameters large dataset

Lasso Can handle high-dimensional data
Not sensitive to noise

Poor performance on
nonlinear data
High computational cost

high-dimensional
dataset
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Table 1. Cont.

Model Name Advantage Disadvantage Applicability

Extra Tree Regressor
Fast calculation speed
Not sensitive to noise
Could handle nonlinear data

Easy to overfit
Method is sensitive to
hyperparameters

nonlinear dataset

SVR Can handle nonlinear data
Not sensitive to noise

Sensitive to hyperparameters
Poor performance on big datasets nonlinear dataset

Linear Regression Low computational cost
Performs well on linear data

Poor performance on
nonlinear data
Sensitive to noise

linear dataset

KNeighbors Regressor Performs well on small datasets
Applicable to regression problems

Poor performance on
high-dimensional data
High computational cost for big
datasets

Small dataset

Decision Tree Regressor Good performance for nonlinear data
Easy to overfit
Poor performance on
high-dimensional data

nonlinear dataset

Elastic Net Can handle high-dimensional data
Not sensitive to noise

Poor performance on
nonlinear data
High computational cost

high-dimensional
dataset

2.2. Stacking Algorithm

In recent years, stacking algorithms have achieved better results in various data mining
competitions. As shown in Figure 1, the algorithm generally uses a two-layer structure, the
primary learner and the secondary learner. First, the stacking algorithm trains the primary
learner with the initial dataset, then computes a new dataset with the same dimension as
the initial dataset consisting of the results of the primary learner’s operations, and then
trains the secondary learner with the new dataset.
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In this thesis, the 5-fold cross-validation method is used to divide the data to reduce
the risk of overfitting. In order to better understand the learning process of the stacking
algorithm, it is assumed that there are five primary learners (learner A, learner B, learner C,
learner D, learner E) of the stacking algorithm and 5-fold cross validation is used. Figure 2
gives the specific steps of the algorithm to materialize the process: the upper half is the
training set and the lower half is the test set. The training process for one learner (learner A)
is shown in the figure. After 5-fold cross-validation and dividing the training set into
5 equal parts, learner A will end up with a new set of data that has the same dimensions as
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the training set. Similarly, the other four learners, B, C, D, and E, will go through the same
operation as learner A, and produce new data, b, c, d, and e, with the same dimensions as
the training set. Subsequently, the new data, a, b, c, d, and e, are averaged to obtain a new
datum, “T”, with the same dimension as the training set. The test set will be operated in the
same way as the training set, and new data, the “test data”, with the same dimension as the
test set will be obtained. This new datum, “T”, is the training set for the secondary learner.
After training the sub-learners with the new datum, “T”, the sub-learners will predict the
new test set, “test data”, and the final prediction will be obtained.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 6 of 18 
 

dimensions as the training set. Similarly, the other four learners, B, C, D, and E, will go 

through the same operation as learner A, and produce new data, b, c, d, and e, with the 

same dimensions as the training set. Subsequently, the new data, a, b, c, d, and e, are av-

eraged to obtain a new datum, “T”, with the same dimension as the training set. The test 

set will be operated in the same way as the training set, and new data, the “test data”, with 

the same dimension as the test set will be obtained. This new datum, “T”, is the training 

set for the secondary learner. After training the sub-learners with the new datum, “T”, the 

sub-learners will predict the new test set, “test data”, and the final prediction will be ob-

tained. 

T
rain

in
g

 d
ata

learn

learn

learn

learn

learn

learn

learn

learn

learn

learn

learn

learn

learn

learn

learn

learn

learn

learn

learn

learn

learn

learn

learn

learn

learn

prediction

prediction

prediction

prediction

prediction

T
rain

in
g

 d
ata

T
est d

ata

Predict Predict Predict Predict Predict Predict

T
est d

ata

Average

 

Figure 2. Algorithm process. 

2.3. Bayesian Optimization Algorithm 

Before establishing the final SOC estimation model, it is necessary to adjust the im-

portant parameters in the model to achieve the optimal state as much as possible. Model 

parameter tuning is a very tedious and important task. When the model building enters 

the parameter tuning stage, it means that the work is coming to an end. The Bayesian 

optimization (BO) algorithm is a model hyper-parameter optimization method, which can 

greatly reduce the tuning time of the stacking algorithm. 

Suppose a set of hyper-parameters is combined as nxxxX ,,, = 21 . Different combi-

nations of hyper-parameters will give different results to the model, and the aim of Bayes-

ian optimization is to select the hyper-parameters that give the best results to the model. 

The Bayesian optimization process is as follows: 

The function )(xf  needs to find an Xx , such that 

)(minarg* xfx =  
(1) 

where 
*x  refers to the hyperparameter. 

Since it is not possible to determine the convexity of the function )(xf , the problem 

needs to be solved based on the sequence model. The algorithm is as follows: 

Step 1: Determine the hyperparameter search interval ( X ) and the collection func-

tion (S) of the function )(xf . 

Step 2: Determine the dataset (D); each pair of arrays in the dataset is denoted as (x,y). 

x denotes a set of hyperparameters and y denotes the output result corresponding to the 

hyperparameters. 

Step 3: Fit the model (M) to the dataset (D) and find the specific function representa-

tion of the model. 

Figure 2. Algorithm process.

2.3. Bayesian Optimization Algorithm

Before establishing the final SOC estimation model, it is necessary to adjust the im-
portant parameters in the model to achieve the optimal state as much as possible. Model
parameter tuning is a very tedious and important task. When the model building enters
the parameter tuning stage, it means that the work is coming to an end. The Bayesian
optimization (BO) algorithm is a model hyper-parameter optimization method, which can
greatly reduce the tuning time of the stacking algorithm.

Suppose a set of hyper-parameters is combined as X = x1, x2, · · ·, xn. Different
combinations of hyper-parameters will give different results to the model, and the aim of
Bayesian optimization is to select the hyper-parameters that give the best results to the
model. The Bayesian optimization process is as follows:

The function f (x) needs to find an x ∈ X, such that

x∗ = argmin f (x) (1)

where x∗ refers to the hyperparameter.
Since it is not possible to determine the convexity of the function f (x), the problem

needs to be solved based on the sequence model. The algorithm is as follows:
Step 1: Determine the hyperparameter search interval (X) and the collection function

(S) of the function f (x).
Step 2: Determine the dataset (D); each pair of arrays in the dataset is denoted as (x,y).

x denotes a set of hyperparameters and y denotes the output result corresponding to the
hyperparameters.

Step 3: Fit the model (M) to the dataset (D) and find the specific function representation
of the model.

ρ(y|x, D) = model(M, D) (2)
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Step 4: Find the set of variable points (x) corresponding to make S(x, ρ) obtain the
maximum value, i.e,

xi = argmaxS(x, ρ(y|x, D)) (3)

xi is a set of hyperparameters selected by the acquisition function.
Step 5: Substitute xi into the function f (x), and obtain the output value, y.
Step 6: Update the dataset (D).

D = D ∪ (xi, yi) (4)

Step 7: Return to step 3 and continue to select hyperparameters (xi); loop T times
to stop.

3. Data Analysis
3.1. Li-Ion Battery Capacity Degradation Data

This study mainly uses the public battery data provided by NASA as the simulation
experiment data. The battery model is a lithium iron phosphate battery. The battery
numbers used in this study are B0005, B0018, and B0007. The nominal capacity is 2 Ah.
The batteries were operated in three operating conditions: charging, discharging, and
measuring internal resistance. The three operating conditions were all in the same room
temperature (24 ◦C) environment. The battery was first charged with a constant current
of 1.5 A until the voltage reached 4.2 V, and then with a constant voltage until the current
dropped below 20 mA. In the discharge stage, the battery was discharged with a constant
current of 2 A until the voltage reached 4.2 V, which is the corresponding discharge cut-off
voltage. The relevant working conditions of the battery are shown in Table 1.

3.2. Raw Data Analysis

The SOC is defined as the ratio between the battery’s current remaining charge and its
actual capacity. For practical purposes, it is generally calculated based on the amount of
power that has been released from the battery.

SOC(t) = (1 −
∫ t

0 I(t)dt
Cm

)× 100% (5)

where I represents the current, the integral of I over [0,t] represents the amount of power
discharged by the battery, and Cm represents the actual capacity of the battery at the
present time.

As the usage time of a battery increases, its internal irreversible aging reaction will
gradually intensify, externally manifesting the phenomenon of a decreasing actual capacity,
Cm. Therefore, the SOH of a battery is usually defined from the perspective of capacity:

SOH =
Cm

C0
× 100% (6)

where C0 represents the rated capacity of the battery at the factory.
Figure 3 illustrates the SOH diagram of the battery. A battery is considered to fail

when the capacity decays to 70% of the rated capacity. From Figure 3, it can be seen that
the capacity of battery B0018 decreases faster than that of batteries B0005 and B0007, the
capacity of battery B0007 decreases slower than that of battery B0005, and the capacity of
battery B0007 does not decrease to the failure threshold. The data of battery B0005 cover all
the cases of the battery as much as possible, so they can be used as the training data and
the other two batteries are used as the test set.
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3.3. Feature Selection

Figure 4 shows a schematic of the discharge temperature of the B0005 battery. As the
number of cycles increases, the temperature of the battery gradually increases, indicating
that the internal impedance of the battery is gradually increasing. Therefore, the internal
temperature of the battery can also be used as a characteristic of the battery. Under the actual
working conditions of the battery, it is not convenient to measure the internal resistance
of the battery, which limits the amount of aging. Therefore, we can determine the aging
degree of the battery by analyzing the internal temperature of the battery. Figure 5 shows
the discharge voltage curve of the B0005 battery. As the number of cycles increases, the
slope of the battery discharge voltage curve gradually changes from flat to steep, indicating
that this voltage can be used as one of the characteristic quantities for measuring battery
aging. Figure 6 is a plot of the battery charge state versus time, which clearly shows that the
battery charge state decreases at a progressively greater rate of SOC decline as the health
of the battery decays. Therefore, the battery state of charge is an important characteristic
quantity as a measure of battery aging.

From the above findings, it can be seen that the characteristic quantifiers of battery
aging can be the discharge voltage, charge state, and discharge time of the battery. There-
fore, the health of the battery can be judged by the analysis of these three quantities. In
summary, the coupling of the SOC with the temperature and voltage is plotted, as shown
in Figures 7 and 8. It is difficult to determine the value of the estimated SOC by voltage
or temperature alone, so SOH coupling thermograms of temperature, voltage, and SOC
are plotted next, and the determined SOC, discharge time, and discharge voltage can
correspond to a unique SOH.

As can be seen from Figure 9, the SOH of the cell gradually decreases. When the color
changes from blue to deep red, it indicates that the aging of the battery deepens. A total of
168 discharge curves are plotted in the figure, and each curve represents a different battery
SOH state, which is indicated by the color bar on the right side of the figure. Therefore, the
predicted expression for SOH is as follows:

SOH = F(SOC, U, Tem) (7)
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Figure 7. Overall training process.

However, if the SOH of the battery is predicted directly by the above method, it will
put a great computational pressure on the computer and the corresponding storage space
is very limited. Therefore, a novel SOC–SOH coupling relationship is used in this study to
simplify the computational complexity. When determining the z-axis SOC value, it will
correspond to a two-dimensional coordinate (U,T), and the above information can be used
to determine the discharged battery health profile. Using this feature, the battery SOH can
be predicted based on a machine learning model with the estimated expression:

SOH = F(TemSOC=100%, USOC=100%, TemSOCnow , USOCnow) (8)
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Figure 9. (a) The runtime of algorithms using different meta-learners; (b) the R2 score of algorithms
using different meta-learners; (c) the RMSE of algorithms using different meta-learners; (d) the
runtime of algorithms using different numbers of base learners; (e) the R2 score of algorithms using
different numbers of base learners; (f) the RMSE of algorithms using different meta-learners.
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3.4. Model Accuracy

In this study, the root mean square error (RMSE) and determinant coefficient (R2 score),
two indexes used to describe the prediction error, are used to evaluate the accuracy of the
ML model. The expressions are as follows:

R2 = 1 −
1
n ∑n

i=1 (yi −
·
yi)

2

1
n ∑n

i=1 (yi − yi)
2 (9)

RMSE =

√√√√ 1
n

n

∑
i=1

(y − ·
yi)

2

(10)

The closer the value of R2 is to 1, the better the model performance; the closer the
value of RMSE is to 0, the better the model performance.

3.5. General Workflow of the Model

The overall training process of the model in this study is shown in Figure 7. First of
all, the two features of voltage and temperature are found by analyzing the data; then, the
coupling relationship of the SOC and SOH for estimating the SOH is established. Next, the
appropriate stacking model is selected by training on the B0005 dataset; finally, the selected
model with stable performance is used to train and make predictions.

4. Results and Discussion

All training in this study was carried out on the same device, and the CPU of the
device used was an Intel(R) Core (TM) i7-6700HQ CPU @ 2.60 GHz. In order to verify the
above selection of individual learners and meta-learners, this study first uses the B0005
battery dataset to train and predict different machine learning algorithms.

The main common algorithms in dealing with regression problems are KNeighbors
Regressor, Decision Tree Regressor, Elastic Net, GradientBoostingRegressor, XGB Regressor,
Lasso, Extra Tree Regressor, SVR, and Linear Regression. Table 1 lists the advantages and
disadvantages of these mainstream algorithms as well as their scope of application. A box
plot is used to reflect the center position and scattering range of the continuous-type data
distribution. The results of the overall health status estimation of B0005 are represented
by a box plot as shown in Figure 7 below, with the median represented by a short red
line, the two horizontal lines above and below the box representing the upper and lower
boundaries of the data (the upper edge value is not necessarily the maximum value in the
data, and the smallest lower edge value is not necessarily the minimum value), and the red
dots representing the outliers that are beyond the upper and lower boundaries. On the far
right is the raw SOH data for cell B0005. As shown in the figure, its data spread is basically
uniform, and the red line is closer to the lower quartile, indicating that the original data are
in a slightly left-biased state.

By observing the distribution of the other algorithm boxplots, it can be seen that
the data predicted by each algorithm are in different degrees of bias. Among them, the
predicted data of DTR\ETR\GBR\KNNR\SVR\XGBR have a similar distribution to the
original data, DTR\ENR\ETR\LRXGBR\SVR basically shows a left-skewed state, and
KNNR\LASSO shows a right skewed state. The DTR\LASSO\LR\SVR algorithm shows
outlier points, and all of them are below the lower boundary, indicating that the errors
of the algorithms are mostly the predicted values being smaller than the actual values.
Regarding the prediction results made by the LR and LASSO algorithms, the median red
line is shifted too much and the box is too narrow, showing that the predicted values of
these two algorithms are concentrated in a certain interval and do not have the ability to
predict directly. Figure 8 shows the R2 score of the algorithms as well as the RMSE values,
and it can be seen that the R2 score of the best-performing model also stays below 0.8,
indicating that the predictive ability of a single model needs to be further improved.
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Considering the characteristics of stacking algorithms, appropriate individual learners
and meta-learners will be selected by experiments. Nine machine learning algorithms are
first used as base learners/meta-learners, the stacking algorithm is trained and predicted
on the B0005 dataset, and the training set is divided into 9:1 with the test set. The results
are shown in Figure 9 below.

Figure 9a shows the training time of different algorithms as meta-learner models. It
can be seen that the overall model training is time-consuming when XGBoost is used as the
meta-learner; other algorithms, except GBR, have similar model training times; and when
LR is used as the meta-learner, the shortest model training runtime is 1795.4763 s. Figure 9b
shows the R2 scores of the models of different algorithms as meta-learners. Figure 9c shows
the training errors of the models of different algorithms as meta-learners. Combining
Figure 9b,c, it is found that LR as a meta-learner has the highest R2 score of 0.972 and the
lowest RMSE of 0.05272498 compared to the other algorithms. So, it was finally decided to
use LR as a meta-learner for modeling.

After determining the meta-learner, the number of base learners and the algorithm
chosen still need to be further determined. A method using the addition of different base
learners one by one was carried out next and used to determine the final base learner. A
total of nine different machine learning algorithms were selected for this study. Firstly,
only DTR was used as the base learner to train and test on the dataset. Secondly, the ENR
algorithm was added to build the model with two base learners for training, and in this
way, these nine algorithms were added as base learners to build the model in turn. The
results of the experiment are shown in Figure 10 below. Figure 10a represents the training
time of the model with different numbers of base learners, and it can be observed that the
rate of increase of the training time of the whole model gradually becomes larger after
using the SVR algorithm to constitute seven base learner algorithms. Figure 10b shows the
R2 scores of the models with different numbers of base learners, and it can be observed
that before using four base learners, the R2 score gradually increases with the growth of
the learners and then basically remains stable, except for the decrease after the addition of
the two algorithms of LR/SVR. Figure 10c represents the training errors of models with
different numbers of base learners. As can be seen from the figure, the error decreases with
the increase in the number of base learners, which is most obvious before the number of
base learners is increased to four. To summarize, the construction of the stacking algorithm
should be considered from the three aspects of reducing the training time, improving the
accuracy, and decreasing the error. After balancing, the final choice is to construct the
stacking model with four base learners with the DTR/ENR/ETR/KNNR algorithm.

After constructing the model, the B0005 battery is used as the training data to predict
the SOC. The battery state of charge is evaluated sequentially and substituted into the
established joint SOC–SOH estimation model. Nine SOC interval segments are selected to
reflect the estimation effect of the model. The SOH estimation effect is shown in Figure 11.
From the figure, it can be seen that the constructed stacking model has a stable overall
estimation effect. The performance of the model was evaluated using the root mean square
error (RMSE) and the results are shown in Table 2. The R2 score is maintained around 0.997
and the RMSE results are basically unchanged, indicating that the model performs stably
and accurately in predicting the SOH.

To verify the generalization ability of the model, the discharge current and terminal
voltage are still used as features to make predictions about the health status of lithium-ion
batteries of models B0007 and B0018. The results are shown in Figure 11a,b, where the
raw data are in blue. The prediction of B0007 takes 0.48 ms, and the prediction of B0018
takes 0.32 ms. As can be seen from Tables 2–4 combined with Figure 11a,b, the stacking
algorithm in this study not only does not have the phenomenon of overfitting, but also
shows a strong generalization ability.
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Table 2. Battery charging and discharging working status.

Battery
Number

Charge
Cutoff

Voltage (V)

Discharge
Cutoff

Voltage (V)

Charging
Current (A)

Discharge
Current (A)

Rated
Capacity

(Ah)

B0005 4.2 2.7 1.5 2 2
B0007 4.2 2.5 1.5 2 2
B0018 4.2 2.5 1.5 2 2

Table 3. Model performance results.

SOC 100–10% 100–20% 100–30% 100–40% 100–50% 100–60% 100–70% 100–80% 100–90%
R2 0.9978 0.9977 0.9976 0.9968 0.9977 0.9975 0.9998 0.9978 0.9964

RMSE 0.0044 0.0044 0.0047 0.0056 0.0054 0.0045 0.0054 0.0034 0.0054

Table 4. Optimization results.

Battery Number R2 RMSE (%)

B0005 0.9976 0.044
B0007 0.9974 0.0041
B0018 0.9963 0.0047

5. Conclusions

Most data-driven methods can provide an accurate estimate of the health status of
lithium batteries, effectively reducing the risks and losses caused by failures during use.
However, a single data-driven algorithm is susceptible to the influence of the dataset itself,
resulting in lower accuracy. In addition, since the relationships between variables in the
lithium-ion battery dataset are mostly nonlinear, it is very difficult to establish an accurate
SOH fitting relationship on the discharge dataset using a model. Meanwhile, most of
the related studies on battery health estimation are offline estimation, and the inability to
estimate online is also a problem to be solved. In view of such problems, this study proposes
a joint machine learning SOC–SOH estimation method based on a stacking algorithm, which
realizes online detection and the estimation of battery management systems.

Firstly, this study utilized the publicly available data of batteries provided by NASA
as the simulation experimental data, and explored the SOH changes of different char-
acteristic responses by plotting the end-voltage curve, the discharge current curve, the
SOC-time curve, etc., and finally chose the end-voltage and the temperature as the in-
put characteristics.

Secondly, starting from the basic algorithm of a single model, this study analyzed the
prediction ability of each of the different tree modeling algorithms of Decision Tree, GBR,
SVR, KNeighbors Regressor, Extra Tree Regressor, and XGBoost, and chose the stacking
integrated learning method, with LR as the meta-learner and the other four algorithms as
the sub-learners.

Finally, this study used the B0005 battery as the training set, used the Bayesian algo-
rithm for parameter optimization, and used the trained model for the SOH prediction of the
B0007 and B0018 batteries. After a comparative analysis, the developed models were found
to have a strong generalization ability, and the running time for the prediction of the full
dataset was less than 0.2 ms, which indicates the great potential of actual linear estimation.
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