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Abstract: To realize accurate environment perception, which is the technological key to enabling
autonomous vehicles to interact with their external environments, it is primarily necessary to solve
the issues of object detection and tracking in the vehicle-movement process. Multi-sensor fusion has
become an essential process in efforts to overcome the shortcomings of individual sensor types and
improve the efficiency and reliability of autonomous vehicles. This paper puts forward moving object
detection and tracking methods based on LiDAR—camera fusion. Operating based on the calibration
of the camera and LiDAR technology, this paper uses YOLO and PointPillars network models to
perform object detection based on image and point cloud data. Then, a target box intersection-
over-union (IoU) matching strategy, based on center-point distance probability and the improved
Dempster–Shafer (D–S) theory, is used to perform class confidence fusion to obtain the final fusion
detection result. In the process of moving object tracking, the DeepSORT algorithm is improved to
address the issue of identity switching resulting from dynamic objects re-emerging after occlusion.
An unscented Kalman filter is utilized to accurately predict the motion state of nonlinear objects,
and object motion information is added to the IoU matching module to improve the matching
accuracy in the data association process. Through self-collected data verification, the performances of
fusion detection and tracking are judged to be significantly better than those of a single sensor. The
evaluation indexes of the improved DeepSORT algorithm are 66% for MOTA and 79% for MOTP,
which are, respectively, 10% and 5% higher than those of the original DeepSORT algorithm. The
improved DeepSORT algorithm effectively solves the problem of tracking instability caused by the
occlusion of moving objects.

Keywords: autonomous vehicles; object detection; object tracking; LiDAR—camera fusion;
improved DeepSORT

1. Introduction

Many accidents are caused by drivers’ failure to pay attention to moving objects
at critical moments or by adverse conditions that impede visibility. Today, autonomous
vehicles (AVs) [1,2] can assist or even complete driving operations independently, which is
of great significance in efforts to liberate the human body and greatly reduce the accident
rate. The key technology of autonomous vehicles, allowing them to interact with their
external environments, is the environment perception module [3]. Determining the accuracy
of perceived information has become one of the recent research hotspots in the field of
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autonomous vehicles [4,5]. To realize accurate perception, it is first necessary to solve the
issue of object detection and tracking in the vehicle-movement process.

Invariably, the overall performance of an AV is greatly enhanced by the operation of
multiple sensors of different types and modalities at varying ranges and bandwidths, with
the data from each being incorporated to produce a fused output [6,7]. Multi-sensor fusion
has become an essential process in all AVs, allowing them to overcome the shortcomings of
individual sensor types and improving the efficiency and reliability of AVs overall. Among
the available multi-sensor fusion techniques, 3D light detection and ranging (LiDAR) can ac-
quire high-precision depth information, such as distance and angle, from the surroundings,
boasting a large detection area and exhibiting strong anti-interference ability [8]. However,
this technology also suffers from low data resolution, a lack of textural information, and
a high data collection cost [9]. Compared to LiDAR, cameras can provide visual informa-
tion, such as high-resolution color and texture, about the extracted features. Additionally,
cameras are inexpensive [10]. However, camera technology cannot provide reliable and
accurate results for objects placed at farther distances [11]. As such, the integration of data
from LiDAR devices and cameras for use in object detection and tracking [8,12] has become
a hot research topic in recent years.

However, LiDAR devices and cameras are located at different spatial positions within
multi-sensor systems. A common solution to this is to perform relative coordinate trans-
formation between LiDAR devices and cameras via extrinsic calibration [13]. Existing
calibration methods for LiDAR devices and cameras can be broadly classified into three
categories: convolution neural network (CNN)-based methods, targetless methods, and
target-based methods. CNN-based methods, which aim to extract adaptive co-observed
features to regress extrinsic parameters, are currently giving rise to accurate calibration be-
tween 3D LiDAR devices and cameras through real-time online data [14,15]. The targetless
method leverages the motion estimated by individual sensors or utilizes features related to
environmental perception to calibrate the sensors. Gong et al. [16] estimated calibration
parameters between 3D LiDAR devices and cameras based on the point-to-plane geometric
constraints of three-plane orthogonal trihedrons, which are ubiquitous in natural scenes.
Using both 3D LiDAR devices and cameras, target-based methods rely on the simultaneous
observation of artificial calibration targets placed in front of sensor systems. Then, extrinsic
calibration is calculated by solving the calibration matrix conversion equation [17] or using
a method such as supervised learning [18] etc.

At present, there are three primary approaches used to combine data from LiDAR
devices and cameras, namely high-level fusion (HLF), low-level fusion (LLF), and mid-level
fusion (MLF) [19]. In the HLF approach, each sensor conducts object detection or uses
a tracking algorithm independently and subsequently performs fusion [20]. In the LLF
approach, data are fused at the lowest level of raw data. Therefore, all information is
retained and can potentially be used to improve obstacle detection accuracy. Wu et al. [21]
projected 3D LiDAR data into the image space and used a region proposal network (RPN)
to generate convolutional features. The features of 3D LiDAR technology were fused with
regional features obtained from the camera images, and this information was input into
the faster R-CNN network for object detection. Arikumar et al. [22] proposed an object
detection mechanism (OD-C3DL) that fuses the data received from the camera and the
3D LiDAR. These data are fed into the PCA process, which then extracts and removes
the floor points. Then, OD-C3DL creates the contours of the object region, uses CNN
to perform feature extraction, and employs object classification to conduct the desired
accurate object identification. Chen et al. [23] proposed MV3D, utilizing LiDAR bird’s-
eye-view (BEV) features to create 3D object proposals and project them onto multi-view
images for RoI feature extraction. HLF approaches are often adopted due to their lower
relative complexity than the LLF and MLF approaches. However, HLF provides inadequate
information as classifications with a lower confidence value are discarded if there are
several overlapping obstacles.
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Kim et al. [24] proposed an advanced weighted-mean You Only Look Once (YOLO)
algorithm, hoping to fuse RGB camera and LiDAR point cloud data to improve the real-time
performance of object detection techniques. Wang et al. [25] calibrated the LiDAR device
and camera to convert the point cloud into a depth map and thicken it. The lightweight
network Mobilenet v2 and the high-precision network YOLOv3 were combined to detect
RGB images and dense depth maps. Finally, the detection results of point cloud depth
maps and RGB images were fused with dynamic weights via a decision-level fusion model.
PointFusion [26] was presented to leverage the image data and raw point cloud data
independently for use in 3D object detection. Dempster–Shafer (D–S) theory [27] was
employed to obtain the final vehicle detection result after projecting the point cloud onto
an RGB image via a dense depth map and using a YOLOv3 algorithm to detect vehicle
targets separately. This decision-level fusion method has strong real-time and adaptive
capabilities, as well as a strong anti-interference ability. If a single detection device fails, it
will not affect the operation of other detection devices, and the setup can still provide a
final decision.

Moving object tracking is used to achieve the cross-frame recognition of target objects,
preventing the loss of target objects due to detection failures. Bewley et al. [28] proposed
the classic SORT algorithm, combining Kalman filter update prediction and the Hungarian
algorithm association matching function to achieve dynamic multi-objective online tracking.
Although this algorithm exhibits robust accuracy and high speed, it faces the problem of
frequent changes in identity (ID). Wojke et al. [29] introduced deep learning to improve
the DeepSORT algorithm, which is based on SORT. This greatly reduced the amount of ID
switching compared to that seen using the SORT algorithm. The phenomenon of dynamic
target trajectory intersection and occlusion is inevitable in multi-target tracking. The
intersection of dynamic multi-target motion trajectories can lead to target occlusion, and
other objects may also occlude the target during movement. Therefore, occlusion problems
can easily lead to losses in target tracking. Wang et al. [30] proposed a novel 3D MOT
framework based on camera—LiDAR fusion. The embedded depth correlation mechanism
in the framework tracks an object in a 2D domain when the object is far away and can only be
detected by the camera and updates the 2D trajectory with 3D information obtained when
the object appears in the LiDAR field of view, thus achieving a smooth fusion of 2D and 3D
trajectories. Wang et al. [31] proposed a novel camera—LIDAR fusion 3D MOT framework
based on combined appearance motion optimization (CAMO-MOT), in which the occlusion
head was designed to identify the object occlusion state and select optimal appearance
features to reduce the effect of occlusion. Chen et al. [32] introduced the radial basis forward
neural network to overcome the performance deterioration of autonomous vehicle path-
tracking controllers. Zhao et al. [33] introduced the solution algorithms and application
guidance associated with using infrastructure-based LiDAR sensors to accurately detect
and track pedestrians and vehicles at intersections. Hosseinzadeh et al. [34] introduced
the notion of danger awareness of human–robot interaction and built a predictive human
model to anticipate future actions.

This paper adopts a decision-level fusion approach to fuse the object detection results
of LiDAR—camera, utilizing fusion detection results to perform dynamic target-tracking
tasks. The principal contributions of this paper are as follows:

1. The design of a LiDAR—camera fusion strategy for object detection is presented.
First, the 3D point cloud object detection box is projected onto the image via joint
calibration results. Then, a target box IoU matching strategy based on center-point
distance probability is adopted to match and fuse the 2D point cloud projection box
with the camera detection target box. Subsequently, the D–S theory is utilized for class
confidence fusion to obtain the final fusion detection result.

2. In response to the problem of ID transformation, which occurs when the target is
occluded, the DeepSORT algorithm is improved via the addition of an unscented
Kalman filter to accurately predict the nonlinear target motion state. The IoU matching
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module incorporates target motion information to improve the matching accuracy in
the data association process.

The remainder of this paper is organized as follows. Section 2 introduces the moving
object detection and tracking methods based on LiDAR—camera fusion. In Section 3, the
experimental preparation and data used are explained. In Section 4, the experimental
processes are presented and analyzed, and the performances of the methods are compared.
In Section 5, discussions are presented, and conclusions are drawn.

2. Methods
2.1. Overall Framework

Figure 1 shows the overall framework being used: moving object detection is combined
with a tracking method based on LiDAR—camera fusion, with the latter technique primarily
comprising a LiDAR—camera detection module, fusion strategy module, and tracking
module. The point cloud data obtained via LiDAR scanning is used to obtain the 3D point
cloud object detection results through the PointPillars network. The image data captured
by the camera is used to obtain 2D object detection results through the YOLOv5 network.
Based on the joint calibration of external parameters with the camera and LiDAR device,
the 3D object detection box of the point cloud is projected onto the image to obtain the 2D
point cloud projection box. Then, target box intersection-over-union matching is performed
via a strategy of fusing the target box with the camera detection target box. Subsequently,
the confidence fusion strategy is adopted from the D–S theory to complete the fusion of
category confidence and output the fusion result. Finally, the fusion detection results are
fed into the improved DeepSORT target-tracking algorithm to track dynamic targets for
vehicles and pedestrians.
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2.2. Fusion Detection

Before fusing camera and LiDAR data, camera and LiDAR data were synchronized
over time, and spatial coordinate systems were unified, as shown in Figure 2.

The spatial conversion model for the joint calibration of the camera and LiDAR is
shown in Formula (1).
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where c is the scaling factor; u and v denote the pixel coordinates of the image; K denotes
the internal orientation parameter matrix of the camera, which comprises fx, fy, uo, and vo;
M denotes the external orientation parameter matrix, which comprises rotation matrix R
and translation matrix T; and XL, YL, and ZL denote point cloud coordinates.
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Figure 2. The principle of the LiDAR—camera joint calibration. OL −XLYLZL is the LiDAR coordinate
system; OC − XCYCZC is the camera coordinate system; xoy is the image coordinate system; and uov
is the image pixel coordinate system.

The detection results of 3D point cloud object detection represent the pose of the
detected 3D point cloud stereo detection box through five parameters: length, width,
height, the coordinates of the target center in 3D space, and global yaw angle. The 8 vertices
of the 3D point cloud stereo detection box can be calculated. Based on the constructed
LiDAR coordinate system in relation to the pixel coordinate system conversion model,
the 3D point cloud stereo detection box can be presented in a two-dimensional plane via
projection onto the image pixel plane, as shown in Figure 3a.
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Figure 3. (a) Projection of 3D point cloud stereo detection boxes in images; (b) construction of the
minimum bounding rectangle box.

PointPillars detection point cloud data will output the information of the 3D point
cloud stereoscopic target detection box. Based on these data, the 3D coordinate information
of each vertex of the stereoscopic detection box can be calculated in the LiDAR coordinate
system. The 8 vertices of the 3D point cloud stereoscopic detection box can be projected
onto the image plane by Formula (1). In Figure 3a, the image formed by mapping the 3D
point cloud stereo detection box onto the 2D image pixel plane is presented as a polygon.
The method of establishing a minimum bounding rectangle box for polygon images is
adopted. This box is transformed into a 2D rectangular detection box, with each side
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being parallel to the two coordinate axes of the image pixel coordinate system, as shown in
Figure 3b.

2.2.1. Target Box IoU Matching Strategy

After the transformation from a point cloud 3D detection box into a point cloud 2D
projection box in a pixel coordinate system, overlapping point cloud 2D projection boxes
and image target detection boxes will appear within the image field of view. In this paper,
the target box intersection-over-union matching strategy is adopted to achieve the fusion
of point cloud projection boxes and image target detection boxes.

The images captured by the camera can present the full view of vehicle and pedestrian
targets, but the use of LiDAR remains limited by targets’ physical properties. For example,
when scanning pedestrian targets at close distances, there are few point clouds in the lower
bodies of pedestrians. As another example, when scanning a vehicle, only a portion of the
point cloud at the front, rear, or one side of the vehicle body can be obtained. Therefore,
there may be situations where the size of the two-dimensional projection box of the final
point cloud and the size of the image target detection box are not identical. Directly
comparing the two can produce certain errors. Therefore, this paper introduces the method
of calculating the probability of center-point distance, finding the detection box with the
closest distance between center points to form a matching pair, and then further completing
IoU matching fusion.

YOLO algorithm will output object detection box information when detecting pedes-
trians and vehicles in the image. Assuming that n detection boxes are detected in the
image, C = {C1, C2, · · · , Ci, · · ·Cn} is the object detection box present in the image field of
view. Ci = (cx, cy, w, h) denotes the detection box information, where cx represents the x
coordinates of the detection box center point; cy represents the y coordinates of the detection
box center point; w represents the width of the detection box; and h represents the height
of the detection box. PointPillars detection point cloud data will output 3D point cloud
stereo detection box information. Each 3D point cloud stereo detection box is represented
by (x, y, z, w1, l, h1, θ), where (x, y, z) represents the central position coordinates of the 3D
detection box in the LiDAR coordinate system; (w1, l, h1) represents the width, length, and
height of the 3D detection box, and θ represents the orientation angle of the 3D detection
box around the Z axis. According to the above data, the 3D coordinate information of the
stereo detection box in the LiDAR coordinate system can be obtained. The point cloud
projection box information in the image can be obtained by Formula (1). Assuming that
m projection boxes are obtained, L =

{
L1, L2, · · · , LJ , · · · , LM

}
is the point cloud 2D pro-

jection box. Lj = (lx, ly, w2, h2) denotes the point cloud projection box information, where
the lx is the x coordinate of the center point; ly is the y coordinate of the center point; w2 is
the width and h2 is the height of the point cloud projection box. The serial numbers of the
image object detection box and the 2D point cloud projection box are i and j, respectively.
The image object detection box and the 2D point cloud projection box will overlap.

The center-point distance probability calculation schematic diagram is shown in
Figure 4, where Ci represents the image object detection box detected by the camera; ci
represents the center point of region Ci; Lj represents the 2D point cloud projection box;
lj represents the center point of region Lj; c denotes the minimum diagonal length of the
smallest outer bounding box formed by regions Ci and Lj; and d (ci, lj) denotes the Euclidean
distance between ci and lj. The probability formula used to determine the distance from
the center point is shown in Formula (2).

Pij = 1 −
d
(
ci, lj)

2

c2 , (2)

The larger the Pij, the closer the distance between the center points of the two region
boxes. If Pij has thresholds greater than δ, it is necessary to employ IOU matching fusion.
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In Figure 5, the area of the 2D projection box of the point cloud is represented by SLiDAR,
the area of the image target detection box is represented by SCamera, and the area where SLC
represents the two overlaps. The calculation formula for the intersection-over-union ratio
of the two is shown in Formula (3).

IoULC =
SLC

SLiDAR + SCamera − SLC
, (3)

where the thresholds are set to α and β (β > α). When IoULC < α, the objects are independent,
and no matching fusion is performed. When α < IoULC < β, it can be determined that the
two are the same target, and the intersection area of the two can be used as the fused target
detection box. When IoULC > β, it is determined that the two are the same target, and the
minimum bounding box shared by the two is established as the fused target detection box.
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2.2.2. D–S Theory for Class Confidence Fusion

D–S theory is very applicable in decision-level fusion schemes using multiple sensors,
combining evidence data provided by multiple independent information sources via the
Dempster synthesis rule. Due to the significant impact of conflict factor K on the inference
results, the Dempster synthesis rule has certain limitations. An improved D–S evidence
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theory is applied, and the concept of evidence credibility is introduced, meaning that the
degree of conflict utilization depends on the credibility of the evidence.

Assuming that there are evidence sets E = {E1, E2, · · · , En} in the same recognition frame-
work Θ = {θ1, θ2, · · · , θN}. For ∀A ⊂ 2Θ,

(
2Θ = {ϕ,{θ1},{θ2}, · · · {θn},{θ1, θ2}, · · · , Θ}

)
,

m : 2Θ −→ [0, 1] denote for basic probability allocation function. Furthermore, m(ϕ) = 0;
0 ≤ m(A) ≤ 1, A ⊂ Θ; ∑ m(A) = 1, A ⊂ 2Θ. Set m = {m1, m2, · · · , mn} is the corresponding
basic probability allocation functions of evidence sets, then the conflict factor kij between the
two evidence sets i and j can be expressed as Formula (4).

kij = ∑ Ai ∩ Aj = φ

Ai ∈ Ei, Aj ∈ Ej

mi(Ai)mj
(

Aj
)
, (4)

where Ai and Aj are focal elements of mi and mj, respectively.

Formula ε = e−k is used to determine the credibility of evidence, where k represents
the mean of the total conflict factors for each pair of evidence sets in n evidence sets, as
shown in Formula 5. When the value of k is high, this indicates that there is a significant
conflict between the evidence. As a is ε decreasing function of k, a decrease in the value of
a indicates lower evidence credibility.

k =
1

n(n − 1)/2∑
i<j

kij, i, j ≤ n, (5)

where n represents the number of sensors.
The improved Dempster synthesis rule is shown in Formula (6).

m(A) = ∑ Ai ∈ Ei
∩n

i=1 Ai = A

∏1≤i≤n mi(Ai) + k · ε · q(A), A ̸= φ, X

m(Θ) = ∑ Ai ∈ Ei
∩n

i=1 Ai = Θ

∏1≤i≤n mi(Ai) + k · ε · q(Θ) + k(1 − ε)

m(φ) = 0

, (6)

where q(A) = 1
n

n
∑

i=1
mi(A) reflects the average support of evidence for A.

The improved DS theory makes a more accurate estimate of objects by combining
the probability of objects detected by the point cloud projection box and the image object
detection box. The final position of the detection target box is determined by calculating
the center-point distance and IoU between the point cloud projection box and the image
object detection box, and the final probability of the detection object is determined by DS.

2.3. Improved DeepSORT for Object Tracking

The DeepSORT algorithm combines cascading matching with IoU matching using
deep data association measurement methods and adds new trajectory confirmation during
the Kalman filter update trajectory process, lessening the problem of frequent ID replace-
ment caused by dynamic target occlusion. However, in practical applications, the tracking
performance of the DeepSORT algorithm is unstable. The target ID can change, especially
when the target is completely occluded or when two dynamic targets intersect and over-
lap. Therefore, the paper proposes utilizing an improved DeepSORT algorithm with an
unscented Kalman filter and combining target motion information with IoU matching, as
shown in Figure 6.
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2.3.1. Unscented Kalman Filter State Estimation

Unscented Kalman filtering is an unscented transform (UT) based on Kalman filtering
and is used to handle the nonlinear transfer problem of probability density mean and co-
variance. The core idea of unscented transformation is to describe the Gaussian distribution
of random variables through a series of sampling points and use nonlinear transformation
to obtain a set of nonlinear function value points. The transformed state estimation and
variance estimation can be calculated using the point set. The unscented Kalman filtering
retains the nonlinear high-order term and uses the normal distribution, which is similar
to the distribution expectation and variance of the nonlinear function to approximate,
avoiding the calculation of complex Jacobian matrix, and the trajectory prediction effect is
better. To improve the accuracy of dynamic target trajectory prediction, the Kalman filter of
the DeepSORT algorithm can be replaced by the unscented Kalman filtering.

If a nonlinear function is y = f (x), x will be an L-dimensional random variable, and the
mean and variance of x will be x and Px. A sigma sampling point set is constructed, where
χ = {χ0, χ1, · · · , χ2L}.

χ0 = x

χi = x +
√
(L + λ)Px, (i = 1, · · · , L)

χi = x −
√
(L + λ)Px, (i = L + 1, · · · , 2L)

λ = α2(L + κ)− L

, (7)

where λ is a scale factor; α determines the degree of hashing of this sampling point and is
generally taken within

[
1e−4, 1

]
; and κ is a scale parameter.

Combining the unscented transform with the Kalman filter, the state equation and
observation equation of the system are assumed to be:{

xt = F(xt−1) + Qt

yt = H(xt) + Rt
, (8)

where xt and xt−1 are state vectors at time t and t−1; yt is the observed quantity at time t; and
Qt and Rt are state transition noise and observation noise following a normal distribution.

By introducing the set of sampling points into the nonlinear equation of state, the
following equation can be obtained:

xi
t|t−1 = F

(
xi

t|t−1

)
, i = 0, · · · 2L, (9)

It is possible to calculate the mean and covariance of state prediction at time t according
to the weights corresponding to each sampling point.
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t|t−1
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i
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By introducing the sigma sampling point set into the nonlinear observation equation,
the following equation can be obtained:

yi
t|t−1 = H(xi

t|t−1), i = 0, · · · 2L, (11)

The predicted mean, observation vector variance, and covariance of the observa-
tion vector at time t are calculated according to the weights corresponding to each sigma
sampling point:
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T + Rt
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i=0 ωc

i (xi
t|t−1 −

∼
y

i
t|t−1)(y

i
t|t−1 −

∼
y

i
t|t−1)

T

, (12)

With the Kalman filter gain Kt = PxyPyy
−1, the state estimate and the estimated

variance at time t can be calculated: xi
t =

∼
x

i
t|t−1 + Kt(yt|t−1 −

∼
y

i
t|t−1)

Pt|t = Pt|t−1 − KtPyyKt
T

, (13)

The pseudo-code for the unscented Kalman filter is shown in Table 1.

Table 1. The pseudo-code for the unscented Kalman filter.

Pseudo-Code: Unscented Kalman Filtering

Initialization:
Select the number and location of sigma points
Assign weights to each sigma point
Initialize the state vector x and covariance matrix P

For each time step t:
Prediction Step:

For each sigma point X_sigma[i]:
X_sigma[i] = nonlinear_function(X_sigma[i]) // Apply nonlinear dynamic model
Compute the predicted mean and covariance:
X_pred = sum(W[i] * X_sigma[i]) // Weighted sum of sigma points
P_pred = sum(W[i] * (X_sigma[i] − X_pred)′ * (X_sigma[i] − X_pred)) //Weighted covariance

Update Step:
For each sigma point X_sigma[i]:

Z_sigma[i] = measurement_model(X_sigma[i]) // Apply nonlinear measurement model
Compute the measurement mean and covariance:
Z_pred = sum(W[i] * Z_sigma[i]) // Weighted sum of transformed sigma points
R = sum(W[i] * (Z_sigma[i] − Z_pred)′ * (Z_sigma[i] − Z_pred)) //Weighted covariance of measurements

Compute the Kalman gain K:
K = P_pred * H′ * inv(H * P_pred * H′ + R) // Kalman gain matrix

Update the state vector and covariance matrix:
X = X_pred + K * (Z − Z_pred) // State update
P = (I − K * H) * P_pred // Covariance update

Iteration:
Use the updated X and P for the next iteration

2.3.2. Improving Data Association in IoU Matching Modules

The IoU matching module of DeepSORT calculates the intersection-over-union ratio
between the trajectory box and the detection box and determines whether it is associated
with setting a threshold. In complex traffic scenes, tracking failures between dynamic
targets caused by occlusion, intersection, and other factors are common. Simple IoU match-
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ing cannot meet the requirements of accurate tracking matching. This section improves
IoU matching via the addition of target motion information. Simultaneously, similarity is
calculated by determining the Euclidean distance between trajectory and detection. This is
then combined with improved IoU matching to improve the accuracy of matching.

It is necessary to define trajectory set T = {t1, · · · , ti, · · · , tn} and detection set
D =

{
d1, · · · , dj, · · · , dm

}
, where ti and dj are state vectors, each containing position, veloc-

ity, and direction information. It is also necessary to calculate the corresponding distance
by introducing position, velocity, and direction factors into IoU matching. The position
distance can be calculated using IoU, and the expression is shown in Formula (14).

dc(i, j) = 1 − IoU
(
ci, cj

)
, (14)

where dc(i,j) represents the position distance; ci, cj represent the positions of the detection
box and the trajectory box, respectively.

The distance in the direction of velocity can be calculated by the relative velocity be-
tween the center point of the detection box and the trajectory box, as shown in Formula (15).

dv(i, j) =

∣∣vi − vj
∣∣√

(w2 + h2)
, (15)

where dv(i,j) represents the velocity distance; vi and vj represent the relative velocity of the
detection box and the trajectory box, respectively; and w and h are the width and height of
the bounding boxes on both sides.

The distance in the direction of motion is calculated using the angle difference be-
tween the center point of the detection box and the trajectory box in the direction under
consideration, as shown in Formula (16).

dθ(i, j)= 1 − cos(θi, θj
)
, (16)

where dθ(i, j) represents the velocity distance and θi and θj represent the motion direction
of the detection box and the trajectory box, respectively.

The improved IOU matching can be obtained by weighting the sum of Formulas (14)–(16),
as shown in Formula (17).

IoU
(
ti, dj

)
= wcdc(i, j) + wvdv(i, j) + wθdθ(i, j), (17)

where wc, wv, and wθ represent the weights of position, velocity, and directional distance,
respectively.

The Euclidean distance can be calculated based on the state vectors of detection and
trajectory, as shown in Formula (18). Normalizing the value obtained yields the similarity
score for detection and trajectory, as shown in Formula (19).

d
(
ti, dj

)
=

√
∑n

i=1 ∑m
j=1

(
ti − dj)2 , (18)

s
(
ti, dj

)
=

1
1 + d

(
ti, dj

) , (19)

By combining improved IoU matching and similarity score, the final correlation score
is obtained via weighted summation, as shown in Formula (20).

s
(
ti, dj

)
= wss

(
ti, dj

)
+ wIoU IoU

(
ti, dj

)
, (20)

Then, it is necessary to define the threshold function as shown in Formula (21), com-
pare s

(
ti, dj

)
with the set threshold, and retain the detection results and tracking objects

above the threshold.
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matching(i, j) =
{

1, s
(
ti, dj

)
≥ threshold

0, overwise
, (21)

3. Experimental Preparation and Data Introduction

As shown in Figure 7, the RoboSense LiDAR device and USB monocular camera
are assembled using the existing AV chassis equipment available in the laboratory. The
parameters related to the camera and LiDAR are shown in Tables 2 and 3.
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Table 2. Parameters of the camera.

Item Parameter

Model Q20
Maximum resolution 1920 ×1800

Pixel 4M pixel
Frame rate 30 FPS

Table 3. Parameters of the LiDAR.

Item Parameter

Number of lines 16
Frame rate 10 Hz

Laser wavelength 905 nm
Range capability 150 m

Accuracy ±2.0 cm
HFOV 360◦

VFOV 30◦

Horizontal resolution 0.4◦

Vertical resolution 2.0◦

The experiments were conducted on a notebook computer equipped with an Intel i5
12400 processor and NVIDIA GeForce RTX 3060 graphics. In doing so, widely used deep
learning frameworks and image processing libraries commonly applied in object detection
and tracking tasks are employed. The experimental hardware and parameter settings are
summarized in Table 4.
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Table 4. Experimental hardware and parameter settings.

Item Parameter

Operating system Ubuntu 18.04
CPU Intel(R) Core i5-12400

Memory 16 GB
GPU NVIDIA GeForce RTX 3060

Graphics memory 12 GB
CUDA version Cuda 11.1 + CuDNN 8.6.0

Development language Python 3.8
Deep learning framework version PyTorch 1.12

As shown in Figure 8. the KITTI [35] dataset is used as the basis for validating and
analyzing the performance of the proposed method. Front-view images of the KITTI 3D
dataset provide a resolution of 1280 × 384 pixels. The KITTI dataset has 7518 images
available for testing and 7481 images for training. The object tracking benchmark includes
29 test sequences and 21 training sequences. In addition to the camera parameters and the
RGB images, the KITTI dataset provides additional data that can be further used in 3D-
image-based detection tasks. The KITTI dataset provides frames that precede the LiDAR
signal in time. The detection of vehicles in KITTI images is conducted with the help of
the calibration files, label files, and LiDAR data that are provided by the KITTI dataset.
Three-dimensional bounding boxes are generated at the coordinates of the vehicles using
label files provided by the KITTI dataset.
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4. Experimental Results and Analysis
4.1. Experimental Analysis of Moving Object Detection
4.1.1. Evaluation Indicators

The experimental evaluation metrics used to quantitatively compare performances
include FPS (frame/s, representing the detection speed of the algorithm), precision (reflects
the ability of the model to correctly predict the precision of positive samples), FP rate (the
ratio of the number of false detections to the total number of detections, reflecting the
ability of the model to correctly predict the purity of positive samples), and miss rate (the
ratio of the number of missed detections to the number of true obstacles, corresponding to
the model’s ability to correctly predict the purity of negative samples). Using these metrics,
a comprehensive and accurate analysis of the proposed method is performed to obtain both
accuracy and efficiency.

Precision =
TP

TP + FP
× 100%, (22)
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FP rate =
FP

TP + FN
× 100%, (23)

miss rate =
FN

TP + FN
× 100%, (24)

where TP represents the positive samples that are correctly detected; FP represents the
positive samples that are incorrectly objected; and FN represents the negative samples that
are incorrectly objected.

4.1.2. Experiment Using Cameras

Using experimental equipment, the campus road-scene videos were recorded, and
laser point cloud data were obtained. A real road-scene dataset was created by extract-
ing frames from the video data stream, and the KITTI dataset was added to train the
YOLOv5 network. The training set consisted of 2575 images (including 575 annotated
self-collected data).

The method takes the collected video data stream (about 700 frames of images) as test
data, including different scenes during the day and night. Subsequently, a YOLOv5 image
recognition network is used to recognize the dynamic targets of vehicles and pedestrians in
the self-collected video data. The recognition results are shown in Figure 9.
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Using the recognition results above, the YOLOv5 image recognition network can
recognize vehicle and pedestrian targets in different scenes, but it is more prone to false pos-
itives and missed detections in nighttime scenes. According to the analysis of experimental
results, the detection results for cars and pedestrians in different scenes were statistically
analyzed, and the statistical results are shown in Table 5. The precision of car detection
during daytime was 92.73%, which was 3.19% higher than that at night. The precision of
pedestrian detection during daytime was 91.24%, which was 4.96% higher than that at
night. The FP rates of cars and pedestrians during daytime are 2.23% and 6.45% lower than
those at night, respectively.

Table 5. Object detection statistical results for cars and pedestrians in different scenes.

Scene Category Precision (%) FP Rate (%) Miss Rate (%)

Day car 92.73 0.83 1.04
pedestrian 91.24 1.48 2.97

Night car 89.54 3.06 3.18
pedestrian 86.38 7.83 4.26
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4.1.3. Experiment Using LiDAR

Each set of data in the KITTI dataset contains corresponding LiDAR point cloud
data and RGB image data and provides internal parameters of the camera and external
parameters between sensors, facilitating projection efforts between coordinate systems.
Figure 10a shows the visualization results of PointPillars detecting information in the KITTI
dataset. The 3D detection box in the figure is the output result of the Point Pillars algorithm
network, which is projected onto a 2D image through the extrinsic parameters of the LiDAR
device and cameras. It is necessary to verify the detection performance of the PointPillars
algorithm in actual scenes through self-collected data, as shown in Figure 10b, which shows
the visualization results obtained using RVIZ in the ROS system. The left side shows the
RGB image of the actual scene captured by the camera, and the right side shows the point
cloud image obtained with a 3D detection box.
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Figure 10. (a) Detection results of the PointPillars algorithm on a set of data from the KITTI dataset;
(b) visualization of 3D point cloud target detection results using RVIZ under ROS.

As shown in Figure 10b, in actual scenes, targets that maintain a certain distance from
the LiDAR can be successfully detected, and the scale prediction is also relatively consistent
with the true values. However, due to the vertical field angle of the LiDAR, pedestrian
targets that are closer to the LiDAR can only be scanned by the LiDAR, with fewer point
clouds obtained on the lower bodies of pedestrians, resulting in missed detections.

4.1.4. LiDAR—Camera Fusion

To verify the fusion algorithm proposed in this paper, the results of target detection
were analyzed from two aspects: single sensors and data fusion. The fusion process in
different daytime scenes is shown in Figure 11. As shown in the figure, the fused target box
can more fully envelop car and pedestrian targets, and the fusion effect of the target box
is satisfactory.

The data fusion results based on the improved D–S evidence theory class confidence
fusion strategy are shown in Table 6. The values contained in the table represent the deter-
minism of the model for the class of objects contained in the target box in the mathematical
form Pr(classi|Object), whose class probability is calculated by the logistic regression func-
tion in the LiDAR and the camera detection algorithm classification model. Additionally,
the sum of probabilities for all classes is 1.

The detection fusion results of actual nighttime scenes are shown in Figure 12. As
shown in the figure, due to the dim lighting at night, the target box detected by the camera
cannot fully envelop the pedestrian and vehicle targets. The 2D projection box of the point
cloud can only roughly determine the position of the target. The fusion of the two target
boxes has a strong recognition effect and can more completely envelop the vehicle and
pedestrian targets. Table 7 shows the data fusion results obtained utilizing the confidence
fusion strategy, based on the D–S evidence theory, in nighttime scenes.
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Figure 12. The fusion process in the night scene, where (a) is the actual scene; (b) is the camera
detection result; (c) is the result obtained by projecting the 3D detection frame of the point cloud to
the image, where the green frame is the 2D projection frame of the point cloud; and (d) is the final
fusion result.

Table 7. Object detection statistical results based on D–S evidence theory in nighttime scenes.

Object Sensor Probability of Pedestrian Probability of Car Uncertainty

Car
Camera 0.126 0.832 0.038
LiDAR 0.062 0.915 0.025

LiDAR—camera fusion 0.003 0.941 0.005

Pedestrian
Camera 0.893 0.042 0.031
LiDAR 0.834 0.123 0.051

LiDAR—camera fusion 0.925 0.023 0.007

From Tables 6 and 7, the reader can see that the probabilities of detecting cars and
pedestrians in daytime scenes based on the D–S evidence theory can reach 97.3% and 95.4%,
respectively. Moreover, it can reach 94.1% and 92.5% in nighttime scenes, respectively.
Furthermore, it is higher than that based on camera use or LiDAR devices, respectively.
The LiDAR—camera fusion detection method based on the D–S evidence theory is more
accurate and reliable.

4.2. Experimental Analysis of Moving Object Tracking
4.2.1. Evaluation Indicators

Multiple-object tracking accuracy (MOTA), multiple-object tracking precision (MOTP),
Identification F-Score (IDF1), and Higher Order Tracking Accuracy (HOTA) values are
employed as performance evaluation indicators for the original DeepSORT algorithm and
the improved DeepSORT algorithm.

MOTA is a comprehensive indicator used for measuring error tracking, omission
tracking, and ID switching output, as shown in Formula (25).

MOTA = 1 − ∑t(FNt + FPt + IDSWt)

∑t GTt
, (25)

represents the positive samples that are correctly detected.
MOTP is used to measure the degree of matching between tracking results and true

values, as shown in Formula (26).

MOTP =
1

∑N
i=1 mi

∑N
i=1 ∑mi

j=1 di,j, (26)

where di,j denotes the error between the estimated position and the true position of object j
for time i, and where mi denotes the number of correctly tracked objects in time i.
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IDF1 is the ratio of the number of correct target detections to the average of the sum of
the true and calculated detections; here, the IDF1 score is calculated as follows:

IDF1 =
IDTP

IDTP + 0.5IDFP + 0.5IDFN
, (27)

where IDTP can be viewed as the number of detected targets that are correctly assigned
during tracking, IDFN as the number of detected targets that are missed during tracking,
and IDFP as the number of detected targets that are incorrectly assigned during tracking.

HOTA unifies accurate detection, correlation tracking, and localization in a unified
metric, calculated as follows:

HOTA =
∫ 1

0
HOTAαdα ≈ 1

19∑
α∈

{
0.05, 0.1, . . . ,
0.9, 0.95

} HOTAα, (28)

HOTAα =

√
∑C∈{TP} A(c)

|TP|+ |FN|+ |FP| , (29)

AC =
|TPA(c)|

|TPA(c)|+ |FNA(c)|+ |FPA(c)| (30)

where α is the similarity localization threshold, TPA denotes true-positive association, FNA
denotes false-negative association, and FPA denotes false-positive association.

4.2.2. Experiment for Pedestrians

The test results of the original DeepSORT algorithm and the improved DeepSORT
algorithm when using self-collected data are shown in Figure 13. In frames 56, 68, 124,
and 146, the improved DeepSORT algorithm illustrates superior robustness to the original
DeepSORT algorithm. The improved DeepSORT algorithm tracks the target ID-2 at frame
56 before it fully enters the field of view, while the original DeepSORT algorithm does not
start tracking the ID-2 target at frame 56. In frame 146, the original DeepSORT algorithm
ceases to track the target ID-2, while the improved DeepSORT algorithm tracks the ID-2
target until it completely leaves the field of view. In addition, from frames 68 and 124, the
original DeepSORT algorithm’s ID-1 target is occluded and re-labeled as ID-3, while the
improved DeepSORT algorithm’s ID-1 target’s ID remains unchanged after being occluded.

Comparing the tracking results of the two algorithms shown in Figure 14, the target
ID-1 is first occluded by a tree at frame 56, subsequently overlapping with target ID-2
at frame 64. At this point, the original DeepSORT algorithm can no longer distinguish
between the target numbers ID-1 and ID-2. In frame 72, the target ID-2 is occluded by a tree,
and the previous target number ID-1 is mistakenly recognized as ID-2. In frame 80, when
the previous ID-2 is occluded once again, the identification number changes to ID-4. The
original DeepSORT algorithm performs poorly when tracking targets that are occluded or
that overlap. However, the improved DeepSORT algorithm maintains the same ID number
for each target throughout the tracking process when tracking results in the same scene,
with the same ID utilized from frame 28 to frame 80, effectively addressing the problem of
the occlusion or overlap of targets.
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and the previous target number ID-1 is mistakenly recognized as ID-2. In frame 80, when 
the previous ID-2 is occluded once again, the identification number changes to ID-4. The 
original DeepSORT algorithm performs poorly when tracking targets that are occluded or 
that overlap. However, the improved DeepSORT algorithm maintains the same ID num-
ber for each target throughout the tracking process when tracking results in the same 
scene, with the same ID utilized from frame 28 to frame 80, effectively addressing the 
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Figure 13. The tracking effect of the original DeepSORT algorithm and improved DeepSORT al-
gorithm on self-collected data. Frames 56, 68, 124, and 146 were selected for comparison. The left
picture shows the tracking effect of the original DeepSORT algorithm, and the right picture shows
the tracking effect of the improved DeepSORT algorithm.
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Figure 14. The tracking effect of the original DeepSORT algorithm and improved DeepSORT algo-
rithm on self-collected data. Frames 28, 56, 64, 72 and 80 were selected for comparison. The left 
picture shows the tracking effect of the original DeepSORT algorithm, and the right picture shows 
the tracking effect of the improved DeepSORT algorithm. 

4.2.3. Experiment for Cars 
Figure 15 shows the tracking of cars when performed using two algorithms. In frame 

123, the white car completely occludes the black car. When the black car reappears, the 
original DeepSORT algorithm’s tracking result in frame 153 shows a change in the white 
car’s ID, while the improved DeepSORT algorithm retains the original white car ID un-
changed. 

Figure 14. The tracking effect of the original DeepSORT algorithm and improved DeepSORT algo-
rithm on self-collected data. Frames 28, 56, 64, 72 and 80 were selected for comparison. The left
picture shows the tracking effect of the original DeepSORT algorithm, and the right picture shows
the tracking effect of the improved DeepSORT algorithm.

4.2.3. Experiment for Cars

Figure 15 shows the tracking of cars when performed using two algorithms. In
frame 123, the white car completely occludes the black car. When the black car reappears,
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the original DeepSORT algorithm’s tracking result in frame 153 shows a change in the
white car’s ID, while the improved DeepSORT algorithm retains the original white car
ID unchanged.
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gorithm on self-collected data. Frames 110, 123, and 153 were selected for comparison. The left
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the tracking effect of the improved DeepSORT algorithm.

The original DeepSORT algorithm and the improved DeepSORT algorithm were
experimentally validated via the use of self-collected data. The performance of the four
different algorithms was compared using MOTA, MOTP, HOTA, and IDF1 indicators, and
the comparison results are shown in Table 8. The results in the table show that the improved
DeepSORT algorithm performs well in terms of MOTA and MOTP metrics.

Table 8. Comparison results of object detection statistics.

Methods MOTA MOTP HOTA IDF1

SORT 0.49 0.62 0.46 0.51
ByteTrack 0.60 0.71 0.52 0.57
DeepSORT 0.56 0.74 0.53 0.59

Improved DeepSORT 0.66 0.79 0.61 0.72
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5. Conclusions

The fusion of camera and LiDAR data has become an essential process in efforts to
overcome the shortcomings of individual sensor types and improve the efficiency and
reliability of autonomous vehicles. This paper presents research on moving object detection
and tracking technology based on camera and LiDAR data fusion. First, based on the
calibration of cameras and LiDAR devices, YOLOv5 and PointPillars network models
are used to perform object detection with image and point cloud data. When using the
YOLOv5 image recognition network, the precision of car and pedestrian detection during
the daytime is 92.73% and 91.24%, respectively. The FP rate for cars and pedestrians
during daytime is 2.23%, which is 6.45% lower than that at night, respectively. A target box
IoU matching strategy, based on center-point distance probability, and the improved D–S
theory are used for class confidence fusion to obtain the final fusion detection result. The
probability of detecting cars and pedestrians in daytime scenes can reach 97.3% and 95.4%,
respectively. Moreover, it can reach 94.1% and 92.5% in nighttime scenes, respectively.
Additionally, it is higher than that obtained using a camera or LiDAR alone. Through
the method developed, more accurate and reliable fusion detection results are obtained
compared with the final output of a single sensor. In the process of moving object tracking,
an unscented Kalman filter is used to accurately predict the motion state of nonlinear
objects, and object motion information is added to the IoU matching module to improve the
matching accuracy in the data association process. Through self-collected data verification,
fusion detection, and tracking is significantly better than that of a single sensor. The
evaluation index values of the improved DeepSORT algorithm are 66% for MOTA, 79%
for MOTP, 0.61 for HOTA, and 0.76 for IDF1, which are, respectively, 10%, 5%, 8%, and
13% higher than those of the original DeepSORT algorithm. The improved DeepSORT
algorithm effectively solves the problem of tracking instability caused by the occlusion of
moving objects.

At present, the field of AV environment perception is still in the stage of continuous
exploration. The perception technology based on camera and LiDAR data fusion studied in
this paper can achieve good target detection and tracking effects, which can provide relevant
reference value when performing studies in the field of autonomous vehicle perception.
In subsequent research, information from millimeter-wave radar can be integrated on this
basis. The precise velocity information provided by millimeter-wave radar can be used to
predict target motion status more accurately in dynamic target-tracking tasks. In addition,
the SOTA target detection model with Yolov9 and other SOTA targets will be investigated
subsequently to evaluate the computational latency of the proposed camera—LIDAR fusion
method to achieve better real-time detection.
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