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Abstract: Electric vehicles, with their distinct power systems, weight distribution, and power control
strategies compared to traditional vehicles, influence the pressure distribution in the tire contact
area, thereby affecting the estimation of road adhesion coefficient. In electric vehicle research, tire
adhesion coefficient serves as a measure of the frictional force between the vehicle and the road
surface, directly impacting the vehicle’s handling performance. The accurate estimation of the
adhesion coefficient aids drivers in better understanding the vehicle’s driving state. However, the
existing brush models neglect differences in ground pressure distribution along the width direction
of tires during tire camber, potentially leading to inaccuracies in adhesion coefficient estimation. This
study proposes a camber brush tire model that considers the width-direction pressure distribution
characteristics, aiming to enhance the accuracy of adhesion coefficient estimation under camber
conditions. Experimental comparisons between the improved and original models reveal a significant
enhancement in estimation precision. Consequently, the findings of this study provide valuable
insights for deepening our understanding of tire camber dynamics and for designing control systems
for electric vehicles, thereby improving vehicle stability and safety.

Keywords: tire camber; road adhesion coefficient; ground pressure distribution

1. Introduction

Electric vehicles are a type of new energy vehicle that can reduce greenhouse gas
emissions and alleviate the shortage of petroleum energy. With various countries and orga-
nizations announcing plans to reduce the production and sale of gasoline-powered vehicles,
new energy vehicles are gradually becoming mainstream, with electric vehicles being the
most popular type among them. Electric vehicles exhibit significant differences in tire
adhesion coefficient estimation compared to traditional vehicles due to their unique power
systems, weight distribution, and power control strategies [1]. The application of electric
motors can result in different force or torque distributions exerted by the vehicle on the road
surface, affecting the friction between the tires and the road and consequently influencing
the estimation of the adhesion coefficient. Electric vehicles typically utilize battery packs as
energy storage devices, and the weight and size distribution of these battery packs differ
from traditional fuel tanks, leading to distinct weight distribution characteristics in electric
vehicles that affect the pressure distribution of tires on the road surface. The flexible power
control strategies of electric vehicles, such as motor torque adjustment and energy recovery
functions, can alter the power output patterns of the vehicle under different driving condi-
tions, thereby affecting the friction between the tires and the road surface and consequently
influencing the estimation of the adhesion coefficient. The accurate estimation of tire–road
adhesion coefficient is of paramount importance for overall vehicle stability and safety.
The precise estimation of adhesion coefficient aids drivers in better understanding vehicle
dynamics across diverse road surfaces and driving conditions, thereby enhancing driver
control. By comprehending the friction between tires and road surfaces, drivers can adeptly
adjust driving strategies, minimizing the occurrence of accidents. Furthermore, the precise
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estimation of adhesion coefficient furnishes accurate input parameters for vehicle dynamic
stability control systems, facilitating the optimal adjustment of vehicle suspension, braking,
and traction systems, thereby improving overall vehicle stability and safety. Therefore,
the accurate estimation of tire–road adhesion coefficient is crucial for enhancing vehicle
driving performance, safety, and ride comfort [2]. Additionally, the energy-saving and
environmentally friendly characteristics of electric vehicles are closely related to the tire
adhesion coefficient. By optimizing the vehicle’s power systems and control strategies,
energy consumption on different road surfaces can be reduced, leading to lower energy
consumption and carbon emissions, and thus promoting the development of sustainable
transportation [3].

The tire serves as the sole means of transmitting interaction forces between the road
surface and the vehicle [4], providing sufficient traction for the stable operation of the
vehicle through the contact between the tire and the ground [5]. Tire camber can alter the
ground characteristics between the tire and the road surface, and the adhesive performance
between the tire and the road surface is influenced by factors such as tire material, tread
pattern, road surface roughness, and tire–ground characteristics [6–11]. Therefore, a tire
mechanics model capable of accurately describing the ground characteristics between
the tire and the road surface under camber conditions is of great significance for tire
development and research on tire adhesion performance.

The brush tire model assumes the tire carcass to be rigid and the tread surface to be a
row of elastic bristles. Then, by analyzing the forces acting on the bristles during ground
contact, the tire forces are determined [12]. Later, scholars began to study the mechanical
properties of tires using the brush model. Building upon this, Fiala [13] proposed the
Fiala tire model, which derived the relationship between slip angle, lateral force, and self-
aligning torque. Frank [14], drawing upon Fiala’s research, characterized the tire carcass
as a beam subjected to bending after force application. A complex model was formulated
to describe the mechanical properties of the bent beam, enabling an investigation into the
effects of carcass deformation on tire mechanical characteristics under camber conditions.
Fancher P et al. [15], building upon the brush tire model, proposed the HSRI-NBS-I model,
postulating that the bristles undergo lateral and longitudinal deformations under lateral
and longitudinal forces. Subsequently, Pacejka and Bakker [16] introduced the widely
utilized Magic Formula, an empirical model that fits tire test data using a combination
of trigonometric functions. This model accurately describes the forces and moments
experienced by the tire under various conditions.

In the early stages, scholars paid relatively little attention to the issue of tire camber,
often combining the effects of camber with those of lateral deviation and suggesting that
camber exacerbated the effects of lateral deviation [17]. Kuiper E [18], building upon
the brush model, established the camber brush tire model, revealing the relationship
between tire camber angle and ground contact patch length, contact patch width, and tire
effective radius. Bai F [19] developed a ground pressure distribution model for lateral
slip conditions considering tire width. However, this model did not accurately account
for the shape of the ground pressure distribution across the tire width. As a result, it
could not accurately describe the ground pressure distribution in the width direction of
the tire under different camber conditions. Su X [20] established finite element models of
tires with different tread patterns to study the ground characteristics of tires under steady-
state rolling conditions and with tire camber angles. The study considered variations in
ground pressure distribution while keeping the tire contact width constant. However, it
was observed that the actual tire contact patch width changed significantly under tilting
conditions. Han Y [21] established a ground pressure distribution model considering tire
width under camber conditions. However, this model assumes that the ground contact
pressure decays along the tire width direction with a proportional coefficient, without
establishing the relationship between factors such as tire camber angle, inflation pressure,
vertical load, and the variation in contact width.
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In the current research on the mechanical characteristics of the tire–road contact
area and the estimation of tire adhesion coefficient, several unresolved issues remain.
Most studies assume that the vertical pressure distribution in the tire–road contact area is
symmetrical [22–26], with limited exploration into the mechanical characteristics under tire
camber conditions. However, during vehicle operation, tires inevitably experience camber
angles. Under the influence of camber, the vertical pressure distribution on the tire becomes
significantly asymmetrical, which greatly affects the mechanical characteristics of the tire
contact area and consequently impacts the study of the adhesion coefficient.

Therefore, this study analyzes the contact characteristics of the tire under camber con-
ditions by establishing a finite element model of the tire and constructing a two-dimensional
ground pressure distribution model. Based on this, the assumption of the brush model
that ignores the contact characteristics in the width direction is improved. Combined with
a seven-degree-of-freedom vehicle model, an adhesion coefficient estimation algorithm
is designed based on the extended Kalman filter to improve the accuracy of adhesion
coefficient estimation under camber conditions.

2. Tire Finite Element Model
2.1. Finite Element Structural Model

Taking 205/55R16 radial tire as the research object, the cross-sectional profile of the
tire was established using AutoCAD 2019. The complexity of the tread pattern compli-
cates the meshing process in the model, resulting in difficulties in achieving convergence
in simulation results. Research findings indicate that the tread pattern has minimal im-
pact on the characteristics of ground contact patches as tire pressure and load vary [27].
Therefore, a longitudinal groove tread pattern model was adopted for subsequent ground
contact simulations.

The geometric modeling is imported into HyperMesh 2019 for geometric cleaning
and mesh generation. Subsequently, an “INP” file containing all tire model information is
exported. In the simulation, rubber materials are represented using CGAX3H (three-node
general linear axisymmetric triangular shell element) and CGAX4H (four-node general
bilinear axisymmetric quadrilateral shell element) elements, while the reinforcement is
modeled using SFMGAX1 (two-node linear axisymmetric curved surface element) elements
and carried out with the rebar layer [28]. To embed the reinforcement layer into the rubber
matrix, embedded element constraints are employed.

Subsequently, the corresponding material properties are assigned to the cross-section
of each component of the tire. The stress–strain relationship of the rubber material is
described using the Neo-Hookean constitutive model, while the reinforcement is modeled
to simulate fiber-reinforced material. Specific material parameters can be found in [29]. The
two-dimensional finite element model is illustrated in Figure 1a.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 4 of 22 
 

  

(a) (b) 

Figure 1. (a) Two-dimensional tire finite element model. (b) Three-dimensional tire finite element 

model. 

2.2. Verification of Finite Element Model 

2.2.1. Mechanical Properties of Tire Materials 

In the Abaqus simulation process, composite material structures are often defined 

using rebar elements. Material properties of cord elements are defined first, and then, 

these cord elements are embedded into the corresponding rubber solid elements. 

Therefore, the radial tire belt with cord layer rubber adopts the Yeoh model to describe its 

mechanical properties, and the material parameters of the internal cord rebar are shown 

in Table 1. 

Table 1. Tire cord material parameters for each part. 

Part Density (t·mm−3) Young’s Modulus (Mpa) Poisson’s Ratio Cross-Sectional Area (mm2) Ply Angle (°) 

Carcass Ply 1.5 × 10−9 10,539 0.4 0.21 90 

Belt Ply 1 7.8 × 10−9 205,251 0.3 0.27 67 

Belt Ply 2 7.8 × 10−9 205,251 0.3 0.27 113 

Steel Bead 7.8 × 10−9 210,000 0.3 1.31 0 

Tread Ply 1.1 × 10−9 2230 0.4 0.33 0 

2.2.2. Grounding Footprint Verification 

Grounding footprint verification is one of the commonly used methods to validate 

the accuracy of tire finite element models. To validate the accuracy of the finite element 

model and ensure simulation precision, a static ground contact test on the tire is 

conducted using the Tire Multifunction Testing Machine-2(Guangdong, China). The tire 

is loaded to its rated load of 4821 N and rated pressure of 240 kPa. In the static ground 

contact test, ink imprints are used to obtain ground contact patches, from which geometric 

parameters are extracted. 

Figure 2 illustrates the ground contact imprints from both the static ground contact 

test and the finite element analysis, and the geometric parameters are listed in Table 2. 

Figure 1. (a) Two-dimensional tire finite element model. (b) Three-dimensional tire finite
element model.



World Electr. Veh. J. 2024, 15, 263 4 of 20

In ABAQUS/Standard, the keyword *SYMMETRIC MODEL generalization is utilized
to generate the three-dimensional finite element model of the tire. To accelerate computa-
tion speed and ensure accuracy, mesh refinement is only required in the contact area, as
illustrated in Figure 1b. The tire rim and road surface are designated as analytical rigid
bodies. Relative motion between the tire and rim is neglected. Finally, Coulomb friction is
employed as the friction model between the tire and the road surface.

2.2. Verification of Finite Element Model
2.2.1. Mechanical Properties of Tire Materials

In the Abaqus simulation process, composite material structures are often defined
using rebar elements. Material properties of cord elements are defined first, and then, these
cord elements are embedded into the corresponding rubber solid elements. Therefore, the
radial tire belt with cord layer rubber adopts the Yeoh model to describe its mechanical
properties, and the material parameters of the internal cord rebar are shown in Table 1.

Table 1. Tire cord material parameters for each part.

Part Density (t·mm−3) Young’s Modulus (Mpa) Poisson’s Ratio Cross-Sectional Area (mm2) Ply Angle (◦)

Carcass Ply 1.5 × 10−9 10,539 0.4 0.21 90
Belt Ply 1 7.8 × 10−9 205,251 0.3 0.27 67
Belt Ply 2 7.8 × 10−9 205,251 0.3 0.27 113
Steel Bead 7.8 × 10−9 210,000 0.3 1.31 0
Tread Ply 1.1 × 10−9 2230 0.4 0.33 0

2.2.2. Grounding Footprint Verification

Grounding footprint verification is one of the commonly used methods to validate
the accuracy of tire finite element models. To validate the accuracy of the finite element
model and ensure simulation precision, a static ground contact test on the tire is conducted
using the Tire Multifunction Testing Machine-2 (Guangdong, China). The tire is loaded
to its rated load of 4821 N and rated pressure of 240 kPa. In the static ground contact test,
ink imprints are used to obtain ground contact patches, from which geometric parameters
are extracted.

Figure 2 illustrates the ground contact imprints from both the static ground contact
test and the finite element analysis, and the geometric parameters are listed in Table 2.
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Table 2. Area characteristic parameters.

Solution FEA Experiment Error

contact length/mm
contact width/mm

152.08
168.75

147.13
161.05

3.36%
4.78%

The finite element simulation results are in good agreement with the experimental
results, with a maximum relative error of only 4.78% in contact length and width. This
indicates that the established finite element model can accurately reflect the tire footprint
on the ground.

2.2.3. Stiffness Verification

According to the test method specified in the national standard (GB/T 23663-2020),
the stiffness of tire is evaluated using the MTM-2 machine. Simultaneously, the stiffness of
the tire finite element model is simulated in ABAQUS, replicating the same conditions. The
test results and simulation data are presented in Table 3.

Table 3. Comparison between simulation value and experiment value of tire stiffness.

Stiffness FEA Experiment Error

radial stiffness/(N/mm)
lateral stiffness/(N/mm)

longitudinal stiffness/(N/mm)

212.94
88.76

133.77

206.28
92.62

137.99

3.23%
4.17%
3.06%

The tire stiffness obtained from experimental testing is compared with that derived
from finite element analysis, both showing errors within 5%. This indicates that the
established tire finite element model exhibits high accuracy in terms of tire stiffness. The
validation results of ground contact imprint and stiffness analysis provide strong support
for the high effectiveness of the tire finite element model developed in this study.

3. The Camber Brush Tire Model Considering Tire Width Effect
3.1. Simulation and Modeling of Tire Ground Contact Characteristics under Tire Camber

The influence of tire camber on the ground contact characteristics in the width direction
of the tire is mainly reflected in two aspects: the width of the ground imprint and the
pressure distribution along the width direction. The tire contact situation under tire camber
conditions is shown in Figure 3. The coordinate origin in the diagram is located at the
center of the contact patch, with the z-axis pointing upwards perpendicular to the ground,
and the y-axis in the direction of tire width. 2b0 represents the contact width under steady
rolling of the tire, 2b represents the contact width after tire camber, and 2a represents the
length of the contact patch. As tire camber angle increases, the width of the contact patch
significantly decreases, and the pressure distribution across the width, as shown by the
shaded area in Figure 3, concentrates towards the direction of tire camber.
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Figure 4 illustrates the variation in contact patch width under different loads and
inflation pressures with tire camber. The trend indicates that, as the camber angle increases,
the width decreases. Additionally, under different inflation pressures, there is a notable
rapid decrease in width at a certain camber angle. This phenomenon primarily occurs
because the increased camber angle places the longitudinal grooves on the tire surface at
the edge of contact. Moreover, with a constant tire load, higher inflation pressure results in
smaller contact patch width values. Conversely, with constant inflation pressure, higher
loads lead to larger width values.
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Figure 4. The width of the contact patch under different loads and tire pressures: (a) the distribution
of ground pressure under a load of 4000 N, (b) the distribution of ground pressure under a load of
5000 N, and (c) the distribution of ground pressure under a load of 6000 N.

The tire contact patch width is inversely proportional to the inflation pressure and
directly proportional to the load. Therefore, an exponential function is employed to fit
the variation pattern of the contact patch width. The expression for the half-width b of
the contact patch as it varies with load, inflation pressure, and camber angle is given by
the following:

2b = 2b0 − b1
Fb2

2
Pb3

γ (1)

where b is the half-width of the tire contact patch, b0 is the half-width of the contact patch
under steady rolling conditions, b1 is the coefficient of the half-width of the contact patch
under steady conditions, b2 is the coefficient of the half-width of the contact patch with
respect to the load under steady conditions, b3 is the coefficient of the half-width of the
contact patch with respect to the tire pressure under steady conditions, and γ represents
the camber angle.

To facilitate the extraction of pressure distribution data from the simulation results,
seven paths parallel to the length of the tire contact patch are established in the tire contact
area, as shown in Figure 5. The selection of paths is based on the division of the longitudinal
grooves in the tire tread model into five sections, ensuring equal spacing between adjacent
paths as much as possible. By analyzing the distribution of the sum of pressures along each
path, the pressure distribution pattern in the width direction of the entire contact area can
be approximated.

Figure 6 illustrates the pressure distribution in the width direction of the tire foot-
print under a load of 4000 N and inflation pressures of 180, 240, and 300 kPa, respectively.
When the camber angle is 0◦, the ground pressure distribution is generally symmetrical,
with higher pressures observed in both shoulder areas and the middle region of the foot-
print width. As the camber angle increases, the pressure distribution shifts towards the
direction of tire camber, concentrating towards the shoulder areas. However, with the
increase in inflation pressure, there is a mitigating effect on the widespread distribution of
ground pressure.
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Figure 6. Ground pressure distribution under different inflation pressures at 4000 N: (a) ground
pressure distribution at 180 kPa, (b) ground pressure distribution at 240 kPa, and (c) ground pressure
distribution at 300 kPa.

Due to the significant variation in the contact patch with increasing camber angle,
the width was normalized to visually analyze the pressure distribution. Additionally, a
controlled variable analysis method was employed to further explore the effects of load,
tire pressure, and camber angle on the ground pressure distribution. Pressure distributions
along the width of the contact patch were plotted for different tire pressures at the same
load and for different loads at the same tire pressure, with a camber angle of 0◦, as shown
in Figure 7. It can be observed that, at the same load, higher tire pressure results in a more
pronounced upward convex trend in the pressure distribution. Similarly, at the same tire
pressure, increasing load reduces the upward convex trend in the pressure distribution.
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Based on the two-dimensional ground pressure model, a model for the characteristics
of ground pressure distribution under camber conditions is established. The expressions
for the pressure distribution models Qzy(y) and Qzx(x, y) are as follows:

Qzy(y) =
FZ
2b

ηy(y) (2)

Qzx(x, y) =
qzy

2a
ηx(x) (3)

v =
y
b

(4)

Qzy(v) =
FZ
2b

ηy(v) (5)

ηy(v) = Ay

(
1 − v2

)(
1 + λyv2

)(
1 − Byv

)
(6)

Ay =
15

2
(
5 + λy

) (7)

By =
7
(
5 + λy

)
7 + 3λy

∆y

b
(8)

where a is the half-length of the ground contact patch, b is the half-width of the contact
patch, v is the relative position coordinate in the width direction, ηy(y) and ηx(x) are the
pressure distributions in the width and length directions, respectively, λy is the concavity–
convexity factor in the width direction, ∆y is the bias factor in the width direction, and x
and y are arbitrary positions in the length and width, respectively.

According to Figure 7, as the load increases, the distribution of ground pressure
becomes more concave, i.e., the value of λy increases, and it shows a linear relationship
with the load. With the increase in tire pressure, the distribution of ground pressure tends
to be more convex, i.e., the value of λy decreases, and it shows a basically linear decreasing
relationship with the tire pressure. Therefore, the expression for the concavity–convexity
factor is as follows:

λy = qy1Fz + qy2P + qy3 (9)

where qy1 is the load coefficient of concavity–convexity factor in the width direction, qy2 is
the tire pressure coefficient of concavity–convexity factor in the width direction, and qy3 is
the constant coefficient of concavity–convexity factor in the width direction.

From Figure 7, it can be observed that the ground pressure distribution becomes more
severe with the increase in the camber angle. Therefore, the expression for the bias factor is
as follows:

∆y = qy4rqy5 (10)

where qy4 and qy5 is the coefficient of bias factor in the width direction.
Combining with the contact patch length model [30], the pressure values correspond-

ing to any width position are input into the model to calculate the corresponding contact
patch length at that position.

a(v) = a1
Qzy(v)

a2

Pa3
(11)

where a1 is the constant coefficient of half-length of contact patch, a2 is the load coefficient
of half-length of contact patch, and a2 is the pressure coefficient of half-length of contact
patch.

In the absence of slip, there is no bias in the pressure distribution function along the
longitudinal direction; thus, ∆x equals 0. Simultaneously, regarding the direction of length
of contact patch, the concavity and convexity of the pressure distribution function align
with the analysis of the direction of width of the contact patch, influenced by both load and
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tire pressure. The specific expression for the two-dimensional ground pressure distribution
function is as follows:

u =
x

a(v)
(12)

Qzx(u, v) =
Qzy(v)
2a(v)

ηx(u) (13)

ηx(u) = Ax

(
1 − u2

)(
1 + λxu2

)
(14)

λx = qx1qzy(v) + qx2P + qx3 (15)

Ax =
15

2(5 + λx)
(16)

where u is the relative position coordinate along the contact patch lengthwise direction, λx
is the concavity–convexity factor along the lengthwise direction, qx1 is the load coefficient
of the lengthwise concavity–convexity factor, qx2 is the tire pressure coefficient of the
lengthwise concavity–convexity factor, and qx3 is the constant coefficient of the lengthwise
concavity–convexity factor.

Figure 8 illustrates the pressure distribution obtained through finite element simulation
under a load of 5000 N and a tire pressure of 240 kPa, alongside the results of the two-
dimensional pressure distribution model. It can be observed that the established two-
dimensional pressure distribution model under camber conditions can describe the trend
of pressure distribution under camber conditions and can calculate the pressure value at
any point on the contact patch.
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3.2. Modeling of Camber Brush Model

Figure 9 shows the deformation of the bristles within the tire footprint during camber.
Under the influence of tire camber angle, the projection of the tire’s belt layer within
the footprint can be regarded as a parabola [27]. ymax0 represents the maximum lateral
deformation of the bristles at a 0◦ camber angle, ymaxR shows the position of the maximum
lateral deformation of the bristles under the influence of a negative camber angle, and
ymaxL denotes the position of the maximum lateral deformation of the bristles under the
influence of a positive camber angle. When the sideslip angle is positive and camber angle
is negative, the pressure distribution caused by sideslip in the width direction is consistent
with the direction of the pressure distribution caused by the camber [31]. Assuming that
after the tire camber the pressure bias caused by sideslip is minimal, it can be neglected.
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Consequently, the pressure distribution attributable to camber is utilized to characterize
the pressure distribution scenario under conditions of tire camber.
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Figure 9. The schematic diagram of camber brush tire model under the influence of camber: (a) tire
footprint with camber angle effect and (b) tire footprint without camber angle effect.

The line segment AC in Figure 10 is the deformation position of the bristles under tire
camber. The line segment ABC is the intersection between the lower end of the bristles
and the road surface, where AB is the adhesion zone and BC is the slip zone. The region
between AC and ABC is the lateral deformation of the bristles. When the tire is cambered, it
is common to consider the lateral force Fy generated by camber and the lateral force caused
by sideslip as the superposition of lateral force Fyα and camber lateral force Fyγ, as shown
in Figure 9.
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Figure 10. Diagram of lateral force of tire under camber.

The black fine bristle area OAB0O is the brush deformation under no camber angle
and sideslip angle α, with B0 being the slip point. When there is camber, the brush
deformation is represented by the red solid thick brush area EABCE. Fy can be approximated
as the superposition of two parts: one part is the red solid thick brush area OABCO,
which is the brush deformation caused by camber under sideslip, with its lateral force
denoted as Fyα, and the other part is the red hollow thick brush area OAECO, which is the
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brush deformation caused by camber, with its lateral force denoted as Fyγ. Therefore, the
expression for lateral force under camber influence is as follows:

Fy = Fyα + Fyγ (17)

The lateral deformation of the bristles in the adhesion area is as follows:

∆y = (a − x)Sy + yr0 (18)

where Sy is the slip ratio, and yr0 is the lateral deformation caused by tire camber.
This lateral deformation is approximately distributed parabolically, and its expression

is as follows:

yγ0 = − a2 − x2

2Re
sin γ (19)

where Re is the effective radius.
The lateral force within the adhesion zone is obtained by integration:

Fy =
∫ xc

a
kty(a − x)Sydx = KySy − Kyγ sin γ (20)

where Kyγ is the camber stiffness and sets it to 2a3kty
3Re

. The relative position horizontal
coordinate uc of the slip point xc can be obtained from the following equation:

kty∆y(uc) = µy
Fz

2a
η(uc) (21)

Therefore, the expression for the lateral force under the combined condition of camber
and side slip is as follows:

Fy =
∫ xc
−a

µyFz

2a
η
( x

a

)
dx +

∫ a
xc

kty∆ydx

=
(1 − uc)

2

4
KySy +

1
2

m0(uc)µyFz −
2 − 3uc + u2

c
4

Kyγ sin γ

(22)

At different width positions of the tire, the contact patch is divided into 2N segments
along the circumference, and the mechanical characteristics of each segment can be de-
scribed using a brush tire model. The entire tire is considered to be composed of 2N brush
models fitted together. Under the effect of camber angle, the contact patch length, vertical
load, effective radius, and pressure distribution of each tire segment change. Additionally,
assuming that the lateral stiffness and longitudinal stiffness are also divided into 2N parts,
the specific expression for the load of the i-th brush model segment is as follows:

Fz(i) =
Fz

2N
ηy(

i
N
), i ∈ (−N, N) (23)

Therefore, the pressure distribution function in the width direction is as follows:

ηy(
i
N ) = Ay · (1 − ( i

N )
2
) · (1 + λy · ( i

N )
2
) · (1 − By(

i
N ))

λy = qy4 · Fz + qy5 · P + qy6
Ay = 15

2(5+λy)

By =
7(5+λy)
7+3λy

· ∆y
b

∆y = sign(γ) · qy7 · |γ|qy8

(24)

where qy4 is the load coefficient of concavity–convexity factor in the width direction, qy5 is
the tire pressure coefficient of concavity–convexity factor in the width direction, and qy6 is
the constant coefficient of concavity–convexity factor in the width direction.
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The expression for the effective radius of the i-th brush model is as follows:

Re(i) = c1
Pc2

Fz(i)
c3

(25)

Substituting Equation (25) into the expressions for the relative longitudinal and lateral
slip rates yields the following:

φ(i) =
√

φx(i)
2 + φy(i)

2

φx(i) =
KxSx(i)
µx Fz(i)

= Kx
µx Fz(i)

· ωRe(i)−Vx
ωRe(i)

φy(i) =
KySy(i)
µy Fz(i)

=
Ky

µy Fz(i)
· Vy

ωRe(i)

(26)

where φ(i) is the comprehensive slip ratio, φx(i) is the relative longitudinal slip ratio, and
φy(i) is the lateral slip ratio.

The expression for the contact patch length is as follows:

a(i) = a1
Fz(i)

a2

Pa3
(27)

Substituting the expression for the comprehensive slip ratio allows us to obtain the
coordinates of the starting slip point uc(i) = i/N and the first moment of the pressure
distribution function m0(uc(i)):

φ(i) =
Ax(1 − uc(i)

2) · (1 + λx · uc(i)
2)

1 − uc(i)
m0(uc(i)) =

∫ uc(i)
−1 Ax(1 − uc(i)

2) · (1 + λx · uc(i)
2)du

λx = qx4 · Fz(i) + qx5 · P + qx6

Ax = Ax =
15

2(5 + λx)

(28)

By substituting the ground contact length, normal load, effective radius, and pressure
distribution function of each tire segment into the final formula for determining the lateral
force under tire camber condition, we can obtain the longitudinal force and lateral force of
any tire model segment:

Fx(i) =
(1−uc(i))

2

4 · Kx(i)Sx(i) + µxFz(i)
φx(i)

φ · m0(uc(i))
2

Fy(i) =
(1−uc(i))

2

4 Ky(i)Sy(i) + µyFz(i)
m0(uc(i))

2 − 2−3uc(i)+uc(i)
2

4 Kyγ sin γ
(29)

The total lateral force and total longitudinal force in the tire contact area are given by
the following:

Fx =
2N
∑

i=1
Fx(i)

Fy =
2N
∑

i=1
Fy(i)

(30)

Figure 11 presents the simulation results of longitudinal and lateral forces of the brush
model under combined lateral slip and longitudinal slip conditions at 6000 N, along with
the corresponding experimental data [32]. It can be observed that the simulation results of
the theoretical model generally describe the overall trends accurately. With the increase in
longitudinal slip ratio, the longitudinal force exerted on the tire gradually increases under
different lateral slip angles, showing a stable trend under large slip conditions; the lateral
force curve of the model exhibits a nearly symmetrical distribution.
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4. Estimation of Road Adhesion Coefficient

In recent years, significant advancements have been made in vehicle dynamics control
technology. Liang et al. [33] proposed a distributed control architecture integrating Active
Front Steering (AFS) and Direct Yaw Control (DYC), achieving coordination among control
systems through the Pareto optimal theory. This control strategy significantly enhances
vehicle lateral stability and reduces driver workload during path tracking. Lu et al. [34]
developed a high-fidelity CarSim vehicle model embedded with a driver simulator to
collect driver data, based on which they defined normalized steering angle input and
collision time to quantify driving performance. Zheng [35] proposed a hierarchical extenics
coordination controller that considers the bounded rationality of control systems to address
the interference of traditional stability control on driving speed and driver operations. This
section integrates vehicle dynamics with the improved tire brush model to enhance the
accuracy of adhesion coefficient estimation under complex conditions.

In the preceding sections, the constructed tire camber brush model effectively captures
the mechanical characteristics of the tire contact patch area (such as the vertical pressure
distribution, Fz). In this section, a seven-degree-of-freedom vehicle dynamics model is
established, with the tire mechanics calculation module adopting the constructed camber
brush model. The primary purpose of this integration is to more accurately simulate
the driving behavior of electric vehicles under various road and driving conditions. By
considering the camber angle and vehicle dynamics characteristics, we are able to describe
the tire–road contact more accurately, thus enhancing the accuracy of adhesion coefficient
estimation. Furthermore, an estimation of road adhesion coefficient is conducted using an
extended Kalman filter-based method, which dynamically adjusts the coefficient based on
real-time measurement data, further enhancing estimation precision.
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4.1. Definition of Road Adhesion Coefficient

The maximum value of the interaction force between the tire and the ground is
known as the adhesion force of the tire to the ground, denoted as Fµ, as shown in the
following equation. From the expression, it can be seen that the tire’s vertical load is
directly proportional to the adhesion force, with the proportionality constant µ being the
road adhesion coefficient:

Fµ = µ · Fz (31)

According to theories related to the brush tire model and vehicle dynamics, the road
surface adhesion coefficient µ is the coefficient of friction between the tire in static load or
pure sliding states and the road surface, reflecting the most fundamental friction properties
between the tire and the road surface. Additionally, the friction force from the ground to
the tire, which is the tire force in the tire model, forms one of the bases for vehicle dynamics
analysis. Therefore, in calculations, the tire force F is constrained not to exceed the adhesion
limit, as described by the following formula:

F ≤ Fµ = µ · Fz (32)

4.2. Seven-Degree-of-Freedom Vehicle Dynamics Model

Given the direct influence of tire conditions on estimating the road adhesion coefficient,
a seven-degree-of-freedom vehicle dynamics model is established, taking into account the
longitudinal, lateral, and yaw motions of the vehicle as well as the rotation of all four
wheels. As shown in Figure 12, the vehicle’s center of gravity is the origin of the coordinate
system, with the longitudinal axis of the car as the x-axis, and leftward movement during
forward motion is considered positive; moreover, torque within the horizontal plane is
deemed positive in the counterclockwise direction. Additionally, the following assumptions
are made for the established vehicle dynamics model:

(1) The influence of aerodynamic drag on vehicle dynamics is disregarded;
(2) Vertical bouncing of the vehicle, as well as the whole vehicle’s pitch and tilting

motions, are not considered;
(3) It is assumed that the physical characteristics of all four tires are identical.
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The dynamic equations of the vehicle are as follows:
Longitudinal motion equation:

.
vx = ax + vy · γvx

ax = 1
m (Fx f l cos δ + Fx f r cos δ + Fxrl + Fxrr − Fy f l sin δ − Fyrl sin δ)

(33)

Lateral motion equation:

.
vy = ay + vx · γ

ay = 1
m (Fx f l sin δ + Fx f r sin δ + Fy f l cos δ + Fy f r cos δ + Fyrl + Fyrr)

(34)
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Yaw motion equation:

.
γ = 1

Iz
· Γ

Γ = la(Fx f l + Fx f r) sin δ + la(Fy f r + Fy f l) cos δ − lb(Fyrl + Fyrr)

− t f
2 (Fx f l − Fx f r) cos δ +

t f
2 (Fy f l − Fy f r) sin δ − tr

2 (Fxrl − Fxrr)

(35)

Wheel rotation equation:

J
.

w f l, f r = Td f l, f r − Tb f l, f r − Tx f , f rR
J

.
wrl,rr = Fxrl,rrR − Tbrl,rr

(36)

The physical meanings of the parameters represented by each symbol are shown in
Table 4, where subscripts f and r denote front and rear axles, and r and l denote right and
left sides, respectively.

Table 4. Physical significance of each parameter.

Parameter Physical Significance Parameter Physical Significance

vx Vehicle longitudinal speed vy Vehicle lateral speed
ax Longitudinal acceleration ax Lateral acceleration
γ Yaw rate δ Front tire angle
m Vehicle mass Iz Inertia of rotation around the z-axis
Γ Yaw moment around the z-axis t f Front tread
tr Rear tread Fxij Longitudinal force

Fyij Lateral force J Tire rotational inertia
R Tire cambering radius wi,j Tire angular acceleration

Tdi,j Tire driving torque Tbi,j Tire braking torque

4.3. Estimation of Road Adhesion Coefficient Based on Extended Kalman Filter
4.3.1. Establishment of Systematic Measurement Equations

The established measurement equation is given in the following equation:

y(t) = h(xp(t), u(t), v(t)) (37)

where xp(t) is the parameter to be estimated; y(t) is the measurement output; u(t) is
the control input; and v(t) is the observation noise. The parametric variable xp(t) =

[µ1 µ2 µ3 µ4]
T ; the measurement variable y =

[
ax ay Γ

]T ; the control input u = [δ].

4.3.2. Linearization of the Model

In the following equation, H(t) denotes the Jacobi matrix of the nonlinear function
with h(x_P(t),u(t),v(t)) partial derivatives for each parameter.

H(t) =


∂h1
∂xp1

, . . . , ∂h1
∂xpn

. . . . . . . . . . . . . . .
∂hm
∂xp1

, . . . , ∂hm
∂xpn

 (38)

H(t) =

 Fx_ f l−Fy_ f l δ

m
Fx_ f r−Fy_ f rδ

m
Fx_rl

m
Fx_rr

m
Fx_ f lδ + Fy_ f l Fx_ f rδ + Fy_ f r Fy_rl Fy_rr
H(3, 1) H(3, 2) H(3, 3) H(3, 4)

 (39)

H(3, 1) =
a(Fx_ f l δ+Fy_ f l)/Iz+Tf /2(Fx_ f l−Fy_ f l δ)

Iz

H(3, 2) =
a(Fx_ f rδ+Fy_ f r)−Tf /2(Fx_ f r−Fy_ f rδ)

Iz

H(3, 3) =
−(bFy_rl−Tr/2Fx_rl)

Iz

H(3, 4) = −(bFy_rr+Tr/2Fx_rr)
Iz

(40)
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4.3.3. Implementation of the Recursive Algorithm

The specific workflow of the EKF filtering algorithm is shown in Figure 13. In Figure 13,
Q is the covariance matrix of the system excitation noise w(t), and R is the covariance matrix
of the measurement noise v(t).
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4.4. Model Simulation Result Analysis

To verify the performance of the established road adhesion coefficient identification
algorithm, two road conditions were simulated. One is dry asphalt road with good adhesion
conditions, and the other is waterlogged road with poor adhesion conditions, with road
friction coefficients of 0.8 and 0.3, respectively. The left front and rear tire camber angle
were set to 3◦ and 6◦, while the right was set to −3◦ and −6◦.

Figure 14 illustrates the estimation results on low-adhesion road surfaces. (a) depicts
the estimation of road adhesion coefficient when tire camber angle is 0◦. From the figure,
it can be observed that the estimated value begins to converge to approximately 0.3045
at around 0.12 s, with a relative error of 1.5% compared to the true value. (b) shows the
scenario with a tire camber angle of 3◦, where the adhesion coefficient estimate starts
to converge to about 0.3057 at around 0.5 s, with a relative error of 1.9%. However, the
convergence speed is slower. (c) illustrates the case with a camber angle of 6◦, where the
adhesion coefficient estimate begins to converge to around 0.3084 at approximately 0.5 s,
with a relative error of 2.8%.
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Figure 15 is the estimation results on high-adhesion road surfaces. (a) shows the
estimation results of road surface adhesion coefficients for all four wheels when tire camber
angle is 0◦. It can be observed from the figure that the estimated adhesion coefficient starts
converging around 0.14 s to approximately 0.8127–0.8142, with a relative error of 1.58–1.78%
compared to the true value. In (b), with a tire camber angle of 3◦, the estimated adhesion
coefficient begins to converge around 0.5 s to the range of approximately 0.8167–0.8193,
with a relative error ranging from 2.09% to 2.33%. As shown in (c), for a tire camber angle of
6◦, the estimated adhesion coefficient starts converging around 0.7 s to around 0.819–0.823,
with a relative error ranging from 2.3% to 2.86%.
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The road surface adhesion coefficient estimation results under high-adhesion road
conditions, with the tire model replaced by the original tilt brush tire model, are illustrated
in Figure 16.
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Figure 16. Estimated adhesion coefficients for the pre-improved tire brush model: (a) estimated
adhesion coefficients at 0◦ tire roll angle, (b) at 3◦ tire roll angle, and (c) at 6◦ tire roll angle.

The road surface adhesion coefficient estimation results under high-adhesion road
conditions, with the tire model replaced by the original tire camber brush tire model, are
illustrated in Figure 17.

From Figure 16, it can be observed that, when tire camber angle is 0◦, the estimated
adhesion coefficient converges to approximately 0.8132–0.8152 at around 0.15 s, with a
relative error of 1.65–1.9%. When tire camber angle is 3◦, the estimated adhesion coefficient
begins to converge to the range of 0.817–0.821 around 0.5 s, with a relative error between
2.12% and 2.62%. At a tire camber angle of 6◦, the estimated adhesion coefficient converges
to approximately 0.828–0.83 around 0.7 s, with a relative error ranging from 2.86% to 3.76%.
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From Figure 17, it can be observed that, when there is no camber angle, the relative
error between the adhesion coefficient estimated based on the original and improved brush
models is close. This is because when tire camber angle is 0◦, the widthwise ground pressure
distribution of the tire is symmetric, and the output values of the original and improved
tire models are similar. As tire camber angle increases, the relative error between the
estimated adhesion coefficient and the true value begins to increase. However, the growth
rate of the relative error for the improved brush model is smaller than that of the original
brush model, indicating that the improved brush model can better describe the adhesion
performance of the tire under camber conditions. Nonetheless, the improved brush model
still exhibits some errors in adhesion coefficient estimation. In the research, the sources
of relative error in estimating road adhesion coefficient mainly include the following:
model simplification and assumptions, sensor noise and measurement inaccuracy, and
variation in road conditions. Although the camber brush model has a certain level of
accuracy, it simplifies the interaction between tire and road surface. For example, the
assumption of uniform pressure distribution does not hold true under all conditions,
leading to deviations in estimation results. The accuracy of the extended Kalman filter
(EKF) algorithm largely depends on the quality of input data and sensor measurement
noise, such as inaccuracies in detecting tire forces and inclination angles, and can lead to
estimation errors. Moreover, actual road conditions vary significantly, with factors such as
road surface texture, temperature, and humidity affecting tire–road interaction, which are
not fully captured in the model.

In summary, the brush model considering the asymmetric ground contact charac-
teristics of the tire demonstrates higher accuracy in estimating the adhesion coefficient
compared to the improved brush model. This indicates that the improved brush model can
more accurately reflect the mechanical characteristics of the tire under asymmetric ground
contact distribution.

5. Conclusions

Tire camber can alter the ground contact characteristics between the tire and the road
surface. In this paper, based on the two-dimensional ground pressure distribution model
under tire camber conditions, a camber brush tire model considering the influence of tire
width was constructed. Combined with the seven-degree-of-freedom vehicle model, the
extended Kalman filter algorithm was utilized to estimate the road adhesion coefficient
under tilting conditions. According to the analysis of the model simulation results, the
main conclusions are as follows:

1. The influence of load on the width of the ground contact patch: under camber con-
ditions, the width of the ground contact patch varies significantly under low loads,
while the variation is less pronounced under high loads.

2. The influence of inflation pressure on the width of the ground contact patch: when the
tire is under low load, the inflation pressure has a minor effect on the width variation.



World Electr. Veh. J. 2024, 15, 263 19 of 20

However, under high load conditions, a higher inflation pressure leads to a greater
variation in the width of the ground contact patch.

3. The influence of load on ground pressure distribution: under tire camber conditions,
the smaller the load, the more pronounced the lateral shift of the ground pressure
towards the tilted side. Conversely, with larger loads, the overall lateral shift of the
ground pressure decreases, and there is an increasing trend of pressure distribution in
the central area of the ground contact patch becoming concave.

4. The influence of inflation pressure on ground pressure distribution: under lateral tilt
conditions, the lower the inflation pressure, the more pronounced the lateral shift
of the ground pressure towards the tilted side. Conversely, with higher inflation
pressure, the lateral shift of the ground pressure towards the tilted side decreases, and
there is an increasing trend of pressure distribution in the central area of the ground
contact patch becoming convex.

5. The optimized tire brush model constructed in this study integrates a two-dimensional
ground contact pressure distribution model under camber conditions, effectively ac-
counting for the asymmetry in ground contact pressure distribution during tire opera-
tion. Compared to previous tire models, the optimized tire brush model can be applied
to a wider range of conditions and better predicts the mechanical characteristics of
the contact area under camber conditions.

6. The constructed road adhesion coefficient estimation model can rapidly and accurately
estimate the road adhesion coefficient, demonstrating the effectiveness of the adhesion
coefficient estimation algorithm based on the camber brush model. This also indirectly
validates the effectiveness of the camber tire model.
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