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Abstract: The accuracy of voltage transformer (VT) measurements is imperative for the security
and reliability of power systems and the equitability of energy transactions. The integration of a
substantial number of electric vehicles (EVs) and their charging infrastructures into the grid poses
new challenges for VT measurement fidelity, including voltage instabilities and harmonic disrup-
tions. This paper introduces an innovative transformer measurement error prediction model that
synthesizes Multivariate Variational Mode Decomposition (MVMD) with a deep learning framework
integrating Bidirectional Temporal Convolutional Network and Multi-Head Attention mechanism
(BiTCN-MHA). The paper is aimed at enhancing VT measurement accuracy under fluctuating load
conditions. Initially, the optimization of parameter selection within the MVMD algorithm enhances
the accuracy and interpretability of bi-channel signal decomposition. Subsequently, the model applies
the Spearman rank correlation coefficient to extract dominant modal components from both the
decomposed load and original ratio error sequences to form the basis for input signal channels in the
BiTCN-MHA model. By superimposing predictive components, an effective prediction of future VT
measurement error trends can be achieved. This comprehensive approach, accounting for input load
correlations and temporal dynamics, facilitates robust predictions of future VT measurement error
trends. Computational example analysis of empirical operational VT data shows that, compared to
before decomposition, the proposed method reduces the Root-Mean-Square Error (RMSE) by 17.9%
and the Mean Absolute Error (MAE) by 23.2%, confirming the method’s robustness and superiority
in accurately forecasting VT measurement error trends.

Keywords: voltage transformer; measurement error prediction; dynamic load; MVMD; spearman
rank correlation coefficient; BiTCN-MHA

1. Introduction

Voltage transformers are key components in modern substations as they are used for
measuring voltage signals that are required for power system protection and control [1]. To
ensure the reliability of the measurement results of voltage transformers, their performance
must meet the 0.2 class standard.

In recent years, with the global emphasis on environmental protection and sustain-
able development, electric vehicles (EVs) have emerged as an effective means to reduce
greenhouse gas emissions and the consumption of mineral resources. Consequently, their
market share is rapidly growing worldwide. According to the International Energy Agency
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(IEA) report, the global ownership of electric vehicles exceeded 10 million in 2020, marking
a 43% increase from the year 2019, with electric vehicles accounting for two-thirds of the
total EV registrations for the year [2]. In China, the sales of purely electric vehicles reached
approximately 5.365 million units in the year 2022. As the ownership of electric vehicles
increases, the corresponding charging infrastructure is also rapidly expanding. By the end
of 2021, the number of electric vehicle charging stations in China exceeded 1.4 million,
with more than 10 million charging piles [3]. Moreover, related research indicates that,
even at moderate development speeds, the proportion of electric vehicles in the US car
market is expected to reach 35% by 2030 and 51% by 2050 [4]. To meet the growing EV
charging demand, countries around the world are striving to build EV charging facilities
on a large scale.

However, the rapid growth of electric vehicles and their charging demands pose
significant challenges to grid stability and power quality. EVs act as nonlinear loads during
the charging process, which may cause a wide range of problems when connected en masse
to the active distribution grid, especially under uncoordinated charging conditions. This
leads to large-scale grid integration effects, causing voltage fluctuations [5], increased load
variance [6], heightened network losses in the power system [7], harmonic pollution [8],
three-phase imbalance [9], and voltage distortion [10], among others. Consequently, the
electrical signal parameters of the power system exhibit multimodal and complex time-
varying characteristics. In this context, the challenge of measurement accuracy faced by
voltage transformers becomes increasingly complex, especially since the fluctuation range
of the primary side’s for the random signals they sense may far exceed the 0.2% standard.

With the increasing integration of charging stations into the grid, these challenges
are anticipated to significantly increase. In this context, distinguishing between gradual
measurement errors caused by transformer degradation and the inherent fluctuations of
the sensing signals becomes a significant challenge in evaluating the measurement accuracy
of voltage transformers. Thus, there is an urgent necessity for a novel method to precisely
assess the measurement errors of voltage transformers under variations under continuous
load, ensuring trade fairness and grid security.

In recent years, with the development of artificial intelligence, algorithm-based models
have been applied to the assessment of measurement errors in voltage transformers [11,12].
By making short-term predictions based on monitoring data, these models can provide
state information for the future sampling moment, supporting risk warning, fault detection,
and maintenance planning. For instance, reference [13] uses a BiLSTM network to directly
predict the measurement errors of voltage transformers, while reference [14] employs GRU
and MTL to predict the ratio error of voltage transformers. Reference [15] uses VMD to
decompose the measurement error signals of voltage transformers and inputs features
for prediction, but this approach overlooks the impact of decomposition residuals on
model stability and lacks interpretability in empirical reconstruction. However, the direct
application of all presented models so far does not take into account their generalizability
and the impact of load changes on transformer measurement errors.

Currently, integrating theoretical knowledge from different disciplines has become
an effective way to improve the generalizability and robustness of deep learning models.
Techniques such as Fourier transform, Empirical Mode Decomposition (EMD), and Ensem-
ble Empirical Mode Decomposition (EEMD) have been widely used in signal processing.
However, the Fourier transform [16] is suitable for processing stationary signals and is
commonly used to describe global oscillation characteristics. EMD [17] may encounter
mode mixing issues during decomposition; EEMD [18], while mitigating the problem of
mode mixing, suffers from low algorithm efficiency. The Variational Mode Decomposition
(VMD) [19,20] method, aimed at nonlinear and non-stationary signals, achieves adap-
tive decomposition of signals through a variational framework. By iteratively updating
the central frequencies and bandwidths of each oscillatory mode, it demonstrates good
decomposition performance and noise resistance.
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However, the aforementioned methods mainly target the identification of single-
channel signals one by one, lacking the capability to process multi-channel signals. Multi-
variate Variational Mode Decomposition (MVMD) [21] constructs a variational optimization
problem to extract multivariate signals, providing a theoretical foundation and solving
issues related to endpoint effects and mode mixing.

This paper introduces a predictive model for assessing the measurement accuracy
of voltage transformers by integrating MVMD with a Temporal Convolutional Network
hybrid. This model is designed to evaluate and forecast the trends of measurement error
deviations in voltage transformers influenced by load variations. Initially, the MVMD algo-
rithm is enhanced through the implementation of a RIME optimization strategy, predicated
on minimizing permutation entropy, which adaptively determines the optimal number
of modal decompositions and penalty factors to refine decomposition accuracy and inter-
pretability. Subsequently, the model decomposes load fluctuation data and the original
ratio error of the transformer into Intrinsic Mode Functions (IMF) characterized by distinct
frequency–amplitude profiles, utilizing the Spearman rank correlation coefficient to discern
and isolate predominant modes. These principal modes are then configured as input signals
for the hybrid Bidirectional Temporal Convolutional Network and Multi-Head Attention
(BiTCN-MHA) model, facilitating the prediction of future ratio error fluctuations in voltage
transformers. This model methodically accounts for the correlations among input loads and
the dynamic evolution of time series. Through empirical analysis using real transformer
data from substations, the efficacy of the proposed method in accurately predicting trends
of 0.2-class ratio error fluctuations in voltage transformers has been verified as will be
elaborated below.

In the following chapters, Section 2 analyzes transformer measurement errors. Section 3
explains and improves the Multivariate Variational Mode Decomposition (MVMD). Section 4
details the BiTCN-MHA model for predicting VT measurement errors. Section 5 presents a
case study demonstrating the application and validation of the model using empirical data.
Section 6 summarizes the research findings.

2. Transformer Measurement Error Analysis

VTs convert the primary side voltage of the power grid to a signal for secondary
systems. Typically, there is a discrepancy between the actual voltage and the VT-derived
secondary measurement data, commonly quantified as the ratio error f [22,23]:

f =
KrU2 − U1

U1
× 100% (1)

where Kr represents the transformation ratio of the VT, U1 is the actual value of the primary
side voltage signal, and U2 is the measured data of the secondary side output voltage.

To evaluate the influence of load fluctuations on the gradual error of operational trans-
formers, the proposed method considers load fluctuations at any given time affecting the op-
erational site of the transformer as X, with its time series matrix being X = (x1, x2, · · · , xT).
Additionally, the transformer’s historical ratio error is denoted by Z, and the predicted
next moment’s ratio error is expressed as:

∧
f T+1 = Ff (z1, z2, · · · zT , x1, x2, · · · , xT) (2)

Based on the above foundation, a predictive model is constructed based on load
fluctuations and historical ratio error information.

3. Multivariate Variational Mode Decomposition
3.1. Principle of MVMD

MVMD extends Variational Mode Decomposition (VMD) to accommodate multivari-
ate measurement data by transforming single-channel data into multiple channels using
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the Frobenius norm. The essence of MVMD is to extract K oscillatory modes u+
k (t) from

the input data containing N data channels x(t), as given by (3)

x(t) =
K

∑
k=1

uk(t) (3)

The objective is to derive multivariate oscillatory modes {uk(t)} from the input data,
minimizing the bandwidth of these modes while ensuring accurate reconstruction of x(t).
Thus, the bandwidth of uk(t) is estimated by employing the square L2 norm of the gradient
of the demodulated signal u+

k (t):

g =
K

∑
k=1

||∂t(e−jωktu+
k (t))||

2
2 (4)

To identify multivariate oscillations with a singular common frequency component
ωk in multi-channels, it is necessary to estimate the bandwidth of the modulated mul-
tivariate oscillatory signal, by shifting the one-sided spectrum of each channel of u+

k (t)
with center frequency ωk, utilizing the Frobenius norm to convert single-channel data into
multivariate formats.

The Frobenius norm, which structures space topologically, is defined for a matrix W
as the square root of the sum of squares of all elements, expressed as follows:

||W||F =
√

∑
i

∑
j

w2
i,j (5)

Within the context of the MVMD algorithm, this is represented as follows:

g′ = ∑
k

∑
h
||∂t(e−jωktu+

k,n(t))||
2
2 (6)

where u+
k,n(t) is the analytic signal for channel number n and mode number k. The MVMD

variational constraint model is constructed as follows:

min
{uk,n},{ωk}

{
∑
k

∑
n
||∂t(e

−jωktu+
k,n(t))||

2
2

}
(7)

s.t. XN(t) = ∑
k

u+
k,n(t), n = 1, 2, · · · , N (8)

With multiple linear constraints, the corresponding augmented Lagrangian function
is derived as follows:

L
({

uk,n
}

, {ωk}, λn
)
= α

K

∑
k=1

N

∑
h=1

∥∥∥∂t

(
e−jωktu+

k,n(t)
)∥∥∥2

2
+

N

∑
n=1

∥∥∥∥∥xn(t)−
K

∑
k=1

uk,n(t)

∥∥∥∥∥
2

2

+
N

∑
n=1

〈
λn(t), xn(t)−

K

∑
k=1

uk,n(t)

〉 (9)

By iteratively updating uk(t), ωk, and the Lagrangian multipliers λ through the Alter-
nating Direction Method of Multipliers (ADMM), the optimal solution of the variational
model, which represents all estimated frequency domain modes, can be obtained as follows:

ũl+1
k,n (ω) =

x̂n(ω)− ∑k−1
k=1 û1+1

i,n (ω) + λ̂l(ω)
2

1 + 2α(ω − ωl
k)

2 (10)
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where α is the penalty factor; x̂n(ω), λ̂l(ω), ûl+1
k,n (ω),ûl+1

i,n (ω), and ûl+1
i,n (ω) are the Fourier

transforms of xn(ω), λl(ω), ul+1
k,n (ω), and ul+1

i,n (ω), respectively; and l is the iteration
number. The estimated central frequency of the modes is determined by

ωl+1
k =

∑
∫ ∞

0 ω
∣∣∣ûl+1

k,n (ω)
∣∣∣2dω

∑
∫ ∞

0

∣∣∣ûl+1
k,n (ω)

∣∣∣2dω

(11)

3.2. Decomposition and Reconstruction

The effectiveness of MVMD outcomes primarily hinges on the parameters k and α.
The magnitude of k is pivotal in determining the precision of the decomposition results.
A suboptimal k, being too low, may result in incomplete modal decomposition, whereas
an excessively high k may lead to over-decomposition. The influence of α on MVMD’s
performance is intertwined with the characteristics of both signal and noise. Therefore, the
configuration of k and α is vital for the MVMD process.

This paper formulates an objective function based on the minimal Permutation En-
tropy (PE), iteratively determines k and α utilizing the RIME optimization algorithm, and
selects the primary modal components of the signal channels through the Spearman rank
correlation coefficient.

3.2.1. Permutation Entropy

PE proposed by Bandt et al. [24] is a method used for assessing the complexity and
dynamical alterations within time series data. This approach is noted for its simplicity in
computation, robustness, and high computational efficiency.

Hpe(m) = −
k

∑
j=1

Pej log Pej (12)

where Pej represents the probability of the jth symbol occurrence; Hpe signifies the complex-
ity and randomness level of the time series. A higher value indicates greater complexity and
randomness of the series, whereas a lower value denotes a more regular series, implying
enhanced predictability.

3.2.2. RIME

The RIME [25] constitutes an novel metaheuristic framework, mirroring the frost crys-
tallization phenomenon. Through comprehensive solution space examination coupled with
the implementation of adaptive search paradigms, it proficiently amplifies the likelihood
of ascertaining global optima, concurrently diminishing the susceptibility to suboptimal
local minima entrapments.

3.2.3. Spearman Rank Correlation Coefficient

The Spearman rank correlation coefficient [26] is a non-parametric measure of the
dependency between two variables, which does not require the data to follow a normal
distribution. In this paper, the Spearman rank correlation coefficient is employed to analyze
the correlation among the decomposed signals:

ρ(X,Y) =
∑n

i=1(xi − x)(xi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(xi − y)2 (13)

where p(x, y) denotes the Spearman rank correlation between signals x and y. The value
of p(x, y) ranges between [−1, +1], with its absolute value nearing 1 indicating a stronger
correlation between the two signals, while a value close to 0 suggests an almost non-existent
correlation relationship. The specific process is shown in Figure 1.
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Figure 1. MVMD decomposition and reconstruction.

4. BiTCN-MHA Model
4.1. BiTCN

The Temporal Convolutional Network (TCN) consists of causal convolution, dilated
convolution, and residual connections. As illustrated in Figure 2, the TCN employs a
multi-layer architecture design, where each layer is stacked with residual blocks of varying
dilation factors to enhance the model’s capability to process long sequence data while
preserving essential original information.

Figure 2. Based on the BiTCN-MHA deep learning model.

Causal convolution improves upon traditional one-dimensional convolution. Utilizing
dilated causal convolution effectively prevents the leakage of future information, ensuring
the posterior causality of the data. The model’s receptive field is expanded by adjusting the
convolution kernel size, the number of layers, and the dilation factor, thereby capturing the
dependency relationship between future moments and extended historical periods.
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This design enables the TCN to utilize only data available up to the current moment
at each step, thus avoiding interference from future data. The output at the t-th moment, zt
is given as follows:

zt = g(u0, u1, u2, . . . , ut) (14)

where g represents the one-dimensional convolution kernel.
Dilated convolution allows for an exponential expansion of the receptive field by

introducing fixed intervals through the dilation factor, which reduces the computational
demands for processing long sequence data. Moreover, employing a progressively in-
creasing dilation factor strategy facilitates deep feature extraction from local details to
comprehensive global insights, enriching the feature representation at the output layer.
For the unidimensional data [u0, u1, · · · , ut, ut+1], the expression for the output of dilated
convolution at a given time t is

G(t) = (u ⊙ g)(t) =
ker−1

∑
i=0

vs.(i)Ut−m·i (15)

where G(t) represents the output of the dilated convolution at time t; v(i) is the weight of
the convolution kernel at position i; ker represents the convolution kernel size; Ut−m·i corre-
sponds to the input sequence values after interval sampling; and m is the dilation factor.

Residual connections sum the model’s extracted input features with the feature extrac-
tion results, assisting the model in preserving essential original information that might be
lost during deep feature extraction. This enhances the model’s stability and prevents the
issue of vanishing gradients. The formula is as follows:

z = G(u, V) + u (16)

where z is the output of the residual connection; u is the input; and G(u, V) is a residual
network.

BiTCN enhances the capture of data dependencies through a bidirectional process-
ing architecture, thereby efficiently extracting deep features of time series. Assuming a
TCN consists of k stacked residual blocks, each residual block contains multiple layers of
convolution, thus the output after passing through a residual block can be described as

y(j,k) =
[
y(j,k)

0 , · · · , y(j,k)
T

]
(17)

y(j,k)
t =

ker−1

∑
i=0

( f (i) · y(j−1,k)
t−n·i ) + y(1,k)

t (18)

where k is the index of the residual block, j is the layer index, y(j,k)
t represents the convo-

lutional kernel weight in the jth layer of the kth residual block, and T represents the total
length of the sequence. To merge the features generated by the bidirectional processing
paths, an additive fusion strategy is adopted to obtain the final output, as follows:

LBiTCN = L f or ⊕ Lrev (19)

where LBiTCN is the composite feature output of BiTCN, and L f or and Lrev are the feature
sets outputted by the forward and reverse processing paths, respectively. By parallel pro-
cessing of the forward and backward temporal information of the sequence, the capability
to handle bidirectional dependencies is enhanced. This paper achieves multi-level feature
mining from local to global through the flexible receptive field of BiTCN, identifying hidden
features and improving the processing efficiency for long time series data.



World Electr. Veh. J. 2024, 15, 269 8 of 17

4.2. Multi-Head Attention Mechanism

The multi-head attention mechanism, an enhancement of the self-attention mechanism,
aims to dynamically focus on important information in the sequence through a weighted
method. It enables the model to learn information across multiple representation subspaces,
thereby enhancing the ability to extract global contextual features. The core lies in compar-
ing the similarity between the output results of the previous layer and the current output
results, calculating the weight factors, and finally generating the self-attention coefficients,
as detailed below.

Firstly, a linear transformation is performed. The multi-head attention mechanism ob-
tains the query matrix Q, key matrix K, and value matrix V through linear transformations
with different weight matrices, as shown in the following equations:

Q = Wqx

K = Wkx

V = Wνx

 (20)

where Wq,Wk,Wv ∈ Rm×n are learnable weight matrices, with m and n being the dimen-
sions of the input and output vectors of the attention mechanism, respectively, and x being
the input matrix.

Further, the attention scores for the input vectors are calculated and normalized, then
input into the Softmax function for activation, and multiplied by the value matrix V to
obtain the weighted calculation result of self-attention, as shown in the following equation:

Attention(Q, K, V) = So f tmax(
QKT
√

dk
)V (21)

where dk is the scaling factor, used to adjust the sensitivity of the attention mechanism.
Through learnable weight matrices Wq,Wk,Wv , the outputs of BiTCN are mapped to
different subspaces, and each head independently calculates attention scores in its corre-
sponding subspace, capturing distinct key feature dimensions in sequence data. That is,
{Qi, }h

i=1, {Ki}h
i=1, {Vi}h

i=1 , where i ∈ [1, h]. After iteration, the attention weights for the
corresponding number of heads Headi are as shown in the following equation:

Headi = Attention(QWQ
i , KWK

i , VWV
i ) (22)

where Wq,Wk,Wv represent the parameter mapping matrices for Q, K, and V for the
i th attention head, respectively. Finally, through a concatenation operation to form a
comprehensive attention weight vector, and processed by the output transformation matrix
Wo, the final output is obtained as follows:

MHA(Q, K, V) = Concat(Head1, . . . , Headh)Wo (23)

where Concat represents the concatenation operation of the output vectors, and h is the
number of attention heads. This study utilizes the multi-head attention mechanism to apply
weighted processing to the nodes output by BiTCN, enhancing the model’s sensitivity to
key sequence information points.

4.3. Model Process

The specific steps of the RIME-MVMD-P-BiTCN-MHA prediction model proposed in
this paper are as follows:

• Data Collection and Preprocessing : Collect historical ratio error sequences and load
fluctuation data from VTs. The input step size is 24. After removing invalid data
points and those beyond three standard deviations, the data are normalized. The final
results are then denormalized.
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• Adaptive MVMD Decomposition: Set the minimum permutation entropy as the objective
function, use the RIME optimization algorithm to solve for the optimal decompo-
sition parameters (K, α) of MVMD, and decompose the collected load and ratio
error sequences.

• Feature Selection and Reconstruction: Utilize the Spearman rank correlation coefficient
to filter the decomposed subcomponents, eliminating irrelevant components.

• Sequence Reconstruction: Reconstruct the decomposed sequences and establish predic-
tive sub-models for the reconstructed sequences.

• BiTCN-MHA Model Training: Predict each input signal component through BiTCN to
extract deep features and generate a multidimensional feature matrix. After passing
through a flattening layer to the MHA unit for marking important information, output
the predicted subcomponents. The final prediction result is obtained by accumulation.

5. Case Study Analysis and Discussion

This case study was conducted in a Matlab 2023b environment, with data sourced
from an operational 110 kV substation in Henan, China. Standard transformers connected
online facilitated the real-time data collection via a 24-bit acquisition card for 0.2 class
current transformers in operation. The data, transmitted through a merging unit to the
verification platform, include secondary outputs from the transformer and standard output
data. The device’s sampling frequency is set at 10 min per sample, recording the intended
output signals. After removing data points invalid data points and those beyond three
standard deviations, a total of 4025 data values were recorded for September. Each dataset
is divided into two parts: a training dataset and a testing dataset, with a ratio of 0.8:0.2, the
last six days designated as the test set. The distribution of the original ratio error and load
sample points is depicted in Figure 3.

Figure 3. Original ratio error and load sample points (left Y-axis for difference ratio error, right Y-axis
for load).

5.1. Model Evaluation Metrics

To evaluate the performance of the model, three statistical metrics are employed: Mean
Absolute Error (MAE), Root-Mean-Squared Error (RMSE), and Median Absolute Error
(MedAE). The mathematical expressions for these metrics are given below:

ERMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (24)

EMAE =
1
n

n

∑
i=1

|ŷi − yi| (25)

EMedAE = median(|ŷ1 − y1|, ..., |ŷn − yn|) (26)
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where yi denotes the actual ratio error values, ŷi the predicted ratio error values, and
n the total number of samples. Lower values of EMAE, ERMSE, and EMedAE signify mi-
nor deviations between the predicted and actual values, indicating higher accuracy of
the model.

5.2. Model Evaluation Metrics

To verify model improvements through backtesting, original data are utilized as input,
against which six benchmark models are compared: GRU [27], LSTM [28], BiLSTM [29],
TCN [30], and the enhanced TCN, namely the bidirectional BiTCN model. For consistent
lateral comparison, a uniform learning rate of 0.0025 is set, along with a batch size of 256
and a step size of 24. The L2 regularization parameter for all models is set to 5 × 10−4.
The hidden layers for GRU, LSTM, and BiLSTM models are configured to 100, while both
TCN and BiTCN have four layers, with a dropout rate of 0.1. Comparative assessments
of prediction performance are illustrated in Table 1. Randomly select two consecutive
72-points for display in Figures 4 and 5.

Figure 4. The evolution of the optimal solution over iterations: randomly select 72 consecutive
points (12 h).

Figure 5. The evolution of the optimal solution over iterations: randomly select 72 consecutive
points (12 h).
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Table 1. Comparison of performance of five basic algorithms.

Models ERMSE EMAE EMedAE

GRU 2.987 × 10−3 1.727 × 10−3 1.023 × 10−3

LSTM 2.988 × 10−3 1.807 × 10−3 1.054 × 10−3

BiLSTM 2.837 × 10−3 1.576 × 10−3 0.811 × 10−3

TCN 2.730 × 10−3 1.685 × 10−3 1.188 × 10−3

BiTCN 2.670 × 10−3 1.562 × 10−3 1.143 × 10−3

The table and figures above demonstrate the performance differences among various
models on this dataset. The BiTCN and BiLSTM, incorporating the capabilities of bidirec-
tional networks, outperform their unidirectional equivalents, TCN and LSTM, respectively.
Among them, BiLSTM shows the best performance on the MedAE metric with a score
of 0.811 × 10−3, indicating effective control over the median error. In contrast, BiTCN
performs best in terms of MAE and RMSE, with scores of 1.562 × 10−3 and 2.670 × 10−3,
respectively. This suggests that BiTCN provides high accuracy in handling most data points
but struggles to control the median prediction error in certain specific circumstances.

The reason lies in the design of the BiTCN model which, although effective at cap-
turing long-term dependencies and cyclical patterns in time series, generates a skewed
error distribution for certain atypical outlier points within this dataset, thereby resulting
in substantial median errors. Although these errors are significant, their low frequency
minimizes their impact on the RMSE. Additionally, the model’s optimization strategy pri-
marily focuses on reducing overall errors, which can sometimes compromise the predictive
accuracy at critical points. Therefore, it is necessary to further optimize the BiTCN model
to enhance its adaptability to data and improve its capability to handle outlier points.

5.3. MVMD Decomposition and Reconstruction

In MVMD decomposition, the penalty function and the number of modal components
are formulated into a two-dimensional optimization problem. This problem is iteratively
addressed through an optimization algorithm as depicted in Figure 6 to enhance the
decomposition quality. By meticulously managing the decomposition details, common
issues such as limited interpretability with empirical methods, incomplete decomposition,
and inadvertent noise introduction are mitigated.

As demonstrated in the figure above, adaptive decomposition effectively segments
the original ratio error and load sequences into distinct subcomponents. The parameters
(K, α) are configured to round towards zero, where the optimal decomposition values are
(13, 18,271). The decomposed IMF components are then screened using the Spearman rank
correlation coefficient. Only those subcomponents that exhibit strong correlations with
the original sequence are retained. The results of this correlation analysis are presented
in Figure 7.

Based on the correlation coefficients calculated in Figure 7, a threshold value Q of
0.1 is set. Subcomponents with correlation coefficients greater than Q are retained as
relevant components for building the prediction model. Subcomponents with values less
than Q, IMF3 to IMF13, are combined to form a high-frequency component. The residual
components from the decomposition are also added to this combination, resulting in a
new reconstructed component referred to as IMF4. The reconstructed load and ratio error
components are shown in Figures 8 and 9.
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Figure 6. The evolution of the optimal solution over iterations, reflecting the optimization process of
parameters K and α, and corresponding changes in the objective function.

Figure 7. Spearman rank correlation coefficient analysis. To make the chart clearer, we have replaced
the values within the range [−0.04, 0.04] with <0.04 and bolded the values greater than 0.04.

Figure 8. Reconstructed load components.
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Figure 9. Reconstructed ratio error components.

Figure 8 shows the reconstructed load component, and Figure 9 displays the recon-
structed ratio error component. As seen in the figures, after the improved dual-channel
decomposition of MVMD, decomposing the original sequence into simpler components
with different frequencies and amplitudes, each of the IMF1, IMF2, and IMF3 exhibits
distinct trends. It is also observable from the figures that IMF1 has the most significant
correlation with the original sequence, as shown in Figure 3. Compared to the original se-
quence, IMF1 is more stable and orderly in trend, demonstrating the effectiveness of the
MVMD decomposition and validating the correctness of the Spearman rank screening
method. Decomposing non-stationary sequences into simpler trend series and replac-
ing the original sequences as model inputs reduce the complexity of model training
while increasing the training data, thereby improving the model’s overall generalization
and performance.

After the dual-channel decomposition using MVMD, each of the IMF1, IMF2, and
IMF3 exhibits distinct trend components. It is also observable from the figures that IMF1
has the most significant correlation with the original series shown in Figure 3. Compared
to the original series, IMF1 is more stable and orderly in trend, which demonstrates the
effectiveness of the MVMD decomposition and validates the correctness of the Spearman
rank screening method. Decomposing non-stationary sequences into simpler trend series
can reduce the complexity of model training and enhance the generalization performance
of the model, thereby improving the learning capabilities for complex models.

5.4. Model Ablation Study

To further analyze the effectiveness of the mixed deep learning model and quantify
the impact of the MVMD framework on the model proposed in this paper, this section
conducts detailed comparative experiments. The experiments compare three different
model configurations: the standard BiTCN model, the BiTCN integrated with Multi-
Head Attention mechanism (abbreviated as BiTCN-MHA), and the BiTCN-MHA using
components decomposed of MVMD and screened by Spearman rank as inputs (abbrevi-
ated as MVMD-BiTCN-MHA). The specific results of these comparisons are detailed in
Figure 10 and Table 2.

The results in Table 2 indicate that the method proposed in this study outperforms
the standard BiTCN and the enhanced BiTCN-MHA model in various evaluation metrics.
Specifically, improvements of 17.9%, 23.2%, and 43.1% in RMSE, MAE, and MedAE were
noted compared to the standard BiTCN, and 15.9%, 17.1%, and 23.9% improvements
compared to the BiTCN-MHA. This method not only shows superior performance in
overall error management compared to BiTCN and BiTCN-MHA but also demonstrates
higher robustness and effectiveness in managing median errors. The value of 0.6507 × 10−3

is significantly lower than 1.143 × 10−3 for BiTCN and 0.856 × 10−3 for BiTCN-MHA, clearly
improving on the limitations of previous BiTCN models. This indicates that the proposed
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method not only minimizes overall error management but also has significant advantages
in handling outliers and extreme data points. From Figure 10, it is also observed that
MVMD-BiTCN-MHA not only shows more precise trend following in tracking real values
but also exhibits better adaptability and prediction accuracy when dealing with extreme
data points.

Figure 10. Ablation study analysis.

Table 2. Comparison of the evaluation effect of ablation study.

Models ERMSE EMAE EMedAE

BiTCN 2.670 × 10−3 1.562 × 10−3 1.143 × 10−3

BiTCN-MHA 2.605 × 10−3 1.447 × 10−3 0.856 × 10−3

This study 2.191 × 10−3 1.199 × 10−3 0.651 × 10−3

These results validate the optimal utility of MVMD processing, Spearman rank screen-
ing, and reconstruction, along with the multi-head self-attention mechanism in enhancing
deep learning models for handling complex time series data, particularly in improving
prediction accuracy and responsiveness to extreme changes.

To visually compare the performance of different models, data from Tables 1 and 2
are consolidated and presented in a bar chart, as shown in Figure 11. The scatter plot of
absolute errors per point for each model is shown in Figure A1. The method introduced
in this study successfully addresses the challenge of applying a uniform decomposition
standard to heterogeneous data by incorporating the optimal use of MVMD. The precise
decomposition via MVMD and subsequent reconstruction using the Spearman rank effec-
tively mitigates the negative impact of the original complex non-stationary sequences on
model performance.

Additionally, the strategy of integrating a hybrid model framework further enhances
the prediction accuracy, enabling the proposed method to effectively predict the ratio
error of transformers and also confirming the inferences made during the theoretical
research phase.
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Figure 11. Comparison of ratio error assessment effectiveness.

6. Conclusions

This paper considers the impact of load fluctuations on voltage transformers and
proposes a voltage transformer measurement error prediction model that integrates multi-
variate variational mode decomposition (MVMD) with a hybrid temporal convolutional
network (TCN) to effectively predict the ratio error in transformers. The main conclusions
drawn from this study can be summarized as follows:

• The enhanced MVMD algorithm improves the precision and interpretive power of
dual-channel signal decomposition and utilizes the Spearman rank correlation co-
efficient to select dominant modes after decomposition, reconstructing the signal
channels. This advances the model’s generalization capabilities and its ability to learn
from complex sequences.

• By integrating a bidirectional temporal convolutional network and a multi-head
attention mechanism, the model takes into account both the correlation of the input
load and the dynamic changes of the time series, enhancing its predictive stability for
future trends.

In summary, the proposed MVMD-PE-P-TCN-MHA model provides a new method for
assessing and predicting measurement errors in voltage transformers under load changes,
contributing to the safe operation of power systems and the fairness of energy transactions.
The proposed model is expected to play a vital role in improving the reliability of future
grids in which dynamic loads of uncertain location and operational mode such as EVs will
be significant.
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Appendix A

(a) LSTM (b) GRU (c) BILSTM

(d) TCN (e) BiTCN (f) BiTCN-MHA

(g) MVMD-BiTCN-MHA

Figure A1. Scatter plot of absolute errors per point: (a) Scatter plot of absolute errors per point
(LSTM). (b) Scatter plot of absolute errors per point (GRU). (c) Scatter plot of absolute errors per point
(BILSTM). (d) Scatter plot of absolute errors per point (TCN). (e) Scatter plot of absolute errors per
point (BiTCN). (f) Scatter plot of absolute errors per point (BiTCN-MHA). (g) Scatter plot of absolute
errors per point (MVMD-BiTCN-MHA).
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8. Rodríguez-Pajarón, P.; Hernández, A.; Milanović, J.V. Probabilistic assessment of the impact of electric vehicles and nonlinear

loads on power quality in residential networks. Int. J. Electr. Power Energy Syst. 2021, 129, 106807. [CrossRef]
9. Fu, Y.; Meng, X.; Su, X.; Mi, Y.; Tian, S. Coordinated charging control of PEV considering inverter’s reactive power support and

three phase switching in unbalanced active distribution networks. Electr. Power Autom. Equip. 2020, 40, 1–7.
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