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Abstract: This paper proposes a robust lateral control scheme for the path tracking of autonomous
vehicles. Considering the discrepancies between the model parameters and the actual values of the
vehicle and the fluctuation of parameters during driving, the norm-bounded uncertainty is utilized
to deal with the uncertainty of model parameters. Because some state variables in the model are
difficult to measure, an H∞ observer is designed to estimate state variables and provide accurate state
information to improve the robustness of path tracking. An H∞ state feedback controller is proposed
to suppress system nonlinearity and uncertainty and produce the desired steering wheel angle to
solve the path tracking problem. A feedforward control is designed to deal with road curvature
and further reduce tracking errors. In summary, a path tracking method with H∞ performance is
established based on the linear matrix inequality (LMI) technique, and the gains in observer and
controller can be obtained directly. The hardware-in-the-loop (HIL) test is built to validate the
real-time processing performance of the proposed method to ensure excellent practical application
potential, and the effectiveness of the proposed control method is validated through the utilization
of urban road and highway scenes. The experimental results indicate that the suggested control
approach can track the desired trajectory more precisely compared with the model predictive control
(MPC) method and make tracking errors within a small range in both urban and highway scenarios.

Keywords: autonomous path tracking; lateral dynamic control; H∞ control; parameter uncertainty;
LMI

1. Introduction

Autonomous driving is becoming increasingly feasible with the development of critical
technologies like steering-by-wire, artificial intelligence, and others [1,2]. The development
of autonomous driving technology can effectively reduce traffic accidents caused by various
human factors, improve the efficiency of traffic operation, and alleviate the problem of
traffic congestion, while taking the driver out of mechanized driving and making the
driving process comfortable [3,4].

Longitudinal and lateral dynamics controls are essential components of autonomous
driving and are typically considered separately or in a coupled way [5]. Lateral dynamics
control, which uses automatic steering to keep the vehicle near the desired trajectory
within a sensitive error range, has been the subject of several research studies, and many
control schemes have been established, such as proportion integration differentiation (PID)
control [6], fuzzy control [7], sliding mode control [8], linear quadratic regulator (LQR)
control [9], model predictive control (MPC) [10], and H∞ control [11]. Multiple fuzzy
inference engines were used to design the steering controller, and the stability condition
was given in [7]. A sliding mode-based state observer was proposed to estimate the side
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slip angle, and an adaptive sliding mode controller was designed to calculate the corrected
steering angle in [8]. A dangerous potential field was constructed to generate a desired
trajectory for collision avoidance, and the multi-constrained MPC controller is designed to
achieve path tracking in [10]. Since the vehicle lateral control is a comparatively complex
problem, which needs more robustness to ensure safety [12], and since it is well-known
that the H∞ control method has an excellent ability to deal with structural perturbation and
outside interference [13], it has been applied to improve path tracking performance.

A robust output-feedback controller was designed, and particular uncertainties and
disturbances of the autonomous race car caused by limit driving or chassis adjustments
are considered in the controller design in [14]. The observer-based finite frequency H∞
controller was proposed in [15], and the linear parameter varying (LPV) model was utilized
to formulate the nonlinear path tracking system, in which the vehicle speed variable is
taken into account. The experimental results demonstrate that this control method is supe-
rior to the full-frequency control in terms of tracking performance. Ref. [16] presented a
robust H∞ output-feedback control strategy, which employed the mixed genetic algorithm
to obtain control gain that satisfies linear matrix inequality (LMI) and realizes path follow-
ing. A lateral control system with fuzzy state observer based on the Takagi–Sugeno fuzzy
model of four-wheel independent vehicles was proposed, and H∞ state feedback control
was adopted to produce the desired front wheel steering angle and external yaw moment
in [17]. A LPV/H∞ controller was designed to generate the front and rear wheel steering
angles and external yaw moment for autonomous ground vehicles, and the weighted least
square (WLS) allocation algorithm was utilized to achieve torque allocation between the
left and right side wheels in [18]. An H∞ output feedback control method considering
input delay and tire saturation was proposed in [19]. To increase the robustness of the
controller, the uncertainty of tire cornering stiffness and external disturbance were consid-
ered. A robust H∞ fault-tolerant controller was proposed in [20]. The dynamic model also
takes actuator loss-of-effectiveness and bias fault into account in addition to parameter
uncertainty. In addition to the design of the H∞ controller, the author treats the input data
dropouts as random binary numbers that form a Bernoulli distribution to deal with the
issue of unreliable communication links in [21]. The backlash-type hysteresis of the steering
system was considered, and the H∞ controller was designed in [22]. The above H∞ control
methods partially address the issues of parameter uncertainty and outside interference,
while the LPV model was utilized to deal with the challenge of system nonlinearity. Further,
some studies consider the issues of signal delay and loss of the steering system.

Nevertheless, the majority of the above literature only took into account the uncertainty
of two or three model parameters and the others are ignored, which is not desirable. The
primary objective of this paper is to devise a robust observer and controller in a decoupled
manner, while considering the uncertainties associated with all parameters. The method of
decoupling is employed to mitigate the complexity of the solution, as it proves challenging
to address the problem when there is a coupling between the observer and controller.
Meanwhile, the quantity, weight, and placement of passengers have a significant impact
on the vehicle’s mass, the location of the mass center, and the moment of inertia, which is
particularly significant in severe circumstances and can seriously affect the performance
of path tracking. Hence, it is necessary to consider the uncertainty of all parameters to
improve the robustness and performance of path tracking.

Compared with the previous research, the main contributions of this paper are sum-
marized as follows:

1. The uncertainty of vehicle mass, tire cornering stiffness, the length from the center
of gravity (CG) to the front and rear wheel axles, longitudinal velocity, and moment
of inertia are considered, and the norm-bounded uncertainty is utilized to deal with
them in the design of a dynamic model. Then, a quasi-linear system with uncertainty
is established for the vehicle dynamics control.
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2. In order to restrain the nonlinearity and uncertainty of the system, the design criteria
of the H∞ observer and controller are established and can be utilized for path tracking
and other lateral control fields.

3. A feedforward control approach is designed, which includes adaptive feedforward
to deal with road curvature and proportional feedforward to further reduce tracking
errors. Then, a robust lateral control performance can be obtained for its practical
application.

The overall lateral control process is shown in Figure 1, and the structure of this paper
is organized as follows. Section 2 describes the lateral dynamics model and explains the
treatment of parameter uncertainty. In Sections 3 and 4, the derivation process of the H∞
observer and controller is described in detail. In Section 5, the feedforward control is
proposed to suppress static errors. In Section 6, the simulation based on Prescan-Simulink
and an analysis of the results is presented. Finally, a brief conclusion to this paper is
provided in Section 7.

Figure 1. Structure diagram of the robust lateral control system.

2. System Design
2.1. Lateral Dynamics Model

Vehicle models can be divided into kinematic models based on geometric relations [23]
and dynamic models based on mechanical relationships, taking tire characteristics into
consideration. Kinematic models are typically applied at low velocities. The tire’s sideways
characteristics are disregarded because of their weak force. While the vehicle is moving at
a faster speed, the lateral force on the vehicle cannot be neglected. The dynamics models
provide a more accurate description of the vehicle’s turning characteristics.

The lateral dynamics model of 4-wheel-steering vehicles is established based on the 2-
DoF dynamics model [24], and it is more efficient for path tracking because it is constructed
in the Frenet coordinate system, which incorporates road information. When the rear
wheel angle of the vehicle is 0, neglecting the second derivative of desired vehicle yaw rate
ψ̈re f and incorporating ψ̇re f = Vegoc, as shown in Figure 2, the lateral dynamics model of
front-wheel steering vehicles can be expressed as follows, and the definitions of symbols
are listed in Table 1:

˙̃X = ÃX̃ + B̃1δ + B̃2c, (1)

where
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X̃ =
[
e1 ė1 e2 ė2

]T ,

Ã =


0 1 0 0

0 − 2Ca f +2Car
mVego

2Ca f +2Car
m − 2Ca f l f −2Car lr

mVego

0 0 0 1

0 − 2Ca f l f −2Car lr
IzVego

2Ca f l f −2Car lar
Iz

−
2Ca f l2

f +2Car l2
r

IzVego

,

B̃1 =


0

2Ca f
m
0

2Ca f l f
Iz

, B̃2 =


0

−V2
ego −

2Ca f l f −2Car lr
m

0

−
2Ca f l2

f +2Car l2
r

Iz

.

Figure 2. Lateral dynamics model.

Table 1. Symbols and descriptions for the dynamics model.

Description Symbol Unit

Vehicle mass m kg
Vehicle yaw moment of inertia Iz m/s2

Cornering stiffness of front/rear tires Ca f , Car N/rad
Distance from CG to front/rear axle l f , lr m

Vehicle longitudinal speed Vego m/s
Center of vehicle gravity CG

Vehicle side slip angle β rad
Front wheel angle δ rad

Speed deflection angle of front/rear wheel α1, α2 rad
Lateral force on front/rear wheel Fy1, Fy2 N

Yaw angle of vehicle ψ rad
Desired orientation of vehicle ψre f rad

Lateral distance error from the CG to the reference trajectory e1 m
Heading angle error e2 rad

Path curvature c m−1

Since the steering system has a significant impact on the performance of path tracking,
the first-order inertia element is appended to take into account the actual steering system’s
delay property, with the front wheel angle serving as the state variable, and the steering
wheel angle representing the input. Then, Equation (1) can be rewritten as:
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d
dt

[
X̃
δ

]
=

[
Ã B̃1
0 − 1

τ

][
X̃
δ

]
+

[
0
1
τi

]
u +

[
B̃2
0

]
c, (2)

where τ is the time constant of the first order process, i represents the steering system’s
transmission ratio, and c denotes the curvature of the ideal path. Since τ and i can be
obtained through online calibration by the steering-by-wire system of the vehicle, their
uncertainties can be disregarded.

Remark 1. The lateral dynamic model is a linear time-invariant (LTI) model, which assumes that
the longitudinal speed is constant. In this paper, it can be considered that the system is quasi-
linear in the future control domain, and the dynamics model is switched according to the velocity
interval to replace the LPV model. Then, the computational efficiency is improved, and the real-time
performance of the algorithm is guaranteed.

2.2. Description of System Uncertainty

The path curvature c can be regarded as an external disturbance ωx in the design of
the observer and controller, since it is typically small in cases of high speed. The visual
sensor can directly measure the lateral distance error e1 and heading error e2. Meanwhile,
considering the uncertainty of vehicle parameters, the system in Equation (2) can be
described as: 

ẋ(t) = (A + ∆A(t))x(t) + B1u(t)
+ (B2 + ∆B2(t))ωx(t)

y(t) = Cx(t),

(3)

where

x =

[
X̃
δ

]
, A =

[
Ã B̃1
0 − 1

τ

]
, B1 =

[
0
1
τi

]
,

B2 =

[
B̃2
0

]
, C =

[
1 0 0 0 0
0 0 1 0 0

]
.

The perturbed matrices ∆A(·), ∆B2(·) are expressed in the following form:{
∆A(t) = H1N(t)E1
∆B2(t) = H2N(t)E2

, (4)

where N(t) is an unknown matrix function representing uncertainty which satisfies
NT(t)N(t) ≤ I, and I is the identity matrix of the appropriate dimension. The inequal-
ity NT(t)N(t) ≤ I implies that the uncertainty of the parameters in the model must not
surpass the fluctuation range of the respective parameters.

Next, the construction process of H1, E1, H2, and E2 in Equation (4) will be discussed
in detail.

Since the parameters of mass, velocity, and moment of inertia are present in the
denominator, higher-order uncertainty will be generated. To avoid this, all parameters are
represented via the norm-bounded uncertainty [25]:

Caf = C f e + N(t)C̄ f n,
Car = Cre + N(t)C̄rn,
l f = l f e + N(t)l̄ f n,
lr = lre + N(t)l̄rn,
Vego = Vmoe + N(t)V̄mon,

(5)

where
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C f e =
C f max + C f min

2
, C̄ f n =

C f max − C f min

2
,

Cre =
Cr max + Cr min

2
, C̄rn =

Cr max − Cr min

2
,

l f e =
l f max + l f min

2
, l̄ f n =

l f max − l f min

2
,

lre = L − l f e, l̄rn = −l̄ f n,

Vmoe =
Vmax + Vmin

2
, Vmon =

Vmax − Vmin

2
,

where C f max and Cr max represent the maximum tire cornering stiffness of the front and rear
wheels; C f min and Cr min represent the minimum tire cornering stiffness of the front and
rear wheels, which can be obtained by fitting experimental data; l f max and l f min denote
the maximum and minimum distance between the front axle and the center of gravity;
Vmax and Vmin are the maximum and minimum estimate of the vehicle’s current speed,
respectively; and L represents the wheelbase between the front and rear axles of the vehicle.

Similarly, using the maximum and minimum estimates of the current vehicle speed
Vmax, Vmin, maximum mass mmax, minimum mass mmin, maximum rotational inertia Iz max,
and minimum rotational inertia Iz min, the uncertain vehicle speed, mass, and rotational
inertia can be expressed as:

1
Vego

= Ve + N(t)V̄n,
1
m = me + N(t)m̄n,
1
Iz
= Ie + N(t) Īn,

(6)

where

Ve =
1
2
(Vs max + Vs min), V̄n =

1
2
(Vs max − Vs min),

Vs max =
1

Vmin
, Vs min =

1
Vmax

,

me =
1
2
(ms max + ms min), m̄n =

1
2
(ms max − ms min),

ms max =
1

mmin
, ms min =

1
mmax

,

Ie =
1
2
(Izs max + Izs min), Īn =

1
2
(Izs max − Izs min),

Izs max =
1

Iz min
, Izs min =

1
Iz max

.

It is noteworthy that the values at both ends of Equation (6) are approximately equiv-
alent. As the difference between Vmax and Vmin decreases, the value on the right side of
Equation (6) is closer to the value on the left.

For the representation of the system in Equation (3), uncertain terms
Ca f +Car

mVego
can be

written as Equation (7), and others are described in Appendix A.

Ca f + Car

mVego
=

[(
C f e + N(t)C̄ f n

)
+ (Cre + N(t)C̄rn)

]
(me + N(t)m̄n)(Ve + N(t)V̄n)

=
[(

C f e + Cre

)
+

(
C̄ f n + C̄rn

)
N(t)

][
meVe + (meV̄n + Vem̄n)N(t) + m̄nV̄nN2(t)

]
=

(
C f e + Cre

)
meVe +

[(
C f e + Cre

)
(meV̄n + Vem̄n) +

(
C̄ f n + C̄rn

)
meVe

]
N(t)

+
[(

C f e + Cre

)
m̄nV̄n +

(
C̄ f n + C̄rn

)
(meV̄n + Vem̄n)

]
N2(t) +

(
C̄ f n + C̄rn

)
m̄nV̄nN3(t)

(7)
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Note that |N(t)| ≤ 1, where |·| represents the absolute value. Thus, the higher-order
term of N(t) is relatively smaller or equal to its first-order term, and then Equation (7) is
approximated as:

Ca f + Car

mVego
≈

(
C f e + Cre

)
meVe + ∆1N(t), (8)

where

∆1 =
(

C f e + Cre

)
(meV̄n + Vem̄n + m̄nV̄n)

+
(

C̄ f n + C̄rn

)
(meVe + meV̄n + Vem̄n + m̄nV̄n),

and H1, E1, H2, and E2 can be defined as:

H1 =


0 0 0 0 0
0 −2∆1 2∆2 −2∆3 2∆4
0 0 0 0 0
0 −2∆5 2∆6 −2∆7 2∆8
0 0 0 0 0

, E1 = I5×5,

H2 =


0 0 0 0 0

−∆9 0 0 0 0
0 0 0 0 0

−2∆10 0 0 0 0
0 0 0 0 0

, E2 =


1
1
1
1
1

,

where

∆2 =
(

C f e + Cre

)
m̄n +

(
C̄ f n + C̄rn

)
(me + m̄n),

∆3 = ζ1meVe +
(

C f el f e − Crelre + ζ1

)
(meV̄n + Vem̄n +m̄nV̄n),

∆4 = C f em̄n + meC̄ f n + C̄ f nm̄n,

∆5 = ζ1 IeVe +
(

C f el f e − Crelre + ζ1

)
(IeV̄n + Ve Īn + ĪnV̄n),

∆6 = ζ1 Ie +
(

C f el f e − Crelre + ζ1

)
Īn,

∆7 = ζ2 IeVe +
(

C f el2
f e + Crel2

re + C̄ f n l̄2
f n + C̄rn l̄2

rn + ζ2

)
(IeV̄n + Ve Īn) +

(
C̄ f n l̄2

f n + C̄rn l̄2
rn + ζ2

)
ĪnV̄n,

∆8 =
(

C f e l̄ f n + l f eC̄ f n + C̄ f n l̄ f n

)
Ie +

(
C f el f e + C f e l̄ f n + l f eC̄ f n + C̄ f n l̄ f n

)
Īn,

∆9 = 2ζ1me + 2
(

C f el f e − Crelre + ζ1

)
m̄n + 2VmoeV̄mon + V̄2

mon,

∆10 =
(

l2
f e l̄ f n + l2

re l̄rn + ζ3

)
Ie +

(
C f el2

f e + Crel2
re +l2

f eC̄ f n + l2
reC̄rn + ζ3

)
Īn,

ζ1 = C f e l̄ f n + l f eC̄ f n − Cre l̄rn − lreC̄rn + C̄ f n l̄ f n − C̄rn l̄rn,

ζ2 = 2C f el f e l̄ f n + 2Crelre l̄rn + C̄ f nl2
f e + C̄rnl2

re

+ C f e l̄2
f n + Cre l̄2

rn + 2C̄ f n l̄ f nl f e + 2C̄rn l̄rnlre,

ζ3 = 2C f el f e l̄ f n + 2Crelre l̄rn + C f e l̄ f n + Cre l̄rn

+ 2l f e l̄ f nC̄ f n + 2lre l̄rnC̄rn + C̄ f n l̄ f n + C̄rn l̄rn.

Remark 2. In order to improve the robustness of the system, the uncertainty of all parameters in
the model is taken into consideration and processed by norm-bounded uncertainty. Furthermore,
a quasi-linear system is established for the design of the H∞ criteria.
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3. Design of the H-Infinity Observer

The accuracy of model parameter estimation has a direct impact on vehicle control
effectiveness, but obtaining accurate parameters for the vehicle dynamics model is chal-
lenging in reality. Traditional optimal control optimizes control inputs based on known
model parameter assumptions, but actual parameter estimation errors can be significant.
Achieving better tracking performance requires a complex process of parameter adjustment,
which can be effectively addressed by robust control methods.

It is assumed that the road curvature can be accurately detected, which indicates that
the path curvature is regarded as a known variable [26]. Since some state variables are
difficult to measure and the physical systems are uncertain and perturbed [27], the following
H∞ observer is established to provide accurate state estimates to improve the performance
and robustness of path tracking and ensure that all state variables can be effectively used
for feedback to produce the desired control input:{ ˙̂x(t) = Ax̂(t) + B1u(t) + L(y(t)− ŷ(t))

ŷ(t) = Cx̂(t)
, (9)

where L is the observer gain, and x̂(t) and ŷ(t) are the estimates of x(t) and y(t).
When the observer error is designed to be ex(t) = x(t)− x̂(t), the error system can be

depicted as follows: {
ėx(t) = (A − LC)ex(t) + Γω(t)

ey(t) = Cex(t)
, (10)

where Γ =
[
∆A B2 + ∆B2

]
and ω(t) =

[
xT(t) ωT

x (t)
]T . Since the H∞ observer and H∞

controller are coupled, it is necessary to solve bilinear matrix inequalities (BMIs) to obtain
feedback gain, which is a challenging task. Therefore, the H∞ observer and H∞ controller
are designed and solved separately in this paper. Here, x(t) can be assumed to be bounded,
which will be proved in the next section.

In order to obtain the H∞ design criteria, the necessary lemma is given as follows:

Lemma 1 ([28]). For any real matrices H and E, the following property holds for any positive scalar
ϵ > 0:

HN(t)E + ET NT(t)HT ≤ εHHT +
1
ε

ETE. (11)

Then, an observer design criterion is proposed as shown below to suppress disturbance and
ensure accurate estimation of the state observer.

Theorem 1. If scale γo > 0 exists and the following inequality is satisfied:

Θ 0 PoB2 CT Po H1 Po H2 0 0
∗ −γ̄oρ1 0 0 0 0 ϵ1ET

1 0
∗ ∗ −γ̄oρ2 0 0 0 0 ϵ2ET

2
∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ −ϵ1 I 0 0 0
∗ ∗ ∗ ∗ ∗ −ϵ2 I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ϵ1 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ϵ2 I


< 0 (12)

where Θ = AT Po − CTξT + Po A − ξC, γ̄o = γ2
o ,

then it has the solution: Po = PT
o > 0, γ̄o > 0, ϵ1 > 0, ϵ2 > 0, ξ = PoL. Then, the H∞

performance is true:∫ T

0
∥ ey(t)∥2dt < λmax(Po) ∥ ex(0)∥2 + γ2

o

∫ T

0
ωT(t)Qω(t)dt, (13)
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where λmax(Po) is the largest eigenvalue of a positive definite matrix Po, Q = diag(ρ1, ρ2), and ρ1
and ρ2 are the weight coefficients of x(t) and ωT

x (t), respectively.

Proof of Theorem 1. The Lyapunov function is proposed as Vobs = eT
x (t)Poex(t); then:

V̇obs(t) =ėT
x (t)Poex(t) + eT

x (t)Po ėx(t)

=[eT
x (t)(A − LC)T + ωT(t)ΓT ]Poex(t)

+ eT
x (t)Po[(A − LC)ex(t) + Γω(t)]

=

[
ex(t)
ω(t)

]T[
κ PoΓ

ΓT Po 0

][
ex(t)
ω(t)

]

=

 ex(t)
x(t)

ωx(t)

T κ 0 PoB2
0 0 0

BT
2 Po 0 0

 ex(t)
x(t)

ωx(t)


+

 ex(t)
x(t)

ωx(t)

T 0 Po∆A Po∆B2
∆AT Po 0 0
∆BT

2 Po 0 0

 ex(t)
x(t)

ωx(t)

,

(14)

where κ = (A − LC)T Po + Po(A − LC).
The term in the second half of V̇obs is used to represent the uncertain parameter part of

the system. From Lemma 1 given above in Equation (11), it can be rewritten as: 0 Po∆A Po∆B2
∆AT Po 0 0
∆BT

2 Po 0 0


≤ ε−1

1

Po H1
0
0

Po H1
0
0

T

+ ε1

 0
ET

1
0

 0
ET

1
0

T

+ε−1
2

Po H2
0
0

Po H2
0
0

T

+ ε2

 0
0

ET
2

 0
0

ET
2

T

.

(15)

In order to establish the H∞ performance (13), the evaluation index Jobs is given
as follows:

Jobs =V̇obs(t) + eT
y (t)ey(t)− γ2

o ωT(t)Qω(t)

≤

 ex(t)
x(t)

ωx(t)

T θ 0 PoB2
0 −γ2

o ρ1 0
BT

2 Po 0 −γ2
o ρ2

 ex(t)
x(t)

ωx(t)


+

 ex(t)
x(t)

ωx(t)

TCT

0
0

CT

0
0

T ex(t)
x(t)

ωx(t)

+

 ex(t)
x(t)

ωx(t)

T

ε1

 0
ET

1
0

 0
ET

1
0

T

+ ε2

 0
0

ET
2

 0
0

ET
2

T

 ex(t)

x(t)
ωx(t)



=

 ex(t)
x(t)

ωx(t)

T

Π

 ex(t)
x(t)

ωx(t)

,

(16)

where θ = AT Po − CT LT Po + Po A − PoLC + ϵ−1
1 Po H1HT

1 Po + ϵ−1
2 Po H2HT

2 Po.
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Note that Π < 0 is equivalent to Jobs < 0. By the Schur complement [29], Π < 0 can
be transformed into the LMI in Equation (12). It follows that:∫ T

0

[
V̇obs(t) + eT

y (t)ey(t)− γ2
o ωT(t)Qω(t)

]
dt < 0, (17)

where ∫ T

0
V̇obs(t)dt = Vobs(T)− Vobs(0) > −λmax(Po)∥ex(0)∥2.

Then, we can obtain the H∞ performance (13), and the proof is completed.

4. Design of the H-Infinity Controller

In the actual control process, the sensor-obtained information is subject to interference
and fluctuations, and there is a delay in transmitting the control input from the controller
to the actuator. These challenges can be effectively addressed through feedback control.
However, feedforward control fails to overcome external interferences, requires precise
model information, and has limited efficacy in enhancing tracking performance. Therefore,
research primarily focuses on the design of the feedback controller.

In order to ensure the robustness of vehicle lateral dynamics control, suppress the
nonlinearity and uncertainty of the dynamics model, and improve the performance of
path tracking, an H∞ control scheme based on the above observer is proposed. Defining
u(t) = Kx̂(t) and according to Equations (3) and (9), the state space model of the closed-
loop system is described as:

ẋ(t) =(A + ∆A(t))x(t) + B1Kx̂(t)
+ (B2 + ∆B2(t))ωx(t)

˙̂x(t) =(A + B1K)x̂(t) + LC(x(t)− x̂(t)).

(18)

Considering the observer error ex(t) = x(t)− x̂(t), the augmented vector is defined
as X̄(t) =

[
xT(t) eT

x (t)
]T , and the augmented closed-loop system can be written as:{

˙̄X(t) =ĀX̄(t) + B̄ωx(t)
Ȳ(t) =C̄X̄(t),

(19)

where the system matrix is as follows:

Ā =

[
A + ∆A + B1K −B1K

∆A A − LC

]
,

B̄ =

[
B2 + ∆B2
B2 + ∆B2

]
, C̄ =

[
I 0

]
.

Next, a controller design criterion is given as follows.

Theorem 2. If γc > 0 exists and the following inequality is satisfied:

Ω1 −B1K B2 B1K υPinv1 Pinv1 υ1H1 υ2H2 Pinv1ET
1 0

∗ Ω2 P2B2 0 0 0 υ1P2H1 υ2P2H2 0 0
∗ ∗ −γ̄c I 0 0 0 0 0 0 ET

2
∗ ∗ ∗ −υI 0 0 0 0 0 0
∗ ∗ ∗ ∗ −υI 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −υ1 I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −υ2 I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −υ1 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −υ2 I


< 0, (20)
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it has the solution Pinv1 = PT
inv1 > 0, P2 = PT

2 > 0, γ̄c > 0, ᾱ > 0, υ > 0, υ1 > 0, υ2 > 0, where
Ω1 = Pinv1 AT + APinv1 − ᾱI, Ω2 = AT P2 − CT LT P2 + P2 A − P2LC, ᾱ = α2, γ̄c = γ2

c . Then,
the H∞ performance is true:∫ T

0
∥ Ȳ(t)∥2dt < λmax(Pc1) ∥ x(0)∥2

+ λmax(Pc2) ∥ ex(0)∥2 + γ2
c

∫ T

0
∥ ωx(t)∥2dt

(21)

where λmax(Pc) is the largest eigenvalue of a positive definite matrix Pc .

Proof of Theorem 2. The Lyapunov function is designed to be Vctl = X̄T(t)PcX̄(t), and
then its derivative is shown as follows:

V̇ctl(t) = ˙̄X
T
(t)PcX̄(t) + X̄T(t)Pc

˙̄X(t)

= X̄T(t)(ĀT Pc + Pc Ā)X̄(t) + ωT
x (t)B̄T PcX̄(t)

+ X̄T(t)Pc B̄ωx(t),

(22)

where the matrix Pc is defined as Pc1 ⊕ Pc2.
Then, the specific expression of V̇ctl(t) is as follows:

V̇ctl(t) =

 x(t)
ex(t)
ωx(t)

T θ1 θ2 Pc1B2
θT

2 θ3 Pc2B2
BT

2 Pc1 BT
2 Pc2 0

 x(t)
ex(t)
ωx(t)


+

 x(t)
ex(t)
ωx(t)

T θ4 θ5 θ6
θT

5 0 θ7
θT

6 θT
7 0

 x(t)
ex(t)
ωx(t)

,

(23)

where θ1 = AT Pc1 + KT BT
1 Pc1 + Pc1 A + Pc1B1K, θ2 = −Pc1B1K, θ3 = AT Pc2 − CT LT Pc2 +

Pc2 A − Pc2LC, θ4 = ∆AT(t)Pc1 + Pc1∆AT(t), θ5 = ∆AT(t)Pc2, θ6 = Pc1∆B2(t), θ7 =
Pc2∆B2(t).

The uncertain parameter part of the system can be rewritten as:∆AT(t)Pc1 + Pc1∆AT(t) ∆AT(t)Pc2 Pc1∆B2(t)
Pc2∆A(t) 0 Pc2∆B2(t)
∆BT

2 (t)Pc1 ∆BT
2 (t)Pc2 0


≤ υ1

Pc1H1
Pc2H1

0

Pc1H1
Pc2H1

0

T

+ υ−1
1

ET
1

0
0

ET
1

0
0

T

+ υ2

Pc1H2
Pc2H2

0

Pc1H2
Pc2H2

0

T

+ υ−1
2

 0
0

ET
2

 0
0

ET
2

T

.

(24)

The evaluation index Jcol1 is indicated as the following:

Jcol1 = V̇ctl(t) + ȲT(t)Ȳ(t)− γ2
c ωT

x (t)ωx(t). (25)

According to Equations (19) and (22), it can be deduced that Equation (25) satisfies the
following inequality:
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Jcol1 ≤

 x(t)
ex(t)
ωx(t)

T η1 η2 Pc1B2
ηT

2 η3 Pc2B2
BT

2 Pc1 BT
2 Pc2 −γ2

c I


 x(t)

ex(t)
ωx(t)

+

 x(t)
ex(t)
ωx(t)

TI
0
0

I
0
0

T x(t)
ex(t)
ωx(t)


+

 x(t)
ex(t)
ωx(t)

T
υ−1

1

 ET
1

0
0

 ET
1

0
0

T

+ υ−1
2

 0
0

ET
2

 0
0

ET
2

T

 x(t)

ex(t)
ωx(t)



=

 x(t)
ex(t)
ωx(t)

T

ψ

 x(t)
ex(t)
ωx(t)

,

(26)

where η1 = AT Pc1 + KT BT
1 Pc1 + Pc1 A + Pc1B1K + υ1Pc1H1HT

1 Pc1 + υ2Pc1H2HT
2 Pc1, η2 =

−Pc1B1K + υ1Pc1H1HT
1 Pc2 + υ2Pc1H2HT

2 Pc2, η3 = AT Pc2 − CT LT Pc2 + Pc2 A − Pc2LC +
υ1Pc2H1HT

1 Pc2 + υ2Pc2H2HT
2 Pc2.

Since the inequality ψ < 0 is nonlinear, it needs to be transformed into an LMI.
Multiply the matrix P−1

c1 ⊕ I ⊕ I to the left and right of the ψ, and Pinv1 is defined as the
inverse of matrix Pc1: P−1

c1 ⊕ I ⊕ I = Pinv1 ⊕ I ⊕ I.
According to Lemma 1 in Equation (11) and noting that ∥υPinv1 − B1K∥ ̸= 0, the exis-

tence of α > 0 makes the following inequality true:

υPinv1Pinv1 + υ−1B1KKT BT
1 − α2 I ≥ B1KPinv1 + Pinv1KT BT

1 , (27)

where α > 0 is utilized to ensure that inequality ψ < 0 is true and to avoid ψ ≤ 0.
Then, Jcol1 < 0 is equivalent to Jcol2 < 0, where

Jcol2 =

Ξ1 Ξ2 B2
ΞT

2 Ξ3 Pc2B2
BT

2 BT
2 Pc2 −γ2

c I

+

Pinv1
0
0

Pinv1
0
0

T

+ υ−1
1

 Pinv1ET
1

0
0

 Pinv1ET
1

0
0

T

+ υ−1
2

 0
0

ET
2

 0
0

ET
2

T
(28)

and Ξ1 = Pinv1 AT + APinv1 + υPinv1Pinv1 + υ−1B1KKT BT
1 − α2 I + υ1H1HT

1 + υ2H2HT
2 ,

Ξ2 = −Pc1B1K + υ1H1HT
1 Pc2 + υ2H2HT

2 Pc2, Ξ3 = AT Pc2 − CT LT Pc2 + Pc2 A − Pc2LC +
υ1Pc2H1HT

1 Pc2 + υ2Pc2H2HT
2 Pc2.

According to the Schur complement, the equivalent condition Jcol2 < 0 can be trans-
formed to the LMI as in Equation (20). It follows that:∫ T

0

[
V̇ctl(t) + ȲT(t)Ȳ(t)− γ2

c ωT
x (t)ωx(t)

]
dt < 0 (29)

where

∫ T

0
V̇ctl(t)dt = Vctl(T)− Vctl(0)

> −λmax(Pc1)∥x(0)∥2 − λmax(Pc2)∥ex(0)∥2.
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Then, we can obtain the H∞ performance (21), and the proof is completed.

Remark 3. It can be seen from Equation (19) that Ȳ(t) in the above inequality (21) and the state
variable x(t) are equivalent. The inequality above indicates that Ȳ(t) is bounded, which is consistent
with the assumption when designing the observer that the state variable x(t) is bounded. Then, the
inequality (13) of the observer can be further written as:∫ T

0
∥ ey(t)∥2dt < λmax(Po) ∥ ex(0)∥2

+ γ2
o ρ1

∫ T

0
∥ x(t)∥2dt + γ2

o ρ2

∫ T

0
∥ ωx(t)∥2dt.

(30)

According to Equations (21) and (30), we have∫ T

0
∥ ey(t)∥2dt < γ2

o ρ1λmax(Pc1) ∥ x(0)∥2

+
[
λmax(Po) + γ2

o ρ1λmax(Pc2)
]
∥ ex(0)∥2

+ γ2
o

(
ρ2 + ρ1γ2

c

) ∫ T

0
∥ ωx(t)∥2dt.

(31)

According to Theorems 1 and 2, the design criteria of the H∞ observer and controller based on
the lateral dynamics model are established to ensure the robustness of path tracking.

5. Design of Feedforward Controller

How to obtain excellent performance in path tracking is a key technology for au-
tonomous vehicles. Feedforward–feedback control architectures are suitable for accurate
path tracking with adequate margins of stability [30]. Due to the inclusion of curvature c
in the system model, the steady-state deviation when driving on a road with significant
curvature is not 0 [31]. Feedforward control can provide an immediate response input to
the steering wheel and suppress the static error of the system, so it is necessary to design
the feedforward controller.

If the transmission ratio of the vehicle steering system is i, then

δ =
δb + δ f

i
, (32)

where δ f and δb are adaptive feedforward and feedback control of the steering wheel angle,
respectively.

According to Equation (1), we can obtain

˙̃X = ÃX̃ + B̃1
δb
i
+ B̃1

δ f

i
+ B̃2c. (33)

It is obvious from Equation (33) that neither ė1 nor ė2 can be 0 simultaneously. In ad-
dition, the distance deviation e1 is the primary concern for path tracking, and therefore
the adaptive feedforward control is utilized to force the feedforward deviation of ė1 to be
0. Then,

2Ca f

m
δ f

i
− V2

egoc −
2Ca f l f − 2Carlr

m
c = 0. (34)

The adaptive feedforward of the controller is

δ f =
mV2

ego + 2Ca f l f − 2Carlr
2Ca f

ic, (35)

which implies that adaptive feedforward is proportional to the path curvature. However,
the experimental results illustrate that e1 and e2 of the controller with adaptive feedforward
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are still proportional to the road curvature, which may be caused by model errors or
measurement noise. Hence, an additional proportionate feedforward is considered to
further reduce the errors, and the ideal steering wheel angle is

δwheel = δb + δ f + δk

= Kx̂(t) +
mV2

ego + 2Ca f l f − 2Carlr
2Ca f

ic + Kpc,
(36)

where δk is proportional feedforward, and Kp is the proportional feedforward coefficient,
which can be calibrated by the experiments.

Remark 4. The feedback control of the ideal steering wheel angle makes the system achieve dynamic
stability to solve path tracking issues. However, the adjustment effect of feedback control lags behind
the disturbance of road curvature. In order to improve the control accuracy, a compound control
system is constructed with feedforward control as a supplement when the road curvature can be
measured. The adaptive feedforward realizes the initial adjustment of curvature interference, and the
proportional feedforward further improves the performance of path tracking by taking advantage of
the conclusion that tracking error is proportional to road curvature.

6. Experiment and Analysis

In this section, hardware-in-the-loop (HIL) tests are implemented to demonstrate
the performance of the designed controller. The HIL platform offers the advantage of
combining software systems with other system components for modeling or simulation,
thereby enabling the acquisition of high-fidelity experimental results [32].

The HIL platform is constructed based on Dspace Micro Autobox II, which provides
us with a convenient tool to build the control algorithm. The road scenario is set up by the
host PC. Simultaneously, a smart camera is employed to acquire road information in order
to imitate the real driving environment. All signals are transmitted via the CAN-bus, and
the HIL platform is shown in Figure 3. The dynamics parameters of virtual vehicles are
presented in Table 2.

Figure 3. Schema of the HIL platform.

Table 2. Dynamic parameters of the virtual vehicle.

Description Symbol Parameters

Vehicle mass m 1304 (kg)
Vehicle yaw moment of inertia Iz 1500 (m/s2)

Cornering stiffness of front/rear tires Ca f , Car 48,000, 44,000 (N/rad)
Distance from center of mass to

front/rear axes l f , lr 1.004, 1.480 (m)
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In the design and analysis of controls for autonomous vehicles, the MPC control
algorithm is a frequently utilized approach. The vehicle model used by the MPC algorithm
is shown in Equation (1), and when it is discretized, the state space equation can be
written as:

x(k + 1) = (ÃT + I)x(k) + B̃1Tu(k) + B̃2Tc(k), (37)

where T is the discrete sampling time, and I is the identity matrix of the appropriate
dimension.

If Equation (37) is further transformed into a control increment, it can be rewritten as:

ξ(k + 1) = Ăξ(k) + B̆1∆u(k) + B̆2c(k), (38)

where

ξ(k + 1) =
[

x(k + 1)
u(k)

]
, Ă =

[
ÃT + I B̃1T

0 I

]
,

B̆1 =

[
B̃1T

I

]
, B̆2 =

[
B̃2T

0

]
, ∆u(k) = u(k)− u(k − 1).

The prediction time domain is set to Np, the control time domain is set to Nc, and the
output matrix is assigned as C̆. Consequently, the output state variable of the MPC can be
represented as:

Y = Ψξ(k) + Ξ∆u + ΓK, (39)

where

Y =



η(k + 1)
η(k + 2)

· · ·
η(k + Nc)

· · ·
η(k + Np)

 =



C̆ξ(k + 1)
C̆ξ(k + 2)

· · ·
C̆ξ(k + Nc)

· · ·
C̆ξ(k + Np)

, Ψ =



C̆Ă
C̆Ă2

· · ·
C̆ĂNc

· · ·
C̆ĂNp

, ∆u =


∆u(k)

∆u(k + 1)
· · ·

∆u(k + Nc − 1)

,

Ξ =



C̆B̆1 0 · · · 0
C̆ĂB̆1 C̆B̆1 · · · 0

· · · · · · . . . · · ·
C̆ĂNc−1B̆1 C̆ĂNc−2B̆1 · · · C̆B̆1

· · · · · · · · · · · ·
C̆ĂNp−1B̆1 C̆ĂNp−2B̆1 · · · C̆ĂNp−Nc B̆1


, K =


c(k)

c(k + 1)
· · ·

c(k + Nc − 1)

,

Γ =



C̆B̆2 0 · · · 0
C̆ĂB̆2 C̆B̆2 · · · 0

· · · · · · . . . · · ·
C̆ĂNc−1B̆2 C̆ĂNc−2B̆2 · · · C̆B̆2

· · · · · · · · · · · ·
C̆ĂNp−1B̆2 C̆ĂNp−2B̆2 · · · C̆ĂNp−Nc B̆2


, C̆ =

[
1 0 0 0
0 0 1 0

]
.

The cost function of the MPC is described as follows:

J =
Np

∑
i=1

∥∥∥η(k + i)− ηre f (k + i)
∥∥∥2

Q
+

Nc−1

∑
i=0

∥∆u(k + i)∥2
R, (40)

where Q and R are the weight coefficients for the predicted state variable and the control
input increment, respectively.

In order to simplify the calculation, the road curvature in the future period of time
is set as the current path curvature: c(k) = c(k + 1) = · · · = c(k + Nc − 1). The reference
value of the system output is expressed as follows:
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Yre f = [ηre f (k + 1), ηre f (k + 2), · · · , ηre f (k + Nc), · · · ηre f (k + Np)]
T

= [0, 0, · · · , 0, · · · , 0]T .
(41)

By comparing with the MPC control method, the proposed controller is validated.
It is worth noting that, in the context of MPC for path tracking, the system model

takes into account the influence of road curvature, as demonstrated in Equation (37).
When designing the H∞ observer and controller, the impact of road curvature is treated
as an external interference term. Therefore, to enhance vehicle path tracking performance,
the feedforward control based on the road curvature term is incorporated into the H∞
controller. Additionally, the design process of the H∞ controller takes into consideration the
dynamic characteristics of the steering actuator in order to ensure optimal control perfor-
mance for the actual vehicle. However, in the actual hardware loop simulation, as depicted
in Figure 3, there is only a communication delay between the controller and the host PC.
Hence, for the MPC method, we disregard any delays caused by the steering system.

The feedback gain of the proposed method and the MPC control increment are cal-
culated using parameters that do not match the vehicle model, as presented in Table 3.
The parameter uncertainties are within the range of ±15% of the reference parameter value.
On this basis, the longitudinal speed of the vehicle is divided into several unequal intervals,
and the feedback gain of the H∞ observer and H∞ controller corresponding to each speed
interval is calculated.

Table 3. Dynamic parameters that do not match the virtual vehicle.

Description Symbol Parameters

Vehicle mass m 1400 (kg)
Vehicle yaw moment of inertia Iz 1750 (m/s2)

Cornering stiffness of front/rear tires Ca f , Car 52,000, 48,000 (N/rad)
Distance from center of mass to

front/rear axes l f , lr 1.100, 1.380 (m)

6.1. Test Scenario 1

Scenario 1 is used to verify the performance of the proposed controller on urban roads.
The desired path is taken from real-world urban roads with complex curvature changes.
The road curvature obtained by the smart camera is shown in Figure 4a, and the maximum
curvature can reach about 0.044 m−1.

Due to the influence of traffic lights and traffic flow on urban roads, the longitudinal
speed of vehicles is time-varying and includes stop–go operating conditions. In the process
of driving, the vehicle speed is not uniform in terms of acceleration and deceleration,
as shown in Figure 4b.

The HIL experimental results of vehicle lateral distance error e1 and heading error
e2 are shown in Figure 5a and Figure 5b, respectively. The lateral distance errors for
the proposed control method and the MPC controller are bounded by ±0.1566 m and
±0.3283 m, and the heading errors of the two schemes are limited to within ±0.0573 rad
and ±0.0711 rad. Furthermore, the lateral distance error and heading error regulated by the
proposed approach are enhanced by 52.30% and 19.41% compared with the MPC controller,
which indicates the proposed control system’s tracking accuracy exceeds that of the MPC
controller by a wide margin.

Notably, the variation trend in the lateral distance error and the heading error under
the proposed control approach is approximately consistent with the desired path curva-
ture. This indicates that the lateral distance error and heading error can be compensated
for by the feedforward control combined with road curvature information. Therefore,
the proportional term of curvature is added on the basis of adaptive feedforward.
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(a) Road curvature (b) Longitudinal speed

Figure 4. Road curvature and longitudinal speed in an urban scenario.

(a) Lateral distance error (b) Heading error

Figure 5. Comparison of tracking errors between the H∞ and MPC control methods in an urban
scenario.

It can be shown from a comparison of the lateral distance errors and heading errors
under the proposed control scheme and MPC control methods that the two errors controlled
by the MPC exhibit clear oscillations when the desired path curvature changes and that it
takes some time to return to the steady state.

A comparison of the yaw rate obtained by the proposed approach and the MPC
controller is shown in Figure 6a. The yaw rate’s amount indicates the vehicle’s security
and stability, and its variation has an impact on how comfortable it is. Figure 6b illustrates
that the yaw rate obtained by the proposed control scheme is smoother than that of the
MPC. In addition, the detrended fluctuation analysis is a method used to eliminate the
trend components of the intrinsic properties and to reveal the fluctuations of the system.
The standard deviation of the yaw rate detrended fluctuation data of the proposed control
strategy and the MPC controller are 0.0067 rad/s and 0.0094 rad/s respectively. The former
is improved by 28.72% over the latter, which indicates that the vehicle controlled by the
proposed control approach possesses superior comfort when turning.

In summary, the proposed method can achieve excellent tracking results in urban road
scenarios, and the comfort and safety of path tracking can be guaranteed.
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(a) Yaw rate (b) Detrended fluctuation data

Figure 6. Comparison of yaw rate and detrended fluctuation data between the H∞ and MPC control
methods in an urban scenario.

6.2. Test Scenario 2

In order to further verify the performance and robustness of the designed controller at
higher vehicle speeds, a second scenario is adopted.

The road curvature of the highway scene obtained by the camera is shown in Figure 7a.
The autonomous vehicle must pass through five gently changing arc roads with a maximum
curvature of −0.0013 m−1. The actual speed of the vehicle is depicted in Figure 7b, which
includes most of the speed of the real vehicle when driving on the highway, and the
maximum velocity is 30.84 m/s.

The lateral distance errors and heading errors of the vehicle in the highway scenario
are demonstrated in Figure 8a and Figure 8b, respectively. The lateral distance errors of
the proposed control scheme and the MPC controller are restricted by ±0.1772 m and
±0.2406 m, and the heading errors of the two methods are bounded within ±0.0041 deg
and ±0.0048 deg. Compared with the MPC controller, the lateral distance error and heading
error of the proposed control strategy are improved by 26.35% and 14.58%, respectively.
As can be seen, the proposed control method has a superior tracking effect compared to the
MPC control.

The lateral distance error and heading error under the proposed control method
change with the varying trend of road curvature. However, the extreme point’s size of error
in a highway scenario does not exactly match the curvature value. Obviously, the vehicle
speed is also a factor in the lateral distance error and the heading error, in addition to the
road’s curvature. Therefore, even though the tracking errors are within the acceptable range,
it is more logical to take into account both velocity and road curvature in the feedforward
control in a highway scenario.

The change rate of the path curvature is also correlated with the gradient of the
heading error under the proposed control approach. The absolute value of the heading
error slope will also increase when the change rate of the curvature is sudden. As seen in
Figure 8b, when the path curvature changes abruptly, the heading error controlled by the
proposed control approach fluctuates significantly.

The result of the yaw rate is shown in Figure 9a. Compared with the MPC controller,
the yaw rate of the proposed control scheme has not strongly oscillated. The standard
deviation of the yaw rate detrended fluctuation data of the proposed control strategy and
the MPC controller are 0.0002 rad/s and 0.0010 rad/s, respectively, which indicates that the
proposed control scheme can still show better comfort at high vehicle speeds.
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(a) Road curvature (b) Longitudinal speed

Figure 7. Road curvature and longitudinal speed in a highway scenario.

(a) Lateral distance error (b) Heading error

Figure 8. Comparison of tracking errors between the H∞ and MPC control methods in a highway
scenario.

(a) Yaw rate (b) Detrended fluctuation data

Figure 9. Comparison of yaw rate and detrended fluctuation data between the H∞ and MPC control
methods in a highway scenario.
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In conclusion, compared with the MPC control, which is an optimization control
strategy, the proposed control approach effectively improves the accuracy of path tracking,
assuring vehicle safety while also taking driver comfort into consideration, as shown in
Table 4. Meanwhile, the real-time performance of the proposed method is verified by HIL
experiments. In addition, the experiment includes urban and highway scenarios, so it can
be applied in practice. It should be emphasized that the proposed control approach can be
applied as a generic technique for lane-keeping assistance and lane changing, in addition
to path tracking.

Table 4. Tracking performance.

Scenarios Indicators H-Infinity MPC Improved

Urban

max|e1| 0.1566 0.3283 52.30%

max|e2| 0.0573 0.0711 19.41%

σ(DF(ψ̇)) 0.0067 0.0094 28.72%

Highway

max|e1| 0.1772 0.2406 26.35%

max|e2| 0.0041 0.0048 14.58%

σ(DF(ψ̇)) 0.0002 0.0010 80.00%
Note that max|·| denotes the maximum of the absolute value, DF(·) indicates the detrended fluctuation data, and
σ(·) represents the standard deviation.

7. Conclusions

A robust lateral control strategy with a state observer is proposed to improve the path
tracking performance of the vehicle. Firstly, the uncertainty of all parameters is considered
in the dynamic model design. Furthermore, in order to achieve state feedback and enhance
system performance, the design criteria of the H∞ observer and controller are established
based on the LMI technique, and a feedforward controller is designed to further reduce the
tracking error. Finally, the effectiveness of the proposed controller in an urban road scene
and a highway scene is verified by HIL simulation experiments. The experimental results
demonstrate that, in comparison with the traditional MPC method, the proposed control
approach exhibits superior tracking accuracy and reduced fluctuation. Although the results
of the HIL simulation provide valuable guidance for practical applications, the perfor-
mance of the proposed controller in a real vehicle holds paramount importance. Hence,
the influence between the controller and the actual vehicle should be given special attention
in future research endeavors to further enhance vehicle performance.
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Appendix A
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(
C f e l̄2

f n + Cre l̄2
rn +2C̄ f n l̄ f nl f e + 2C̄rn l̄rnlre

)
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Īn

]
N2(t) +

[(
C̄ f n l̄ f n

+C̄rn l̄rn
)

Ie +
(

C f e l̄ f n + Cre l̄rn + 2l f e l̄ f nC̄ f n + 2lre l̄rnC̄rn

)
Īn
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