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Abstract: Vehicle running state parameters and road surface state are crucial to the stability of
four-wheel independent drive and steering electric vehicle control. Therefore, this study explores
the estimation of vehicle driving state parameters and road surface adhesion coefficients using a
combination of federal Kalman filtering and an intelligent bionic antlion optimization algorithm.
Firstly, according to the research purpose of the paper and the focus on the accuracy of the estab-
lishment of the three degrees of freedom dynamics model, fully considering the road conditions,
the paper adopts the Dugoff tire model and finally completes the establishment of the vehicle state
estimation model. Secondly, the drive state estimation algorithm is developed utilizing the principles
of federal Kalman filtering and volume Kalman filtering. At the same time, robust estimation theory
is introduced into the sub-filter, and the antlion optimization module is designed at the lower layer
of the main filter to enhance the accuracy of estimates. It is easy to see that the design of the Antlion
federal Kalman travel state estimation algorithm has noticeably enhanced accuracy and traceability,
according to the result. Thirdly, a joint estimation algorithm of state estimation and road surface
adhesion coefficient has been devised to enhance the stability and precision of the estimation process.
Finally, the results showed that the joint estimation algorithm has high accuracy in estimating vehicle
driving state parameters such as the center of mass lateral deflection angle and road surface adhesion
coefficient by simulation.

Keywords: federal Kalman filter; antlion optimization; driving state estimation

1. Introduction

The four-wheel independent drive electric vehicle (4WID-EV) represents a pivotal
configuration in electric vehicle design, positioning the drive motor directly within the
wheel rim and employing the rim motor as the active onboard driving force. This setup, in
contrast to conventional centralized drive systems, eliminates transmission components
like differentials, reducers, and half shafts. The distinctive four-wheel autonomous drive
and control architecture endow the vehicle with superior mobility and adaptability. Such
enhancements enable the vehicle to adeptly navigate complex and fluctuating road con-
ditions and meet diverse driving demands, thereby optimizing the low-speed agility and
high-speed stability of electric vehicles. Nonetheless, the intricate nature of this configu-
ration presents substantial challenges for accurately estimating the vehicle’s driving state
and developing advanced dynamic control systems.

With the rapid development of electronic control technology, advanced electronic
control systems such as adaptive cruise control, vehicle stability control, direct yaw torque
control, and anti-lock braking control have been widely used in vehicles [1–4]. This not only
greatly improves the driving stability and safety of the vehicle but also makes the vehicle
have a certain autonomous performance. The American Society of Automotive Engineers
(SAE) divides the level of automobile autonomy into 0–5 levels: level 0 is non-automatic
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and completely controlled by people; level 1 is somewhat automated, but level 2 is still
human-based; level 2 is semi-automatic, self-driving works in some places; level 3 mainly
depends on the self-driving system but must be equipped with human drivers to deal
with emergencies. Level 4 is autopilot in some specific circumstances, with no need for
people; level 5 is no need for people in any environment [5]. Whether it is a vehicle of any
autonomous grade, the handling and stability of the vehicle are particularly important for
safety. However, the important factor affecting the handling and stability of the vehicle is
the tire.

As one of the important components of the vehicle, the tire is also the only part of
the vehicle in contact with the ground, and its role is very important in vehicle dynamics.
However, a critical factor determining tire performance is tire pressure [6]. Therefore,
tire pressure directly affects vehicle driving performance. Various studies show that tire
pressure has an important influence on vehicle power, passability, ride comfort, braking,
handling stability, and so on. Among them, the handling and stability of the vehicle are
determined by the cornering characteristics of the tire. Cornering stiffness is an important
tire parameter that determines handling and stability. When the cornering force of the tire
reaches the adhesion limit, the wheel will slip. In reference [6], the test of the effect of tire
pressure on vehicle cornering characteristics shows that the cornering stiffness increases
with the increase of tire pressure, but the cornering stiffness no longer changes when the
tire pressure is too high [6–10]. After the tire is selected, the tire pressure is not only the
key factor affecting the tire cornering characteristics but also the key factor affecting the
handling and stability of the vehicle [11,12].

Vehicle dynamics control strategies are based on the current driving state and the
corresponding road information to implement the corresponding control logic, and the
intention of the driver and the driving state parameter information such as the center of
mass lateral deflection angle, longitudinal/lateral speed, the yaw angular velocity, and road
surface adhesion are the necessary prerequisites for this type of control system. Among
them, the yaw angular velocity represents the state of left and right rotation of the vehicle
body during driving and reflects the steering performance and stability of the vehicle,
and the center of mass lateral deflection angle represents the degree to which the vehicle
deviates from the expected trajectory, which determines the tracking ability of the vehicle.
The road surface adhesion coefficient is the ratio of tire longitudinal force to vertical force,
and at the same time, the road adhesion coefficient is also the proportional coefficient
between tire radial reaction force and adhesion force. On a road surface with a constant
adhesion coefficient, the adhesion force is expressed as the limit value of the reverse force
acting on the tire. On a fixed road surface, the tire adhesion force can be adjusted by
changing the tire reaction force so that the vehicle can obtain higher driving performance.
Sensors are key devices for acquiring driving state parameters, but they are subject to errors.
Meanwhile, the vehicle driving conditions are very complex, and some parameters will
change in real time with the different driving conditions. In addition, with the increase in
vehicle control systems and driving assistance systems, the demand for precise estimation
of driving state parameters in real-time is becoming higher and higher. This requires that
the algorithm not only deal with complex nonlinear problems and multi-source information
fusion problems but also be able to respond quickly and give accurate estimation results in
time [13–16]. Therefore, how to precisely estimate the state parameters is very important in
the automobile field. Based on this background, this paper conducts a joint estimation of
vehicle driving state and road surface adhesion coefficient through the study of four-wheel
independent drive and steering electric vehicles.

In Reference [17], a state parameter estimation algorithm founded on the vehicle
dynamics model and the Kalman filter theory is used to process the collected sensor data,
which can accurately estimate the vehicle speed and steering angle. In Reference [18],
combining the characteristics of vehicle dynamics and fuzzy theory, a representative T-S
fuzzy model was built, the influence of longitudinal speed change was considered, and the
state parameters were estimated. The state parameters of a four-wheel independent drive
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electric vehicle to be estimated according to the particle filter algorithm are in reference [19].
Experimental outcomes indicate that the algorithm is superior to the estimation of a nonlin-
ear system. Reference [20] designs an estimation algorithm for vehicle state parameters
based on a neural network model and uses experimental data to train the neural network
model, precisely estimating vehicle speed and acceleration. Reference [21] combines the
neural network model with fuzzy control theory and uses information such as longitudinal
vehicle speed and steering wheel angle parameters as input for training the neural network
to complete the estimation of the center of mass lateral deflection angle. The experimental
findings demonstrate that this method offers high accuracy in observation. Reference [22]
uses a method of multi-sensor fusion to estimate a vehicle’s state parameters. Through
the fusion processing of the data collected by radar and camera, an accurate estimation
of the vehicle’s current position and operating speed is achieved. In reference [23], we
utilize the fusion processing of information provided by radar and inertial measurement
units to achieve an accurate estimation of vehicle attitude and trajectory. Reference [24]
designs a kind of vehicle state estimation algorithm using the federal Kalman filter theory
to achieve adaptive adjustment to changes in process noise. Reference [25] designs a peak
attachment coefficient observer and a center of mass lateral deflection angle state observer
for joint estimation. The algorithm requires only the most basic signals as inputs and has
the advantages of low cost and reliability. Chan [26] designed an EKF estimation with a
double-layer structure, which reduces the impact of vehicle parameters, road surface adhe-
sion coefficient, and slope changes on the estimation accuracy and has higher estimation
accuracy and robustness to vehicle parameter changes.

This paper designs an antlion federal Kalman joint estimation algorithm based on
federal Kalman filtering and intelligent bionic antlion optimization theory to perform joint
estimation of vehicle state parameters and road surface adhesion coefficient.

2. Vehicle Modeling

Kinematic analysis and dynamic analysis are usually used in vehicle modeling, and
different estimation methods can be used according to different modeling methods. Con-
sidering the accuracy requirements of the two kinds of models and the characteristics of
estimation methods, the estimation method adopted for the dynamic model is studied in
this paper.

2.1. Three Degrees of Freedom Dynamic Model

According to the purpose of this study, we mainly pay attention to the planar motion
of the vehicle’s characteristics and the real-time operation, simplify the complex vehicle
model, ignore the roll, pitch motion, and rotation of the four wheels around the axis,
and only consider the three degrees of freedom, which are longitudinal, lateral, and yaw
directions, to build a nonlinear dynamic model of the vehicle, as shown in Figure 1, which
can fully express the dynamic response of the vehicle system’s characteristics.

The modeling is based on the following assumptions:

(1) It is assumed that the vehicle is a rigid car body, and the coordinate origin of the
vehicle dynamic model coincides with the center of mass.

(2) I ignore the influence of air resistance, road friction resistance, etc.
(3) It is assumed that the mechanical properties of each tire are the same.
(4) The influence of the suspension system on the motion of the vehicle is ignored, and

the degrees of freedom of the roll and pitch directions of the vehicle are ignored.

According to the analysis in Figure 1, the vehicle motion differential equations are
shown below:

.
u = ax + vr (1)
.
v = ay − ur (2)

.
r =

1
Iz

Γ (3)
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where ax is the longitudinal acceleration, ay is the lateral acceleration, u is the longitudinal
speed, v is the lateral speed, Iz is the moment of inertia around the z axis, and Γ is the yaw
moment.
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Figure 1. Vehicle dynamics model.

Perform force analysis on the vehicle dynamics model to calculate longitudinal/lateral
acceleration and yaw moment, as shown below:

max = Fx_11 cos δ11 − Fy_11 sin δ11 + Fx_12 cos δ12 − Fy_12 sin δ12
+Fx_21 cos δ21 + Fy_21 sin δ21 + Fx_22 cos δ22 + Fx_22 sin δ22

(4)

may = Fx_11 cos δ11 + Fy_11 sin δ11 + Fx_12 cos δ12 + Fy_12 sin δ12
+Fx_21 cos δ21 − Fy_21 sin δ21 + Fx_22 cos δ22 − Fx_22 sin δ22

(5)

Γ = a(Fx_11 cos δ11 + Fy_11 sin δ11,− t f
2 (Fx_11 cos δ11 − Fy_11 sin δ11)

+a(Fx_12 cos δ12 + Fy_12 sin δ12) +
t f
2 (Fx_12 cos δ12 − Fx_12 sin δx_12)

+b(Fx_21 cos δ21 − Fy_21 sin δ21)− tr
2 (Fx_21 cos δ21 + Fx_21 sin δ21)

+b(Fx_22 cos δ22 − Fy_22 sin δ22) +
tr
2 (Fx_22 cos δ22 + Fx_22 sin δ22)

(6)

where Fx_ij is the four-wheel longitudinal force, Fy_ij is the four-wheel lateral force, δij is the
four-wheel angle, m is the total mass, a and b represent the distance between the center of
mass and the front and rear axles, respectively, t f and tr represent the distance of front and
rear wheel distance, respectively, j = 1 or 2 is the left wheel and right wheel, respectively.

The longitudinal force of the tire can be obtained directly by using the four-wheel
drive torque and angular acceleration obtained from the vehicle model and calculated
through the wheel’s motion moment balance equation, as shown in Formula (7):

Fx_ij =
Tij − Jij·ωij

Re
(7)

where Tij is the driving torque of each wheel, ωij is the angular acceleration of the four-
wheel, Re is the wheel radius, Jij is the moment of inertia of each wheel, i = 1 or 2 is
the front wheel and rear wheel, respectively, j = 1 or 2 is the left wheel and right wheel,
respectively.

2.2. Tire Model

At present, there are many different tire models, among which the magic tire formula
and the Dugoff tire model are widely used by researchers. Magic tire is an empirical formula
based on multiple fitting parameters. Adding too many fitting parameters makes it difficult
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to establish a close mathematical relationship between vehicle condition parameters and
the magic tire formula.

This paper chooses the Dugoff tire model with relatively few parameters. From
Formula (8), we can see that the main reason for choosing the tire model is that the
capability to decouple the road surface adhesion coefficient is highly advantageous for the
subsequent development of an algorithm designed to estimate the road surface adhesion
coefficient. The requisite tire lateral force can be derived from the correlation between the
lateral force and the slip rate, as illustrated in the equations provided below [27]:

Fy_ij = uijFz_ijCy
tan(αij)

1 − λij
f (L) (8)

f (L) =
{

L·(2 − L), L < 1
1, L ≥ 1

(9)

L =
1

2
√

C2
xλ2

ij + C2
y tan2 αij

(1 − λij)× (1 − ε·uij·
√

C2
xλ2

ij + C2
y tan2 αij) (10)

The lateral deflection angle of the four wheels can be calculated using Formulas (11)
and (12).

α11,12 = δ11,12 − arctan(
v + ar

u ± t f
2 r

) (11)

α21,22 = δ21,22 − arctan(
−v + br
u ± tr

2 r
) (12)

The formula for calculating the tire’s normal force is presented as follows:

Fz_11,12 = (
1
2

mg ± may
h
t f
)

b
l
− 1

2
max

h
l

(13)

Fz_21,22 = (
1
2

mg ± may
h
tr
)

b
l
+

1
2

max
h
l

(14)

The respective values of the slip rate of braking and driving are:λij =
Reωij−vij

vij
=

Reωij
vij

− 1(Brake)

λij =
vij−Reωij

vij
= 1 − Reωij

vij
(Drive)

(15)

v11,12 =
√
(u ± t f

2 r)2 + (v + ar)2

v21,22 =
√
(u ± tr

2 r)2 + (v − br)2
(16)

where µij is the road surface adhesion coefficient of four-wheel, λij is the slip rate of the
four-wheel, Cx is the longitudinal stiffness of the tire, Cy is the lateral stiffness of the tire,
αij is the lateral deflection angle of the four-wheel, vij is the linear speed of four-wheel, Fz_ij
is the tire normal force of four-wheel, ε is the speed influence coefficient, l is wheelbase, h is
centroid height.

In addition, Formula (8) reveals that, within the context of the tire model, the accuracy
of tire stiffness also has a non-negligible impact. Although there are many factors that
will affect the value of tire stiffness, this paper will ignore other factors and calculate the
cornering stiffness only for the load, which is the most important factor. Referring to
the method described in reference [28], the stiffness of the tire can be calculated by the
following formulas, respectively:{

Cxij(Fz) = m1Fz_ij − n1F2
z_ij

Cyij(Fz) = m2Fz_ij − n2F2
z_ij

(17)
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where m1, m2, n1 and n2 are expressed as coefficients of second-order polynomials, respectively.
By extracting the data from the tire model developed in the simulation software

CarSim (CarSim2019.0) and fitting it, the tire stiffness can be obtained directly. Figure 2
illustrates the relationship between longitudinal force and slip rate under different vertical
loads. Figure 3 illustrates the relationship between lateral force and lateral deflection angle
under different vertical loads.
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2.3. Vehicle Estimation Model

According to the established vehicle dynamics model, the following are selected:
State variables: Xsi,k = [u, v, ax, ay, γ, Γ].
Control input variables: Us,k = [δ11, δ12, δ21, δ22, ω11, ω12, ω21, ω22].
Combined with the tire model and the racing state estimation algorithm, the state

equation and measurement equation of the estimation model are established and are shown
below: {

Xsi,k = f (Xsi,k−1, Usi,k−1, Wsi,k−1)
Zsi,k = h(Xsi,k, vsi,k)

(18)

where W represents the process noise of the state equation and represents the measurement
noise of the measurement equation, which is usually represented by the covariance matrices
Q and R.
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The relationship between the center of mass lateral deflection angle and the longitudi-
nal acceleration and lateral speed of the vehicle is as follows:

β = arctan
vy

vx
(19)

2.4. CarSim Simulation Model

The accuracy of parameters is very important for vehicle simulation results to ensure
that the parameters of the vehicle, such as tire radius, steering angle, speed, suspension
stiffness, body quality, and so on, are accurate. The aforementioned parameters hold
significant importance for the precision of the model and exert a direct influence on the
accuracy of the simulation outcomes. The A-class model of the CarSim (CarSim2019.0)
body model is selected in this paper, and the parameters at the simulation model interface
are modified in accordance with the specifications of the actual vehicle. The settings for
the simulation interface are depicted in Figure 4, and the real car parameters are shown in
Table 1.
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Table 1. Main parameters of the vehicle model.

Vehicle quality (kg) m 830
Spring-loaded mass (kg) ms 747

Wheelbase (m) L 2.34
Distance from the center of mass to the front axis (m) A 1.17

Front-wheel distance (m) d1 1.416
Rear wheel distance (m) d2 1.416

Wheel radius (m) r 0.278
Distance from centroid to ground (m) h 0.54

Moment of inertia (kg·m2) Iz 1110
Tire longitudinal stiffness (n/m) Cx --

Tire lateral stiffness (n/m) Cy --

The vehicle model libraries of the CarSim software (CarSim2019.0) are full of conven-
tional fuel vehicles, so the drive systems of the vehicles need to be remodeled. The drive
system of a four-wheel independent drive and steering electric vehicle requires disengaging
the original power transmission in CarSim (CarSim2019.0) and changing all modules to
external input, as shown in Figure 5.
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The torque of a four-wheel independent drive and steering electric vehicle can be
distributed in two ways: equal drive torque and differential drive. The control program
DYC reallocates the output torques of the four motors to achieve the required additional
crossover torque. The output torque of its four motors can be adjusted individually to obtain
different torque values. The drive motor model, employing PI control, outputs the actual
four-wheel drive torque based on the torque commands from the drive control system, thus
finalizing the control process. In this paper, the Simulink software (MATLAB2023a) is used
to build the external motor and other models to establish the vehicle simulation model of
the four-wheel independent drive electric vehicle.

In this paper, the four-wheel steering control strategy chooses the proportional four-
wheel steering control strategy [29], in which the proportional coefficient is dependent on
the vehicle speed and the function is expressed as Formula (20):

k =
δr

δ f
=

−b + [ ma
k2(a+b) ]u

2

a + [ mb
k1(a+b) ]u

2
(20)

3. Driving State Estimation

Vehicle driving state parameters, including longitudinal and lateral speed and the
center of mass deflection angle, are crucial input parameters of the active control system.
Because of measurement accuracy and cost, it is not easy to obtain their parameters. As
a result, many advanced vehicle control algorithms cannot be realized in practice, so it
is essential to develop an estimation algorithm corresponding to vehicle sensor configu-
ration to obtain state parameters. In response to this problem, the paper makes full use
of the structural advantages of electric vehicles with four-wheel independent drive and
steering, incorporating the idea of federal filtering and the volume Kalman filter estima-
tion algorithm. Real-time and accuracy problems are considered in many aspects when
designing the vehicle driving state parameter estimation algorithm. In order to further
optimize the structure of the estimator, targeted improvements are made on the basis
of it. At the same time, using CarSim (CarSim2019.0) and MATLAB/Simulink software
(MATLAB2023a), three typical representative working conditions are selected to verify the
different performances.

3.1. Federal Filter Design Based on Distributed Fusion

Compared with the centralized fusion architecture, the distributed architecture system
has the advantages of high feasibility, fast computing, excellent reliability, and sustainability.
The volume Kalman filter has superiority for state estimation of high-dimensional nonlinear
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dynamic systems and can provide higher estimation accuracy. Therefore, based on the
distributed information fusion architecture, the internal sub-method uses volume Kalman
filter theory to design a vehicle driving state estimation algorithm.

3.1.1. Federal Kalman Filter Principle

Federal Kalman filter (FKF) is a multi-sensor fusion technology. Its basic idea is to
maintain the Kalman filter of each sensor and update the estimated state information
regularly. In each update step, the state estimates of different sensors are fused according
to the confidence of each sensor. FKF is a two-stage decentralized filter [30], which includes
several sub-filters and main filters. The core principle is the idea of “information distribu-
tion”. Because of its high accuracy and robustness, it is mostly used in military, positioning,
integrated navigation, and other fields.

The workflow of federated filter: first, according to a certain allocation principle, the
information of the system is distributed between the sub-filter and the main filter; that is,
the process information of the system, the system noise matrix, and the state information
of the fusion center are used to reset the state estimation of each filter; secondly, the time
update process is carried out independently between each sub-filter and the main filter.
Finally, when the sub-filter completes the measurement update, the respective system
information is transmitted to the main filter for information integration.

3.1.2. Volume Kalman Filter Theory

In order to overcome the problem of low filtering accuracy in high-dimensional cases,
Canadian scholars Arasaratnam and Haykin proposed a volume Kalman filter (CKF) for
the first time in 2009. For the nonlinear filtering problem under a Gaussian distribution, the
integral of a posteriori expectation is actually obtained. CKF approximates the posterior
mean and covariance with additional Gaussian noise based on the integral transformation
of third-order spherical radial rules. It is the closest algorithm to Bayesian probability
distribution at present. Its essence is to solve the problem of nonlinear system filtering and
the integral calculation of the Gaussian distribution [31].

The CKF algorithm is a suboptimal filter based on the Bayesian filtering theory frame-
work. According to the prior mean and covariance, the volume point is selected by
the volume rule, and the state posterior mean and covariance are obtained through the
weighted processing of the volume point after the transfer of the nonlinear function. The
analysis has the following characteristics:

(1) CKF is highly scalable, can be applied to a variety of three-dimensional space or
volume estimation problems, and can be adapted by adjusting the parameters of the
system model.

(2) There is no need to approximate the nonlinear system, so it is not limited by the specific
form of the nonlinear system, and it is suitable for almost any form of nonlinear system
within the allowable range of error. CKF has a greater advantage in nonlinear filtering
because of its high efficiency in calculating multidimensional function integrals.

(3) The performance of CKF depends largely on the parameters of the filter, including
the variance of process noise, the variance of measurement noise, and the initial state
error. It is usually assumed that the correlation between the measurement and the
system state is known and that the noise is Gaussian-independent and identically
distributed. For non-Gaussian noise, other algorithms may be needed. Therefore, it is
necessary to optimize the combination according to the characteristics of the actual
problem.

3.2. Improved Design of Sub-Filters Based on Robust Estimation

Volume Kalman filtering is a nonlinear filtering method based on Bayesian estimation
as the logical framework. Even in the filtering calculation of nonlinear systems in high-
dimensional state space, the filtering weight is always positive and has higher filtering
accuracy. However, the algorithm usually assumes that the input data were accurate and
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obeys a Gaussian distribution. In practical applications, due to the influence of sensor
failure, environmental noise, or other non-ideal conditions, the traditional filter is often
vulnerable to abnormal data, which may cause the estimated results to deviate from the real
value, and then it has an impact on the vehicle’s control accuracy and the performance of
the decision-making system. The robust estimation theory is introduced into the sub-filter
to enhance the robustness of state estimation.

Robust estimation is usually based on the variance inflation model, which assumes
that outliers are caused by an increase in variance. The core idea of robust estimation is
to minimize the impact of abnormal values on the overall estimation by giving different
weights to different observations in the estimation process. Applying this idea to vehicle
driving state estimation, in the improved robust volume Kalman filter, the modified matrix
of noise measurement variance is defined as Rk+1 = P−1. The equivalent weight matrix is
P. The minimization function for calculating the equivalent weight matrix is as follows:

Rk+1 = P−1 (21)

J(xk) =
2n

∑
i=1

ρ(ri) (22)

where ri is expressed as the component of the ith residual vector, its standard deviation is
calculated, and the core function ρ(ri) is defined as follows:

ri = (zk+1 − zk+1|k)i
(23)

σri = (Pzz,k+1|k)i,i
(24)

ρ(ri) =

{ 1
2 r2

i |ri|≤ c
c
∣∣∣ri

∣∣∣− 1
2 c2 |ri|> c

(25)

Set the local deviation to zero.

2n

∑
i=1

∂ρ(ri)

∂(ri)
·∂(ri)

xk,j
i = 1, 2, · · · n (26)

where Xk,i is the component of the ith state vector, and the calculation equation can be
obtained from the following equation:

wi =

{
1 |ri|≤ c
c
|ri |

|ri|> c (27)

In summary, the formulas for calculating the equivalent weight matrix P, namely
Formulas (28) and (29), can be obtained.

Pi,i =


1

σi,i
(
∣∣∣ ri

σri

∣∣∣ = | ri| ≤ c)
c

σi,i| ri,i| (|ri| > c)
(28)

Pi,j =


1

σi,j
(| ri| ≤ c,

∣∣ rj
∣∣ ≤ c)

c
σi,jmax(| ri |,|rj|) (|ri| > c, (

∣∣rj
∣∣ > c) (29)

Because the measurement noise variance matrix in vehicle driving state estimation is
a diagonal matrix, the non-diagonal element in the matrix is zero, then σij is zero, ri is the
corresponding residual component of the measured zi, σi is the mean square error of ri and
c is an undetermined constant.
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3.3. Research on Driving State Estimation Based on Intelligent Antlion Optimization

In the estimation of driving states, the impacts exerted by measurement noise and
process noise on the estimation algorithm cannot be ignored, and the existence of these
two kinds of noise may introduce errors, thus reducing the accuracy and reliability of the
estimation. Measurement noise mainly comes from the collection and processing of sensor
data. Process noise mainly originates from the uncertainty and nonlinear characteristics
of the vehicle dynamics model. Therefore, there is a certain difference between the model
and the actual situation, and this difference will introduce a certain amount of noise in the
estimation process. The greater the noise in the system process, the more the performance of
the designed estimation algorithm depends on the feedback correction of the measurement
update process.

It is assumed that the non-Gaussian noise and bad data after robust estimation are
completely filtered out. So as to improve the accuracy of the federal filter driving state
estimator, when discussing the noise processing results of a vehicle nonlinear system,
both the process and measurement noises conform to a Gaussian distribution, the antlion
optimization algorithm is introduced to identify the statistical characteristics of process
and measurement noise, presuming a Gaussian hypothesis.

3.3.1. Antlion Optimization Algorithm

The Antlion optimization algorithm is a naturally inspired intelligent optimization
algorithm to solve optimization problems. As the designation suggests, the antlion opti-
mization algorithm replicates the predatory tactics of antlions in their natural pursuit of
ants. Because its algorithm integrates random walks, roulette strategies, elite strategies,
and other thinking strategies, the ALO algorithm becomes a search technology with strong
optimization performance and is easy to implement. Compared with other popular intelli-
gent algorithms, such as the Beetle Antennae Search Algorithm (BAS), Grey Wolf Optimizer
(GWO), and Sparrow Search Algorithm (SSA), the AntLion optimization algorithm shows
better convergence, accuracy, and robustness.

In the antlion optimization algorithm, the antlion is equivalent to the solution of the
optimization problem, while the ant represents the candidate solution in the search space.
In the antlion optimization algorithm, the random walk of ants can ensure the global search,
while the roulette strategy and elite strategy ensure the optimization performance of the
algorithm. A roulette strategy is a probability selection strategy based on fitness value,
which makes ants with high fitness have more chances to be selected as the next generation
of ants so as to achieve the preservation of excellent genes. The elite strategy is to retain a
certain number of ants with the highest fitness in each iteration to prevent the algorithm
from falling into the local optimal solution.

The implementation of the ALO algorithm is based on selecting a random walk to
simulate the movement of ants, setting a fitness function during the optimization process,
and storing the fitness value of the ants. The algorithm continuously learns from elite ant
lions, and the ants constantly update the step size and direction of their random walks to
make sure the algorithm is always looking for the best solution. Figure 6 illustrates the
operational sequence of the ALO algorithm.

The specific steps mainly include the following:

(1) Initialization: set algorithm parameters, such as population size, number of iterations,
search space, etc., and randomly generate an initial population.

(2) Foraging ant random walk: simulate the random walk behavior of ants in the foraging
process. According to the random walk formula, calculate the position of each ant in
the search space and normalize it.

(3) Setting traps: antlions dig funnel-shaped traps in sandy soil and hide at the bottom
of the trap to wait for prey. In the ALO algorithm, the position and shape of the trap
can be set through certain strategies, such as adjusting based on historical search
information or the current optimal solution.
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(4) Trapping ants with traps: when ants randomly walk into a trap, ant lions quickly prey
on them. In the algorithm, when the position of an ant meets the conditions of the
trap, the ant is considered to be captured, and it is processed, such as updating its
position or adding it to the elite population.

(5) Catching prey and rebuilding traps: after antlions prey on ants, they will repair the
traps and wait for the next hunt. In the algorithm, when a certain number of ants are
captured, the trap can be reconstructed to update the search space and population
distribution.

(6) Iterative updates: repeat steps 2–5 until the preset number of iterations or other
termination conditions are met. In each iteration, the location and distribution of the
population are updated according to the interaction between ants and ant lions, so as
to achieve global optimization.
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3.3.2. Design of an Antlion-Federal Kalman Filter Estimator

The noise statistical characteristics of the FKF algorithm are identified by the ALO
algorithm. With the design of the antlion-volume Kalman filter (ALO-FKF) state parameter
estimation algorithm, it is presumed that non-Gaussian noise and bad data after the
tolerance estimate have been completely removed. In other words, it is assumed that the
measurement noise and process noise of the vehicle nonlinear system are Gaussian noise
with a zero mean. Within the FKF driving state parameter estimation framework, the
covariance matrices Q and R are diagonally positive definite matrices.

State variables: Xsi,k = [u, v, ax, ay, γ, Γ].
Measurement variables of the sub-filter: Zs1,k = [ax, ay, γ].
Control input variables: Us,k = [δ11, δ12, δ21, δ22, ω11, ω12, ω21, ω22].
According to the established vehicle estimation model, the state space equation in-

cludes six state variables and three measurement variables, and the covariance matrices
can be defined as follows: {

Q = diag(q1, q2, q3, q4, q5, q6)
R = diag(r1, r2, r3)

(30)
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Merge the covariance matrices Q and R into a vector to be optimized, as follows:

Ft(yt
j) =

M

∑
k=1

3

∑
i=1

Wi(zi,k − ẑi,k(ŷt
j))

2 (31)

where Zi,k is the true value of the i measurement variable at the k time, and Ẑi,k(ŷt
j) is the

estimated value of the j antlion at the k time at the t iteration.
The schematic diagram of the vehicle driving state parameter estimator is shown in

Figure 7.
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The procedure for estimating the driving state is as follows: The principal input
consists of the sensor output data from the vehicle simulation model. The road surface
adhesion coefficient is set to a fixed value and input into the tire model. The lateral force of a
tire is determined by the relationship between the adhesion coefficient and the lateral force.
At the same time, according to the formula of four-wheel drive torque and longitudinal
force, the tire’s longitudinal force can be directly calculated and subsequently employed as
another input for the vehicle’s driving state estimator.

After receiving each signal input, first initialize the main filter, complete the distribu-
tion of the input information, and input the variable parameters, error covariance matrix,
and process noise covariance matrix into each sub-filter. Every sub-filter integrates all
the assigned parameter signals and sensor signals and completes the time update and
measurement update, respectively, by utilizing the volume Kalman filter principle, thereby
obtaining posterior local estimation values, which are then relayed back to the main filter.
The main filter fuses the signals fed back by the respective local filters. The information
distribution coefficient is recalibrated based on the confidence level of the data transmitted
by each sub-filter and subsequently redistributed to every local filter within the main filter.
At the same time, the error covariance matrix and process noise covariance matrix are
transmitted to the antlion optimization module, and then they are optimized and returned
to each local filter. To maintain real-time performance, the feedback before the end of
optimization still uses the allocation signal of the main filter. So far, an iterative process has
been completed. Finally, the main filter fuses the information of each feedback signal and
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outputs the estimated value, which is constantly fed back to the input module as the output,
and the model parameters are then adjusted to establish a comprehensive closed-loop
feedback system. The precise estimation of longitudinal and lateral speed, as well as the
lateral deflection angle of the center of mass, is achieved.

3.3.3. Verification by Simulation Experiment

First of all, the typical working conditions of a double shift line that reflect the eval-
uation of vehicle stability are selected to verify, and then the angle step condition and
sinusoidal condition are selected, respectively. In the angle step condition, the vehicle
enters the non-zero steady state after the transient response to verify the steady-state esti-
mation effect of the estimator. The sinusoidal condition can mirror the vehicle’s driving
performance under conditions of sustained emergency steering and stimulate the dynamic
performance of the vehicle to verify the dynamic estimation effect of the estimator [32].

(1) Double shift line condition.

The test scenario involves a double-lane change on a surface with an adhesion coeffi-
cient of 0.5, where the vehicle’s speed is set at 35 km/h and data were sampled at a constant
rate of 0.002 s.

Figure 8 presents a comparative analysis of the estimated driving state parameter
values and the actual values obtained based on the two estimation algorithms of federal
Kalman filtering and improved antlion federal Kalman filtering.
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Figure 8a illustrates the comparison of the estimation results of the longitudinal speed,
and it can be seen that the results of the improved antlion Federal Kalman Filter estimator
are significantly optimized over the pre-improved one, with better tracking capability
and accuracy. By comparing the estimation results of lateral vehicle speeds in Figure 8b,
it is obvious that except for a small deviation at the peak value of about 13 s, the other
curves of the improved algorithm are basically consistent. Figure 8c shows the estimated
value of the lateral deflection angle of the center of mass, and the result is a top priority
of the estimation algorithm. It is clear from the curves that the estimates obtained using
the improved Antlion Federal Kalman Filter algorithm hold up well in overall estimation,
except for smaller errors at the peaks and valleys that are within the range of practical
engineering applications.

This paper quantitatively compares the estimation error of the center of mass lateral
deflection angle between the two algorithms. The calculation method of reference [33], that
is, the mean absolute error (MAE) and root mean square error (RMSE), are computed for
the estimates in relation to the actual values, with the findings presented in Table 2.

From the data in Table 2, it is more evident that the estimation error for the vehicle
driving state achieved through the use of the enhanced Antlion federal Kalman filter
algorithm is smaller. In comparison to the estimation algorithm founded on the federal



World Electr. Veh. J. 2024, 15, 249 15 of 24

Kalman filter theory, it has higher accuracy. The feasibility of the Antlion Federal Kalman
Filter estimation algorithm is substantiated through verification.

Table 2. MAE and RMSE indexes of simulation results of two algorithms.

Longitudinal
Speed Lateral Speed Center of Mass Lateral

Deflection Angle

MAE
FKF 0.0050 0.0274 0.0025

ALO-FKF 0.0008 0.0024 0.0002

RMSE
FKF 0.0063 0.0572 0.0052

ALO-FKF 0.0010 0.0040 0.0003

(2) Low attachment steering wheel angle step input.

Under this working condition, the vehicle’s driving speed is adjusted to 40 km/h,
and the road surface adhesion coefficient is set at 0.3. Throughout the process, a turning
angle with an amplitude is introduced to the steering a turning angle with an amplitude
of 1 radian is introduced to the steering wheel at the 5-s interval, and the vehicle enters a
non-zero steady state after the transient response, which can be better used to verify the
steady-state estimation effect of the estimator.

Analyzing the simulation results, overall it can be found that the steady-state estima-
tion effect of the estimator is good when the vehicle enters the non-zero steady state after
the transient response under the angle step condition. Among them, Figure 9a illustrates
a comparative analysis of the longitudinal speed estimation outcomes derived from the
two distinct estimation algorithms. Visual inspection reveals that the estimation effect of
the improved antlion federal Kalman filter estimator after 8 s is significantly optimized
compared to that before improvement and has better accuracy. Figure 9b presents a com-
parative view of the lateral speed estimation results. It is obvious that the results of the
two algorithms are basically the same in about 10 s and then influenced by the augmented
steering wheel angle. The improved algorithm makes up for the error of the FKF algorithm.
The estimation of the center of mass lateral deflection angle is shown in Figure 9c, which is
a paramount aspect of the algorithm’s output. After about 8 s, the output of the improved
antlion federal Kalman filter algorithm begins to converge to the actual value, the real value
after about 4 s, and gradually maintains stability. The discrepancy between the estimated
and actual value is very minimal; thus, this suggests that the estimation algorithm performs
effectively. And the steady-state estimation effect of the estimator is good when it enters
the non-zero steady state.
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(3) Sinusoidal input of a highly attached steering wheel.

This condition requires the road surface to have high adhesion performance; the
road surface adhesion coefficient is adjusted to 0.8; the vehicle’s traveling speed is set at
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40 km; and a sinusoidal steering input is applied. The sinusoidal conditions can reflect
the assessment of the vehicle’s driving performance under sustained emergency steering
scenarios, which can stimulate the dynamic performance of the vehicle and thus verify the
dynamic estimation effect of the estimator as well as the accuracy and adaptability of the
designed algorithms under the scenario of continuous turning.

Figure 10 shows a plot of the comparison between the estimated and actual driving
state parameters obtained from two estimation algorithms grounded in the federal Kalman
filter and the improved Antlion federal Kalman filter. Figure 10a depicts the comparative
curve of longitudinal speed, and the graph indicates that it is easy to see that the estimation
results obtained based on both algorithms produce more obvious errors whenever the
steering wheel turning angle peaks, but the estimation value of the algorithm designed
based on the improved Antlion federal Kalman filter theory has relatively better estimation
accuracy and tracking capability. The graph illustrated in Figure 10b reveals that the
estimated curve of lateral speed almost overlaps with the true value, and its tracking
effect is better than that of the pre-improvement algorithm. The curve in Figure 10c
shows that the lateral deflection angle of the center of mass, as estimated utilizing the
improved federal Kalman filter algorithm, almost coincides with the true value curve,
which maintains efficient tracking performance even in the case of continuous turning.
The improved algorithm is superior not only in estimation accuracy but also in real-time
tracking performance and stability.
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4. Joint Estimation of Driving State and Road Surface Adhesion Coefficient

The road surface adhesion coefficient is an important parameter to measure the road
surface resistance and vehicle traction capacity, which are closely bound up to the formu-
lation of the vehicle braking control strategy, and the accurate identification of the road
surface adhesion coefficient is an essential condition for the vehicle active control system,
as it directly influences the effectiveness of the system in maintaining vehicle stability and
preventing accidents. In the above estimation study, the road surface adhesion coefficient
is set as a fixed value, while the real road condition in the driving process is complex
and variable. Therefore, predicated on the functional interplay between the driving state
parameters and the road surface adhesion coefficient, this chapter designs the road surface
attachment coefficient estimator to form a double joint estimator, which facilitates the
accurate estimation of the road surface adhesion coefficient and at the same time feeds back
the information to the driving state estimator for continuous correction, so as to consider
the dynamic characteristics of the road surface, thus enhancing adaptability and stability
and enabling it to accommodate varying road conditions with heightened precision.

4.1. Joint Estimation Principle

First of all, in conjunction with the three degrees of freedom vehicle model, the
relationship between the state parameters and the road surface adhesion coefficients is
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determined, the parameter variables of the two estimators are determined, and the system’s
state and measurement equations are formulated as follows:{

Xs/pi,k = f (Xs/pi,k−1, Us/pi,k−1, Ws/pi,k−1)
Zs/pi,k = h(Xs/pi,k, vs/pi,k)

(32)

Selection of variables in the driving state estimator:
State variables: Xsi,k = [u, v, ax, ay, γ, Γ].
Measurement variables: Zs1,k = [ax, ay, γ], Zs2,k = [ay, γ].
Selection of variables in the road surface adhesion coefficient estimator:
Parameter variables: Xp,k = [µ11, µ12, µ21, µ22].
Measurement variables: Zp1,k = [ax, ay, γ], Zp2,k = [ay, γ].
Control input variables: Us,k = [δ11, δ12, δ21, δ22, ω11, ω12, ω21, ω22].
Secondly, the closed-loop design of each parameter feedback signal and joint estima-

tion between the two estimators is determined; the schematic diagram of the principle is
shown in Figure 11.
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The joint estimation works as follows: the sensor data solved by the vehicle simulation
model is used as an input signal and passed to the joint estimation model. Among them,
signals such as longitudinal and lateral acceleration, yaw angular velocity, four-wheel
speed, and driving torque are input to each filter and tire model. Signals such as four-wheel
speed and driving torque are computed to determine the longitudinal force exerted on
the four wheels within the tire longitudinal force calculation module, and the lateral force
is calculated in the tire model. At the same time, the longitudinal or lateral force of the
tire is used as another input for each filter. In the main filter, after receiving all kinds of
initial signals, initialization and allocation are completed, and the variable parameters are
input into each sub-filter. The initial value parameters are given in the following simulation
conditions: Following the integration of all designated parameter signals by each sub-filter,
the local estimated value is derived through a time update and measurement update
based on the designed robust volume Kalman filter, which is output to the main filter.
The main filter fuses information on the parameter variables, error covariance fed back
by the respective local filters, and finally outputs the estimates. Within the main filter,
according to the confidence level of the data transmitted by the sub-filters, the information
allocation coefficients are readjusted, and the parameters of the variables, as well as the
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error covariance and the process noise covariance matrix, are again returned to be allocated
to the individual local filters in terms of the information allocation principle. At the same
time, the error covariance matrix and the process noise covariance matrix are passed to the
ALO optimization module, and then they are optimized and returned to each local filter.
To guarantee real-time performance, the feedback before the optimization is still assigned
by the main filter, and an iterative process is completed.

Different from a separate driving state estimator, the parameter estimates derived
from the joint estimation algorithm facilitate real-time information exchange and feedback
updating during continuous iteration. As a result, the road surface adhesion coefficient is
dynamically adjusted rather than fixed, enabling it to align with the actual road conditions
as required. Thus, the precision of the algorithm’s estimation is significantly enhanced,
and it finally obtains more accurate estimates of vehicle longitudinal speed, lateral speed,
center of mass lateral deflection angle, and road surface adhesion coefficient.

4.2. Design of a Joint Estimation Algorithm

The explicit procedural steps of the estimation algorithm are delineated in the subse-
quent formula:

(1) Information distribution of the main filter

X∧
si,k−1 = Xs f ,k−1, X∧

pi,k−1 = Xp f ,k−1 (33)

P−1
si,k−1 = βsiP−1

s f ,k−1, P−1
pi,k−1 = βpiP−1

p f ,k−1 (34)

Q−1
si,k−1 = βsiQ−1

s f ,k−1, Q−1
pi,k−1 = βpiQ−1

p f ,k−1 (35)

(2) Time update of each sub-filter

1⃝ The error covariance matrix undergoes decomposition via singular value decompo-
sition (SVD), and the volume points are calculated as follows:

Ps,k−1 = As,k−1Λs,k−1 AT
s,k−1, Pp,k−1 = Ap,k/k−1Λp,k/k−1 AT

p,k/k−1 (36)

Xsj,k−1 = Asi,k−1Ss,k−1ξ j + X∧
s,k−1, Xpj,k−1 = Api,k−1Spi,k−1ξ j + X∧

p,k−1 (37)

2⃝ The new volume point is obtained by iterating the state transition equation:

X∗
sj,k/k−1 = f (Xsj,k,k−1, Uk), X∗

pj,k/k−1 = f (Xpj,k,k−1, Uk) (38)

3⃝ Predicted values of prior state parameters and error covariance matrix:

X∧
s,k/k−1 =

m

∑
j=1

1
m

X∗
sj,k/k−1, X∧

p,k/k−1 =
m

∑
j=1

1
m

X∗
pj,k/k−1 (39)

Ps,k/k−1 =
m

∑
j=1

1
m

X∗
sj,k/k−1X∗T

sj,k/k−1 − Xˆ
s,k/k−1XT̂

s,k/k−1 + Qs (40)

Pp,k/k−1 =
m

∑
j=1

1
m

X∗
pj,k/k−1X∗T

pj,k/k−1 − Xˆ
p,k/k−1XT̂

p,k/k−1 + Qp (41)

where Qs and Qp are process noise covariance matrices.

(3) Measurement update for each sub-filter

1⃝ Decomposition of the covariance matrix and calculation of volume points:

Ps,k/k−1 = As,k/k−1Λs,k/k−1 AT
s,k/k−1 (42)

Pp,k/k−1 = Ap,k/k−1Λp,k/k−1 AT
p,k/k−1 (43)
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Xsj,k/k−1 = Asi,k/k−1Ssi,k/k−1ξ j + Xˆ
s,k/k−1 (44)

Xpj,k/k−1 = Api,k/k−1Spi,k/k−1ξ j + Xˆ
p,k/k−1 (45)

2⃝ The new volume points are calculated according to the measured variables:

Zsj,k/k−1 = h(Xsj,k/k−1, Xˆ
sj,k/k−1, U(k)) (46)

Zpj,k/k−1 = h(Xpj,k/k−1, Xˆ
pj,k/k−1, U(k)) (47)

3⃝ Find the average:

Ẑsj,k/k−1 =
m

∑
j=1

1
m

Zsj,k/k−1, Ẑpj,k/k−1 =
m

∑
j=1

1
m

Zpj,k/k−1 (48)

4⃝ Innovation variance:

Pszz,k/k−1 =
m

∑
j=1

1
m

Zsj,k/k−1ZT
sj,k/k−1 − Ẑs,k/k−1ẐT

s,k/k−1 + εsRs (49)

Ppzz,k/k−1 =
m

∑
j=1

1
m

Zpj,k/k−1ZT
pj,k/k−1 − Ẑp,k/k−1ẐT

p,k/k−1 + εpRp (50)

In Formulas (49) and (50), εs and εp are adjustment factors, and Rs and Rp are mea-
surement noise covariance matrix.

5⃝ Mutual covariance:

Psxz,k/k−1 =
m

∑
j=1

1
m

Xsj,k.k−1ZT
sj,k.k−1 − Xˆ

s,k/k−1ẐT
sj,k.k−1 (51)

Ppxz,k/k−1 =
m

∑
j=1

1
m

Xpj,k.k−1ZT
pj,k.k−1 − Xˆ

p,k/k−1ẐT
pj,k.k−1 (52)

6⃝ Filter gain:

Ks,k = Psxz,k/k−1P−1
szz,k/k−1, Kp,k = Ppxz,k/k−1P−1

pzz,k/k−1 (53)

7⃝ Corrected and updated state estimates and error covariance matrix:

Xˆ
s,k = Xˆ

s,k/k−1 + Ks,k(Zs,k − Ẑs,k/k−1) (54)

Xˆ
p,k = Xˆ

p,k/k−1 + Kp,k(Zp,k − Ẑp,k/k−1) (55)

Ps,k = Ps,k/k−1 − Ks,kPszz,k/k−1KT
s,k (56)

Pp,k = Pp,k/k−1 − Kp,kPpzz,k/k−1KT
p,k (57)

8⃝ Robust adaptive distribution coefficient:

P̂k =
1
ak
(1 − Kk Ak)Pk (58)

(4) Information Fusion of main filter

P−1
s f ,k = P−1

s1,k + P−1
s2,k, P−1

p f ,k = P−1
p1,k + P−1

p2,k (59)

Xˆ
s f ,k = P−1

s f ,k(P−1
s1,kXˆ

s1,k + P−1
s2,kXˆ

s2,k) (60)
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Xˆ
p f ,k = P−1

p f ,k(P−1
p1,kXˆ

p1,k + P−1
p2,kXˆ

p2,k) (61)

(5) Optimal update of covariance matrix:

Ft(ŷt
j) =

M

∑
k=1

3

∑
i=1

Wi(zi,k − ẑi,k − ẑi,k(ŷt
j))

2 (62)

4.3. Simulation Experiment Verification

To validate the feedback effect of the road surface adhesion coefficient within the
devised joint estimation algorithm, experiments are conducted under varying road surface
conditions, and the opposite double shift line condition and steering wheel angle step input
are selected, respectively.

4.3.1. Working Condition of Double-Shift Road Surface Opposite Each Other

Under this condition, the road’s adhesion coefficients are different, which are set to 0.5
and 0.3, respectively. The road surface exhibits a relatively low traction coefficient. In order
to prevent the car from slipping and other dangerous phenomena when the adhesion is
low, a lower speed value should be selected, and the vehicle speed should be adjusted to
25 km/h.

Figure 12 is a comparison curve between the estimated results using the Antlion
federal Kalman filter estimator and its true value. Among them, Figure 12a shows that the
estimated value of the initial time can well track the real value. As the speed trend became
more complex, it began to produce a small error, but within a reasonable range. It can
be observed from Figure 12b that the estimated lateral speed derived from the enhanced
algorithm closely aligns with the true value curve, displaying only minor discrepancies
at peak values. Figure 12c shows the graph of the true value of the center of mass lateral
deflection angle and the estimated value produced by the improved algorithm. The two
curves are almost consistent, with only a minor deviation at the peak value, which meets the
actual engineering needs. Figure 12d presents the comparative curve of the estimated road
surface adhesion coefficient obtained through the antlion-federated Kalman filter algorithm
versus the actual value preset in the experiment. It is evident that the overall estimated
value quickly converges to near the true value within a brief time frame. However, due to
the drive system’s theoretical system, a significant error arises in the estimation of the front
left wheel’s road surface adhesion coefficient; nonetheless, the error is controlled within
an acceptable range and complies with practical engineering standards. The simulation
results of the open double-shift condition effectively confirm the effectiveness of the joint
estimator designed for electric vehicles with four-wheel independent drive and steering.
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4.3.2. Serpentine Road Condition

This condition will stimulate the vehicle’s dynamic performance, and the dynamic
estimation effect of the estimator can be verified by choosing the road surface adhesion
coefficient as 0.5 and the driving speed of the vehicle as 40 km.

Figure 13a shows the simulation estimation tracking results of the longitudinal speed.
It can be seen that in the case of changing road conditions, using the improved Antlion
federal Kalman filtering algorithm for estimating the actual value yields accurate tracking
of the value. The estimation error exhibits a slight increase after 7 s but still remains
within 0.3 percent, and the error is maintained within an acceptable range, meeting the
practical requirements of the project. Figure 13b shows the graphs of the estimated lateral
speeds versus the actual values; the trackability of the improved algorithm is consistent
with the actual road conditions, and the estimation results are highly accurate. Figure 13c
shows a plot of the estimated versus actual values of the center of mass lateral deflection
angle, whose estimated values remain almost identical to the actual values. The resultant
curve fits well in the first 7 s, after which a small error occurs with a gradual increase
in time. Figure 13d shows the comparison results between the estimated road surface
adhesion coefficient and the true value set by the simulation condition, and there is a
small error between the estimated road surface adhesion coefficient and the actual value,
which indicates that the estimation algorithm’s effectiveness is superior and that it offers
enhanced benefits in accuracy, stability, and real-time performance.
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5. Discussion

The simulation results of the antlion federal Kalman filter double estimator designed
in this paper achieve the desired results, but there are still some shortcomings.

In future research on the driving state estimation of four-wheel independent drive
electric vehicles, more attention will be paid to the optimization and innovation of the
algorithm. Due to the limited experimental equipment and experimental conditions, the
algorithm involved has not been verified by real vehicles, and it has not been combined with
advanced sensor technology, such as laser radar, millimeter-wave radar high-definition
camera, and so on. In future research, we can consider the combination of these to achieve a
comprehensive perception of the environment around the vehicle and its own state. In order
to reduce the error caused by the model accuracy in the filtering process and make the model
closer to reality, artificial intelligence technologies such as high-performance computing
platforms and deep learning can be considered to build a more accurate, degree-of-freedom,
and robust state estimation model. For example, a vehicle motion state estimation based
on a hybrid neural network is proposed in reference [34], which realizes an accurate
vehicle motion state estimation without a dynamic model. Reference [35] combines a
neural network and an unscented Kalman filter to estimate the state of a multi-axle special
vehicle to achieve low-cost estimation and effectively avoid the dynamic nonlinearity and
uncertainty of the vehicle. The vehicle model established in this paper makes a series
of assumptions, so there is still a certain gap between simulation and a real workshop.
Compared with the above literature research methods, this paper is still lacking, and we
should continue to learn about artificial intelligence technology in future research to achieve
higher precision estimation and real-time performance.

6. Conclusions

The ongoing global scientific and technological revolution, coupled with the transfor-
mation of various industries, has significantly stimulated the trend toward electrification
and intelligence in the automotive sector. This shift is driven by the need to further reduce
costs associated with intelligent four-wheel drive technology while ensuring the effec-
tiveness of active safety control systems. Additionally, it aims to enhance the stability of
vehicles during high-speed travel and improve their maneuverability at low speeds. Based
on the unique structure optimization and information fusion technology of four-wheel
independent drive electric vehicles and considering the influence of noise on estimation
accuracy in many directions, this paper designs an improved driving state estimator based
on federal Kalman. The main work is summarized as follows:

The characteristics of the kinematic model and dynamic model are analyzed, and a
three-degree-of-freedom nonlinear dynamic model and Dugoff tire model are established
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to form the vehicle estimation model. At the same time, in order to verify the subsequent
estimation algorithm based on the CarSim software (CarSim2019.0), analyze the changes
in the power system of the research object, and complete the establishment of the vehicle
simulation model.

In this paper, the vehicle state estimation algorithm is designed and improved using a
federal Kalman filter. Considering the error accumulation and other factors of the model
parameters, modifications are incorporated into the federated Kalman filter to augment the
algorithm’s fault tolerance. The sub-filter combines the volume Kalman filter with robust
estimation theory, and the antlion optimization module is designed in the lower layer of
the main filter. Based on this, the vehicle driving state estimation algorithm is designed,
and the experimental conditions that are widely used in the development and verification
of stability control systems are selected to verify it. Through comparison, it was found
that the improved algorithm has obvious advantages in estimation precision and real-time
responsiveness.

Considering the functional relationship between driving state parameters and road
surface adhesion coefficient, a comprehensive joint estimation algorithm for vehicle state
parameters and road surface adhesion coefficient is designed to estimate the road surface
adhesion coefficient accurately, providing feedback to the driving state estimator for con-
tinuous correction, so as to consider the dynamic characteristics of the pavement, thus
enhancing the adaptability of the estimation algorithm to different pavement conditions.
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