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Abstract: Advanced Driver Assistance System (ADAS) is the latest buzzword in the automotive
industry aimed at reducing human errors and enhancing safety. In ADAS systems, the choice
of control strategy is not straightforward due to the highly complex nonlinear dynamics, control
objectives, and safety critical constraints. Nonlinear Model Predictive Control (NMPC) has evolved as
a favorite option for optimal control due to its ability to handle such constrained, Multi-Input Multi-
Output (MIMO) systems efficiently. However, NMPC suffers from a bottleneck of high computational
complexity, making it unsuitable for fast real-time applications. This paper presents a generic
framework using Successive Online Linearization-based NMPC (SOL-NMPC) for for the control in
ADAS. The nonlinear system is linearized and solved using Linear Model Predictive Control every
iteration. Furthermore, offset-free MPC is developed with the Extended Kalman Filter for reducing
model mismatch. The developed SOL-NMPC is validated using the 14-Degrees-of-Freedom (DoF)
model of a D-class light motor vehicle. The performance is simulated in MATLAB/Simulink and
validated using the CarSim® software (Version 2016). The real-time implementation of the proposed
strategy is tested in the Hardware-In-the-Loop (HIL) co-simulation using the STM32-Nucleo-144
development board. The detailed performance analysis is presented along with time profiling. It can
be seen that the loss of accuracy can be counteracted by the fast response of the proposed framework.

Keywords: Advanced Driver Assistance System (ADAS); model predictive control; nonlinear systems;
embedded implementation; real-time vehicle control

1. Introduction

With the invention of autonomous, intelligent vehicles, a lot of research is being made
towards the enhancement of safety as well as performance of the system. The introduction
of Advanced Driver Assistance Systems (ADAS) has definitely improved the quality of
driving by reducing the human errors responsible for many accidents [1]. In order to
move towards complete control, researchers are working on various individual control
systems such as active chassis [2], drift control [3], etc. Many advanced systems have
already become an integral part of vehicles like adaptive cruise control [4], automatic
parking assist, Anti-lock Braking System (ABS), etc. Various technologies have been used
for achieving control. Conventional Proportional-Integral-Derivative (PID) control was
used for trajectory tracking [5]. The authors of [6] implemented steering control using
Sliding Mode Control (SMC) while [7] used disturbance observer-based SMC for ABS
control. Stochastic linear model predictive control was used by [8] for adaptive cruise
control. Meanwhile, the authors of [9] proposed the use of algorithms based on Volterra
Polynomial for fast control.
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It is necessary to validate the accuracy of the control in real time using implementation
on embedded platforms like ARM or Field-Programmable Gated Arrays (FPGA). The
authors of [10] implemented the lateral control of a vehicle for a 2-DoF model using
LMPC on FPGA (Xilinx’s Zedboard). Raspberry-pi was used by the authors of [11] for
implementing obstacle avoidance using LIDAR. Detailed survey of FPGA implementations
of various solutions for autonomous vehicles is presented in [12].

The use of advanced control strategies is crucial for obtaining safe and promising
results for ADAS applications. The individual control functions effectively when it operates
independently without any dependencies on other vehicle components. Nevertheless,
it can encounter significant challenges when tasked with managing multiple inputs and
outputs. Model Predictive Control (MPC) is one such technology which has been in the
industry in last few decades, mainly due to its ability to handle Multiple-Input Multiple-
Output (MIMO) systems. Moreover, control strategies like PID and SMC do not take into
account the constraints on the control inputs while formulating the problem explicitly [13].
This is another important property of MPC where the constraints are considered explicitly,
delivering the inputs within the bounds specified. A detailed discussion on the application
of MPC for ADAS is presented in [14].

MPC has already been used for various aspects of vehicle control, such as distributed
MPC for formation control [15], MPC along with Particle Swarm Optimization (PSO) for
path tracking [16], nonlinear MPC for active chassis control [2], economic MPC for vehicle
platoon [17], etc. Successive linearization-based MPC was used for vehicle motion control
while using a nonlinear model of tire only [18]. The effectiveness of the MPC is profound
only when the mathematical model used for the control represents the accurate and actual
vehicle dynamics. Majority of the applications found in the literature use models with
varying Degrees-of-Freedom (DoF) such as 2-DoF [10], 4-DoF [19], 6-DoF [20], and even
8-DoF [21]. The complete behavior of the vehicle as a system is properly defined using
a complete car model, which is essentially a 14-DoF system. Very few controls are listed
in the literature using this complete car model. The authors of [22] controlled speed for a
14-DoF vehicle model; however, the prediction model used was only 8-DoF.

Worldwide, CarSim® is the preferred choice for analyzing vehicle dynamics when
working with various controllers. The authors of [23] tested an 11-DoF Electric Vehicle
(E) model, while the authors of [24] tested the electronic stability program of a vehicle
system using CarSim for a 2-DoF vehicle model using fuzzy-PID. More implementations
for vehicle control using CarSim can be found in [25].

Nonlinear MPC suffers from the disadvantage of highly complex computations, which
makes it difficult for the control of systems with fast sampling time. Researchers are
working extensively on reducing such. The authors of [26] proposed MPC with robust-to-
early termination. In this approach, the optimization is executed only for a fixed time. The
suboptimal solution obtained using the constraints ensures recursive feasibility in spite
of early termination. Moreover, the authors of [27] used moving horizon estimation with
MPC for feedback control of linear systems.

The primary contribution of the paper is the introduction of another ultra-fast control
option for real-time control of complex highly nonlinear Multi-Input Multi-Output (MIMO)
systems. It is especially crucial for applications like ADAS that traditionally require
multiple controllers. These cases present extreme challenges for designers due to the
interdependency of objectives and control parameters, for example, in the case of cruise
control while managing the lane. In such cases, with traditional NMPC, it becomes very
difficult to achieve the sampling time in microseconds or even in the sub-milliseconds
range. Linear MPC fails to produce accurate results while explicit MPC becomes a non-
viable option due to huge memory requirement. In order to achieve the desired sampling
time while using resource-constrained embedded platforms, the use of Successive Online
Linearization-based NMPC (SOL-NMPC) is proposed for such complicated applications.

This paper aims to employ a 14-DoF Light Motor Vehicle (LMV) model to regulate
speed and yaw rate. Utilizing the entire car model enhances control accuracy while
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concurrently escalating computational complexity. It is proposed to use SOL-NMPC for
the control of this complex MIMO system. The behavior of the proposed approach in
terms of results obtained is compared with the traditional Nonlinear MPC (NMPC). The
system is implemented on an STM32F746ZG -based development board (Nucleo−144). To
analyze the proper working of the vehicle, the co-simulation is carried out using Simulink
and CarSim.

The structure of the paper as follows. Section 2 explains the proposed method for
fast control. Here, traditional NMPC is explained along with proposed approach using
successive linearization. Section 3 explains the 14-DoF mathematical model of Light
Motor Vehicle (LMV). The steps for embedded implementation are described in Section 4.
Section 5 presents the results obtained while Section 6 presents a detailed discussion of the
performance along with time profiling. Section 7 ends the paper with concluding remarks.

2. Proposed Method for Ultra-Fast Control

The use of MPC is proposed here for the effective control of speed as well as yaw rate
given the MIMO nature of the system. Traditional NMPC along with the challenges faced
are explained, followed by the proposed approach using linearization of the nonlinear
system at every iteration.

2.1. Nonlinear Model Predictive Control (NMPC)

Nonlinear MPC is an advanced optimization technique preferred due to its ability of
systematically handling nonlinear constraints of nonlinear systems. The Optimal Control
Problem (OCP) is solved in every iteration, generating a sequence of control outputs. In
the traditional NMPC, the objective function for reference tracking is minimized to track
the desired reference. The objective function is formulated as the Constrained Finite-Time
Optimal Control (CFTOC) problem (1), which is then solved using Receding Horizon
Controller (RHC) [28] (Chapter 13).

min
U

N−1

∑
k=0

(
||yk − yref,k)||2Q + ||uk||2R

)
, (1)

subject to,
xk+Ts = f (xk, uk), k = 0, . . . , N − 1, (2)

yk = g(xk, uk), k = 0, . . . , N − 1, (3)

∆uk = uk − uk−Ts , k = 0, . . . , N − 1, (4)

umin ≤ uk ≤ umax, k = 0, . . . , N − 1, (5)

ymin ≤ yk ≤ ymax, k = 0, . . . , N − 1, (6)

u−1 = u(t − Ts), (7)

x0 = x̂(t), (8)

where u ∈ RNu , x ∈ RNx , and y ∈ RNy are the vectors of inputs, states, and outputs,
respectively. Functions f : RNx and g : RNy , respectively, represent the state and output
transition functions. Sampling time is denoted by Ts and current time is denoted by t.
Nu, Nx, Ny are the number of control inputs, states, and outputs, respectively. umin and
umax are bounds on u while ymin and ymax represent output constraints.

NMPC is designed to track reference (yre f ) using weighting matrices Q ⪰ 0 and
R ≻ 0, and the prediction horizon, N. Initial values of states and control inputs are given
by x0 and u−1 [29]. The Nonlinear Problem (NLP) solver provided by MATLAB, fmincon, is
used here for performance evaluation. It accepts the linear as well as nonlinear, equality,
and inequality constraints along with the cost function. During each sampling instant,
the OCP of (1) is solved using the Interior Point Method (IPM) or Sequential Quadratic
Programming (SQP) method available with fmincon. This generates an optimal sequence of
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control inputs U = {u⋆
0 , . . . , u⋆

N−1}. The system is then excited for the next sampling time
using only the first control action (u⋆

0). The procedure is repeated every iteration with a
new initial condition for states x̂.

Though NMPC is preferred for its accuracy as well as its effective handling of nonlinear
systems, high computational burden while solving nonlinear CFTOC problem still remains
the bottleneck for the application of NMPC. This is mainly observed with highly nonlinear
systems or systems with higher dimensions. The demand for fast algorithms is increasing
every day for real-time applications. Even with the present day, high-performance CPUs,
the solving of the nonlinear equations within the expected sampling time in the sub-
milliseconds range is challenging enough. Additionally, direct implementation of these
methods and solvers on embedded devices is challenging and not straightforward. One
solution is to use a linearized system model. The use of LMPC reduces the complexity, but
at the cost of accuracy. Hence, to reduce the computational complexity of the traditional
NMPC, the use of NMPC based on successive model linearization is proposed here. This
approach, explained in the next section, increases the speed of computation compared to
NMPC while achieving better performance than LMPC.

2.2. Successive Online Linearization-Based NMPC (SOL-NMPC)

The proposed approach using successive linearization is explained in this section.
In this, as the name suggests, linearization of the nonlinear system model is performed
in every iteration (Figure 1) [30]. The current values of the system states are used as the
initial value for next iteration. This linearized model is considered as Linear Time Invariant
(LTI) since it remains the same during that particular sampling interval. The next step is
discretization and then the use of the state space matrices thus generated in the online
formulation of the LMPC. These steps are described below in detail.

SOL-NMPC

Nonlinear
Model

Linearization
and

Discretization

LMPC
Formulation

QP
Algorithm

Plant
State

Observer

x(t) xk xk, uk

u⋆

x0

x̂0
u⋆

Figure 1. Block diagram showing the steps for the SOL−NMPC.

2.3. Nonlinear Model

It is reckoned that process variables, model parameters, and sampling time are known
for the mathematical model of the nonlinear system under consideration ((2) and (3)).

2.4. Linearization

Once a nonlinear model is available, it is linearized at each sampling instant using
the present values of states and inputs. This approximate linear model is obtained using
the Taylor expansion. The state space matrices Ac, Bc, Cc, and Dc are calculated using
partial differentiation considering the previous values of states and inputs (xk−Ts , uk−Ts) (9).
This converts the nonlinear system into an approximate piece-wise linear system. Every
iteration, the linearization point will keep changing.

Ac =
∂ f
∂x

∣∣∣∣
xk−Ts , uk−Ts

, Bc =
∂ f
∂u

∣∣∣∣
xk−Ts , uk−Ts

, Cc =
∂g
∂x

∣∣∣∣
xk−Ts , uk−Ts

, Dc =
∂g
∂u

∣∣∣∣
xk−Ts , uk−Ts

, (9)

where g and f are given by Equations (3) and (2), respectively.
In case of online linearization, the finite difference method is applied at runtime to

compute the derivatives, while in the offline case, the current states and controls are used
in pre-calculated Jacobian matrices. The offline calculation will result in fast execution;
however, knowledge of mathematics involved in the computation of the Jacobian for
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highly complex nonlinear systems is necessary. MATLAB’s Jacobian function can be used in
such case.

The successive linearization approach used is different from the scheduling controllers
where a bank of LTI models is prepared. Pre-formatted linear systems are obtained by
linearizing the nonlinear system at various operating points to compensate for the variation
in the model parameters. These are solved using some scheduling law. The authors of [31]
used this strategy for control of the vehicle motion in lateral direction using the kinematic
model of the vehicle. This is also specifically helpful when linearization fails. However, if
the system is complex, choosing different operating points becomes tricky.

2.5. Discretization

The direct approach of first discretization and then optimization is used here for
solving the OCP [32]. This approach works well with any initial guess while showing good
convergence. A discrete-time system is now available for optimization.

Ad = eAc∗Ts ,

Bd = A−1
c (Ad − I) ∗ Bc.

(10)

The computation of matrix exponentiation is tedious. Furthermore, if Ac is singular then
A−1

c , and hence, Bd does not exist. Therefore, keeping in mind the need for fast computation
and possible singularity of matrix Ac, forward Euler approximation is used here, which
is based on the Taylor series. This method preserves the stability for small sampling time.
Moreover, the advantage of this method is more profound in the special situations when
the Jacobian becomes singular since there is no need for matrix inversion. The 14-DoF LMV
model considered here has a sampling time of just 1 ms and, hence, can be discretized
using approximation without loss of accuracy as,

Ad = I + Ac ∗ Ts,

Bd = Ts ∗ Bc,
(11)

where I is identity matrix (Nx × Nx). The output Equation (13) remains the same; hence,
Cd = Cc and Dd = Dc giving discrete-time matrices Ad, Bd, Cd, and Dd.

The exact linear equations, considering the linearization error, are given by,

xk = Adxk−Ts + Bduk−Ts + δ f , (12)

yk = Cdxk−Ts + Dduk−Ts + δg, (13)

where δ f and δg present the differences between the values obtained while solving the
exact nonlinear model (expected value) and approximate linear model (actual value) due to
linearization, respectively, for states and outputs. However, for systems with fast sampling
time, the newly obtained states are very close to the previous states, thus making δ f and δg
very small and, therefore, safely negligible.

The vectors xk−Ts , uk−Ts represent the latest operating point while xk are the states at
the next sampling instant and are given by,

xk =


x1(k)
x2(k)

...
x23(k)

, uk−1 =

[
u1(k − Ts)
u2(k − Ts)

]
. (14)

The states that cannot be measured are estimated using the Kalman filter. As the
linearization is performed before optimization using the direct approach, the most current
states available from previous sampling instant are used as the present operating point.
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2.6. Formulation of Quadratic Programming (QP) Problem

The cost function to be minimized can be written as

min
U

N−1

∑
k=0

xT
k Qxk + uT

k Ruk. (15)

Equation (15) is further simplified to formulate the Quadratic Programming (QP)
problem of the time varying linear model as,

min
U

1
2

UT HU + cTU,

s.t. GU ≤ w,
(16)

where H ∈ RNu N×Nu N denotes the Hessian matrix, c ∈ RNx×Nu N is the gradient matrix
with G ∈ Rq×Nu N , and w ∈ Rq, representing bounds, with q inequalities. Thus, for QP
formulation, the nonlinear constraints of (1) are linearized using (12) and (13). These
linearized constraints are further used in quadratic problem (16). The QP problems can be
solved using methods like interior-point methods, active-set methods, or gradient-based
methods [33]. These methods have fast convergence properties with good stability.

The proposed approach of SOL-NMPC uses the Fast Gradient Method (FGM) by [34]
as the QP solver. This method achieves the desired accuracy in fewer iterations than other
methods [35]. The authors also proved that, as compared to other methods, where there is
a quadratic increase in the resource utilization and the time for a single iteration with the
system dimensions and horizon length, FGM shows linear relationship. Hence, the use of
FGM is advantageous for larger horizons. The method was coded in C and no ready-made
solver was used.

Since linear systems are renowned for possessing a unique optimal solution, lineariz-
ing the nonlinear system during each iteration guarantees a singular optimal solution
every sampling duration, thereby alleviating the issue of multiple optima that arises in
nonlinear systems.

2.7. Singularity Issues

While converting the system from nonlinear to linear every iteration, there are chances
that the Jacobian formed can be singular. This issue can be handled specific to a system
where the situation causing the singularity can be avoided by carefully choosing different
parameters. In some cases, singularities can be efficiently escaped by exploiting the system
geometry [36]. Using approximate discretization can also help solve this problem up to
a certain extent as long as the system sampling time is in sub-milliseconds. Moreover,
the choice of penalty matrices and suitable prediction horizon prove to be important in
this case.

The most commonly used methods to deal with singular matrices include singular
value decomposition (SVD), eigenvalue decomposition, and decomposition using Cholesky.
These methods change the structure of the matrix and a new one is formed with reduced
dimensions [37]. However, this can cause the change in the matrix size each time and,
hence, a change in the memory requirement. For real-time implementation, it is better to
avoid dynamic memory allocation; hence, this approach finds relatively fewer takers.

In an alternative approach, a Cholesky decomposition of Ad matrix is carried in each
iteration. Here, it is possible to identify non-positive definiteness of the matrices. In
this case, a small perturbation can be added to make the matrix non-singular without
disturbing the symmetry of the matrix. This is most commonly known as the Gershgorin
circle theorem [38]. A diagonal matrix (K) containing small diagonal elements (formed by
multiplying an identity matrix of size of number of states by a small factor (ϵ)) is added to
the matrix iteratively until a positive definite matrix is formed (Algorithm 1). Though, with
proper choice of ϵ, this approach may not cause instability, but there might be an issue of
offset or suboptimal solution.
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Algorithm 1 Treatment for singularity using the Gershgorin theorem.

while (Ad ⊁ 0) do
K = I ∗ ϵ
Ad = Ad + K

end while

2.8. Disturbance Model

As explained in Section 2.5, the exact linearization is given by Equation (12). For the
system under consideration, due to fast sampling, the δ f and δg can be ignored. However,
in cases where these linearization errors are considerably large, these need to be dealt with
while designing the MPC. There are various ways of considering the same. Reformulating
the cost function or modifying the Hessian and gradient matrices to include the linearization
error are some such methods. The model mismatch caused by these errors can also be
corrected using disturbance modeling where these are incorporated as an additional state
vector of uncertainties. Disturbance observer along with Kalman estimator is used here
to ensure the robustness of the proposed approach against the linearization errors as well
as any unpredictable perturbations caused in system states. In this case, the state vector
is augmented with the disturbance vector (17), generating a disturbance model [39]. This
greatly reduces the steady state offset error.[

x(t + Ts)
d(t + Ts)

]
︸ ︷︷ ︸

xe(t+TS)

=

[
Ac Bdist

0 I

]
︸ ︷︷ ︸

Ae

[
x(t)
d(t)

]
︸ ︷︷ ︸

xe(t)

+

[
Bc
0

]
︸︷︷︸

Be

u(t), (17)

ye(t) =
[
Cc Cdist

]︸ ︷︷ ︸
Ce

[
x(t)
d(t)

]
+ Deu(t), (18)

where Bdist and Cdist are disturbance matrices of dimensions (Ny × Nu) and (Ny × Nx),
respectively.

2.9. State Estimator and Disturbance Observer

For Multi-Input Multi-Output (MIMO) systems, it may not be always possible to
measure all the states. Hence, estimators like the Kalman estimator can be used to guess
the non-measurable states. The Kalman filter is also effective in rejection of sensor noise.
A state observer based on the Kalman filter (KF) is used here to estimate the internal
non-measurable states of the system, using available measurements of the system inputs
and outputs. Kalman is also known as the recursive filter, which needs only the current
measured states and the previous estimated states.

The KF is further extended for nonlinear dynamics. In the Iterative Extended Kalman
Filter (IEKF), the nonlinear system and output functions are linearized at the most current
estimate. The states, Kalman gain, as well as the error covariance matrix are computed in
every iteration. Issues may arise, such as errors in linearization and convergence problems.
The key to mitigating most of the challenges associated with the filter lies in appropriately
tuning filter parameters and establishing accurate initial estimates.

The predict phase of the observer estimates the states at the current instant while
the same are updated using Kalman gain in the update phase. The system model in
(12) and (13) is considered for only state observer without consideration for disturbances,
while the model in (17) is considered for reducing the mismatch between nonlinear and
linearized version of the system under consideration. The following equations are used to
estimate the extended state x̂ using the available measurements of states of plant:

x̂e(t + Ts) = Ae x̂e(t) + Beu(t) + L(y(t)− ŷe(t)), (19)

ŷe(t) = Ce x̂e(t) + Deu(t), (20)
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where L is the state filter gain matrix of dimensions Nx × Ny. This can be obtained using
Kalman filter gain or by pole placement. The extended matrices of (17), Ae, Be, Ce, and
De, are obtained after linearization (Section 2.4) and discretization (Section 2.5) in every
iteration using the latest states and input vectors while xe and ye are the extended states
and outputs, respectively, considering the difference between the plant and model output
as the disturbance state.

The next section explains the 14-DoF vehicle model.

3. The 14-DoF Vehicle Model

The system of autonomous Light Motor Vehicle (LMV) is considered here as the case
study. The 14-DoF vehicle model is used for the study of the behavior of LMV in all
directions, viz., vertical, lateral, and longitudinal directions. It consists of four unsprung
masses of the wheels and a sprung mass of vehicle body. The vehicle body has 6-DoF
which includes the vertical, longitudinal, roll, lateral, yaw motion, and pitch. Each of the
wheels has spin and vertical motion (2-DoF). A lumped mass model is presented in this
configuration. Other DoFs of the tires are treated as an input variable or neglected, e.g.,
the toe angle of each wheel. For a detailed explanation of the mathematical model of the
14-DoF LMV used in this paper, please refer to [40]. The 23 states (x1 to x23) and two inputs
(u1, u2) are given in Table 1.

Table 1. States and inputs of the 14−DoF vehicle model.

Variable Parameter Description Unit

x1 żs Velocity of sprung mass rad/s
x2 zs Displacement of sprung mass rad
x3 ˙zu1 Velocity of unsprung mass (front-left) rad/s
x4 ˙zu2 Velocity of unsprung mass (front-right) rad/s
x5 ˙zu3 Velocity of unsprung mass (rear-left) rad/s
x6 ˙zu4 Velocity of unsprung mass (rear-right) rad/s
x7 zu1 Displacement of unsprung mass (front-left) rad
x8 zu2 Displacement of unsprung mass (front-right) rad
x9 zu3 Displacement of unsprung mass (rear-left) rad
x10 zu4 Displacement of unsprung mass (rear-right) rad
x11 Vx Longitudinal velocity m/s
x12 d Longitudinal displacement m
x13 Vy Lateral Velocity m/s2

x14 θ̇ Pitch velocity rad/s
x15 θ Pitch angle rad
x16 ϕ̇ Roll velocity rad/s
x17 ϕ Roll angle rad
x18 γ̇ Yaw rate rad/s
x19 ω1 Angular velocity of front-left wheel rad/s
x20 ω2 Angular velocity of front-right wheel rad/s
x21 ω3 Angular velocity of rear-left wheel rad/s
x22 ω4 Angular velocity of rear-left wheel rad/s
x23 γ Yaw rad

u1 δ Steering angle rad
u2 Ta1 Torque to front wheels N m

The aim is to control the motion, i.e., manage velocity while maintaining the lane by
adjusting both steering angle (δ) and torque to front wheels (Ta1). The main objective here
is to achieve partial automation in driving which is level 2 of vehicle autonomy where
two tasks are being handled simultaneously [41]. The objective is tested for four different
variations of velocity and yaw rate as given in Table 2.
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Table 2. Various test scenarios considered used for testing of the 14−DoF vehicle model.

Scenario−1 Scenario−2 Scenario−3 Scenario−4

Description J−Turn Lane Change Constant velocity, Constant yaw rate,
varying yaw rate varying velocity

Speed 50 50 50 t = 0 to 40 → Vx = 20
(km/h) t = 40 to 60 → Vx = 35

t = 60 to 80 → Vx = 50
t > 80 → Vx = 75

Yaw rate t = 0 to 50 → yaw rate = 0 t = 0 to 25 → yaw rate = 0 t = 0 to 20 → yaw rate = 0 t = 0 to 20, yaw rate = 0
(rad) t > 50 → yaw rate = 0.1 t = 25 to 50 → yaw rate = 0.2 t = 20 to 40 → yaw rate = 0.05 t > 20, yaw rate = 0.2

t = 50 to 75 → yaw rate = −0.2 t = 40 to 60 → yaw rate = 0.1
t > 75 → yaw rate = 0 t = 60 to 80 → yaw rate = 0.15

t > 80 → yaw rate = 0.2

MPC Parameters

Tuning of the penalty matrices of the SOL-NMPC as well as the observer covari-
ance are utmost challenging due to the extreme complex nature of the system under
consideration. Various design parameters used for SOL-NMPC are explained here. The
model is solved for Nx = 23, Nu = 2, and Ny = 2. Longitudinal velocity—Vx (x11)
and the yaw rate—γ̇ (x18) are the two outputs considered here. Using the initial value
of velocity Vx(0) = 1, the initial values of inputs and states used are: u0 = [0; 0] and
x0 = [0; 0; 0; 0; 0; 0; 0; 0; 0; 0; Vx0; 0; 0; 0; 0; 0; 0; 0; Vx0/0.325; Vx0/0.325; Vx0/0.325; Vx0/0.325],
respectively. The penalty matrices obtained by experimentation are R = diag(100, 10−8) us-
ing prediction horizon N = 3, with all elements of Q matrix 0 except Q11 = 10, Q18 = 1000.
Based on literature available [40], the sampling time considered is Ts = 1 ms.

The steps for hardware implementation are explained in the next section.

4. Embedded Implementation

It is of utmost importance for real-time applications that the control algorithm must
be implementable on some portable, easy-to-use embedded platform. The most commonly
used hardware for such implementations is the ARM cortex development board, one of
the user-friendly as well as easily available, cost-effective options. With the latest versions
of MATLAB (version: 2022a), it is possible to generate the C-code of the NMPC (fmincon)
solver. The generated code is directly compatible with the ARM-based embedded platforms.
However, the SOL-NMPC using FGM is our own code, developed directly using C, which
is convenient for the embedded implementation.

This section presents the step-by-step implementation of SOL-NMPC on the ARM
(STM32)-based low-cost microcontroller board (Nucleo-144), which is extensively used for
research in academics as well as in the automotive industry.

The explanation of steps shown in Figure 2 for implementation of the proposed
framework is as follows:

• Nonlinear model: The plant is nonlinear in nature. Every iteration, this model is
linearized.

• Formulation for LMPC: After the nonlinear model is linearized and discretized as
explained in Section 2.2, the necessary matrices (constraints, gradient, and hessian)
are formulated every sampling instant, to solve the convex QP problem.

• QP solver for embedded implementation: Fast Gradient Method (FGM) is used to
optimize the QP problem formed for the embedded implementation.

• SIL testing and verification: Software-In-the Loop (SIL) simulation is performed
after the complete C code is ready, using Intel i7 2 GHz PC. At this stage, the
penalty parameters are tuned properly to achieve the desired output as well as
disturbance rejection.

• STM32Cube IDE: The code is compiled for STM32F746ZG Microcontroller (Nucleo−144
development board) using STM32Cube IDE after the performance achieved is satisfac-
tory. The resulting code is then analyzed for solver time as well as memory.
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• HIL Testing and Verification: The implementability of the proposed approach is
validated after implementation. A digital oscilloscope is used to measure the solver
time (Figure 3).

C/C++
IDE

STM32
Cube IDE

Nonlinear
Model

Formulation
for LMPC

QP Solver
(FGM)

SIL Testing
and Verification

Import code
using STM32Cube IDE

HIL Co-simulation
Testing and
Verification

Figure 2. Flowchart showing the step-by-step embedded implementation of SOL-NMPC.

1⃝

2⃝
3⃝

Figure 3. Lab setup to demonstration the implementation of SOL-NMPC using (1) STM32F746ZG
microcontroller, (2) Digital Oscilloscope, and (3) PC.

The results obtained are discussed in detail in the next section.

5. Results

The SOL-NMPC controller for motion control of vehicle is first tested using MATLAB-
Simulink. Once the desired performance is achieved by proper tuning of penalty matrices,
the model file of Simulink is then ported in CarSim. CarSim is the preferred tool universally
for analyzing vehicle dynamics and developing various controllers. The Class-D sedan
vehicle is selected for testing. The validation diagram is as shown in Figure 4. The results
obtained for various test scenarios considered are presented in this section.
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Figure 4. Simulink block diagram used for validation of SOL-NMPC using CarSim for the 14−DoF
vehicle model.

5.1. Results of SIL Using MATLAB-Simulink

The successive linearization-based approach is tested for controlling the motion of
the LMV. The objective is to maintain the speed while following the desired path. The
path is set using various options and combinations of yaw rate and longitudinal speed.
It can be observed that there exists a steady-state error in the simulation results. One of
the reasons for such can be the mismatch between the actual plant and its mathematical
model considered. This can be reduced using state and disturbance observer as explained
in Section 2.8. This can be considered as the Offset-Free SOL-NMPC (OFSOL-NMPC).

5.2. Results of CarSim Validation

After the tuning of the parameters is perfected and desired results are achieved in
SIL using MATLAB-Simulink for both standard SOL-NMPC as well as OFSOL-NMPC, the
proposed approach is validated using CarSim. Class-D Sedan vehicle is selected. A new
Simulink file is generated using the CarSim block to replace the vehicle system model
(Figure 4). The speed and yaw rate are obtained from CarSim. For estimation of the
remaining 21 states, Iterated Extended Kalman Filter (IEKF) is used along with disturbance
observer as explained in Section 2.9.

As the time required to solve one iteration of fmincon is much higher than the desired
sampling time, the control generated will be highly suboptimal. Hence, it is not suitable for
the validation purpose. The proposed approach of SOL-NMPC as well as OFSOL-NMPC
runs faster than traditional NMPC, thus making it suitable for the real-time validation. The
results obtained are presented in comparison with those from Simulink.

6. Performance Discussion

The detailed analysis of the results achieved for the proposed approach is presented
here. Performance analysis is presented in terms of the Key Performance Indicators (KPIs)
such as Mean Square Error (MSE), Integral Square Error (ISE), Integral Absolute Error
(IAE), Integral Time Square Error (ITSE), and Integral Time Absolute Error (ITAE).

After satisfactory simulation results are achieved, detailed time profiling is performed
for the proposed approach. This helps in understanding the time-heavy component of the
controller, which can be focused upon in case further reduction in time is necessary. The
results are obtained for four test case scenarios as explained in Table 2.

6.1. Performance Analysis

Figure 5 present the outputs obtained using SOL-NMPC and OFSOL-NMPC as com-
pared to traditional NMPC for the four test cases considered here. The Software-in-the-Loop
testing is performed using MATLAB-Simulink. The solver time for SOL-NMPC followed
by the OFSOL-NMPC is faster than that of NMPC, owing to a significant reduction in
computational complexity.
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Figure 5. SIL results obtained for NMPC, SOL−NMPC, and OFSOL−NMPC using MAT-
LAB−Simulink for the 14−DoF vehicle model.

Figure 6 present the outputs obtained for the four scenarios considered using SOL-
NMPC and OFSOL-NMPC after CarSim validation. It can be seen that for SOL-NMPC,
there is an offset between the reference and CarSim output; however, the output is seen to
be extremely stable. The offset might be present due to differences in the way some of the
internal parameters are handled by CarSim and MATLAB-Simulink. This offset is further
reduced using Offset-Free NMPC (OFSOL-NMPC), at the cost of increased computational
complexity and, hence, solver time.
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Figure 6. Output obtained for CarSim validation using SOL−NMPC and OFSOL−NMPC for the
14−DoF vehicle model.

Table 3 lists the KPIs for the four test scenarios considered. The controllers considered
are traditional NMPC, standard SOL-NMPC, and OFSOL-NMPC. For ISE, square of error
is integrated over time; thus, large errors are penalized more than smaller ones. Hence,
smaller ISE means very small fluctuations about the reference. Integrated absolute error
over time is expressed in IAE. Reducing IAE can make the system sluggish. In case of ITAE,
the absolute error multiplied by the time is integrated while ITSE integrates the squared
error multiplied by the time. These indicate weight errors existing after a long time after
the execution starts compared to those at the start of the execution, and hence are larger
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than MSE, ISE, and IAE. This analyzes the system behavior and indicates if it deviates after
a reasonably long run-time. As all the values are quite lower, it can be safely inferred that
the proposed approach is accurate and fast at the same time.

Table 3. Comparison of KPIs of NMPC, SOL−NMPC, and OFSOL−NMPC for 14−DoF vehicle
control for all test cases.

Scenario−1 (J−Turn) Scenario−2 (Lane Change)

KPIs NMPC SOL−NMPC OFSOL−NMPC NMPC SOL−NMPC OFSOL−NMPC

MSE 0.9892 1.8796 1.4408 0.9892 1.9435 1.4505
ISE 98.89 187.93 144.06 98.89 194.33 145.03
IAE 21.024 75.8775 35.6527 21.03 82.86 35.79
ITSE 147.5157 1291.252 352.36 147.54 1598.22 359.71
ITAE 42.508 2100.246 273.16 42.59 2428.7 273.6

Scenario−3 (Changing Yaw) Scenario−4 (Changing Velocity)

KPIs NMPC SOL−NMPC OFSOL−NMPC NMPC SOL−NMPC OFSOL−NMPC

MSE 0.8158 1.906 1.45 0.107 0.9088 0.3591
ISE 81.557 190.553 144.96 10.68 90.88 35.90
IAE 16.58 78.99 35.61 6.65 66.011 30.23
ITSE 94.56 1500.47 355.68 362.94 6336.86 1865.05
ITAE 25.85 2343.55 256.15 254.33 4465.81 1759.27

It can be seen that NMPC as well as SOL-NMPC and OFSOL-NMPC are able to track
the expected references quite accurately with OFSOL-NMPC showing marginally better
performance than standard SOL-NMPC. It can be safely stated here that the fast speed of
computation has helped in achieving the desired performance in spite of suboptimality.

6.2. Time Profile

Monte Carlo study was conducted with various initial values of the speed for both
NMPC as well as OFSOL-NMPC. Table 4 presents the minimum, maximum, and average
time taken by the OFSOL-NMPC (in blue color) in comparison with the traditional NMPC
(in red color). It can be seen that it is not possible to solve the OCP within the desired
solver time using the fmincon solver which, however, is possible using the SOL-NMPC as
the solver time achieved is close to the desired sampling time. Moreover, it can be observed
that a 95% decrease in the solver time (indicated in blue with down arrow) is achieved as a
result of a significant reduction in complex computations due to linearization. The solver
time is the total of the linearization time, discretization time, computation of matrices for
QP formulation, and the QP solver time along with state and disturbance observer. The
pie-chart in Figure 7 presents the detailed time profiling. It can be observed that the QP
solver takes slightly less time than that required for the computation of matrices. This is
dependent not only on the size of the system, but also on the prediction horizon. Reducing
the prediction horizon will decrease the matrix computation time at the cost of accuracy,
affecting the stability of the system.

Table 4. Computational complexity in terms of time required and resource utilization by NMPC and
OFSOL−NMPC for the control of the 14−DoF vehicle model.

Solver Avg. Solver Time (ms) Min Solver Time (ms) Max Solver Time (ms) RAM Used (kb) Flash Used (kb)

NMPC 18.10 14.68 18.75 1.66 86.79
OFSOL−NMPC 0.88 (95% ↓) 0.75 0.91 1.67 84.18

33%
27%

21%11%
8%

Computation of Matrices
QP Solver
Discretization
Estimator
Linearization

Figure 7. Time profile of OFSOL−NMPC for the 14−DoF vehicle model.
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6.3. Stability and Feasibility

Stability refers to the property of a system to remain within a constrained region and
to attain the desired state. Furthermore, the response of the system to disturbances or
initial conditions remains predictable and controlled. Based on the results obtained after
the addition of the disturbance observer, the system is observed to be able to track the
desired reference even in the presence of uncertainties. In that sense, it can be said that
the system is showing stable behavior. However, detailed mathematical analysis is not
performed for the same here. The addition of terminal constraints is one way of ensuring
stability, although the strict constraints may lead the system to infeasibility.

To ensure the stability, the terminal constraints need to be included [42]. Equation (15)
thus changes to:

min
U

xT
N PxN +

N−1

∑
k=0

xT
k Qxk + uT

k Ruk. (21)

The terminal cost is given by matrix P ∈ RNx×Nx with xk ∈ X f . Here, X f indicates the
constraints on the final predicted state value. The matrix P is obtained by solving the
discrete-time Riccati equation given by [28] (Chapter 9),

P = AT
d PAd − AT

d PBd(R + BT
d PBd)

−1BT
d PAd + Q. (22)

The term xT
N PxN is also called the cost associated with infinite horizon since practical

problems use finite horizon for computational convenience. The terminal constraint set x f
is computed using a polyhedral set. The values of penalty matrices Q and R also need to
be re-tuned for feasible P.

The inclusion of terminal constraints improves the accuracy of the results obtained
(by almost 3 to 5%). However, though the terminal constraints lead to efficient long-
term performance, they can make the optimal control problem harder. In general, the
computation of terminal cost as well as constraints is performed offline to reduce the
computational burden. However, when using the approach of successive linearization,
the state-space matrices are computed every iteration and, hence, the P matrix also needs
to be updated every time. This adds to the solver time to the extent that the maximum
solver time obtained goes above the desired sampling time of 1 ms. It will be beneficial to
include the same when implementing on embedded platforms with faster speed or with
reconfigurable hardware like FPGA where it is possible to optimize memory to achieve the
desired solver time.

Terminal constraints also impact the feasibility of the control. The X f needs to be
relaxed to some extent to obtain a feasible solution. Moreover, recursive feasibility refers
to the fact that the feasible solution to the optimization problem at the current time step
will generate a feasible solution at subsequent time steps as well. Here, it is assumed that
there are no significant disturbances. Since the solution always lies within the desired
boundary due to the addition of terminal cost, even if there is a change in reference, the
control will always lie within the desired range. In such a case, slightly more time might
be required to achieve the desired reference while keeping the system stable as well as
feasible. The recursive feasibility usually ensures stability. The authors of [43] explored
various conditions for ensuring asymptotic stability as well as feasibility.

6.4. HIL Co-Simulation Results

The STM32F746ZG development board (Nucleo−144) is used for testing the imple-
mentability of the proposed approach. Refer to Section 4 for an explanation of the steps
followed for the embedded implementation. The memory utilization is presented in Table 4
for both NMPC and OFSOL-NMPC. It can be observed that the memory required for the
traditional NMPC solver is slightly more than OFSOL-NMPC, as in case of the successive
linearization approach, even if a large matrices are formed, the computational resources
required are much less. Moreover, the size of the matrices depends upon the number of
variables as well as the prediction horizon.
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7. Conclusions

For problems pertaining to ADAS systems, Model Predictive Control-based strategies
provide interesting solutions since they mixes classical feedback with optimal control. In
this paper, a part of the ADAS system, motion control of vehicle and Lane Keep Assist
(LKA), is achieved using Successive Online Linearization-based Nonlinear MPC. The 14-
DoF model of LMV is used as a case study. In case of SOL-NMPC, in every iteration,
linearization of the system is performed. Hence, the computational complexity is reduced
significantly due to the use of LMPC in every iteration. The LMPC is formulated as a
standard QP problem. This QP problem can be solved using any available robust solvers
within few microseconds to milliseconds. The QP solvers have been used in the industry
for a few decades now. As a result, the algorithms used are quite stable and robust. In
case of a sudden change in operating conditions or external disturbances, the correction in
control based on the instantaneous states is executed immediately. The stable desired value
is achieved as immediately as possible. This makes the system more robust to external
disturbances while significantly reducing the computational complexity.

The performance was first simulated in the MATLAB-Simulink when steady-state
error was observed. To remove the offset, disturbance observer was added and validated
using the CarSim® software. It is seen that the performance achieved is at par with the
traditional nonlinear MPC with drastically reduced solver time. Future work on this can
include further reducing the offset observed in the output of CarSim. The feasibility of the
proposed control for this model is also tested on the embedded platform. The ARM-based
Nucleo−144 development board is used for verifying the implementability of the control
algorithm in HIL. It has been noticed that the performance achieved with ARM-based
embedded hardware closely resembles that of Software-In-the-Loop (SIL) testing. The
impact of computational and resource limitations on the chosen hardware platform is
minimal and can therefore be disregarded with confidence.

The approach needs to be further analyzed mathematically in respect of local as well
as global stability. For the real-time implementation of ADAS for MIMO systems, the
solver time achieved should be much less than the desired sampling time to incorporate
various delays like sensor delay, communication delay, conversion times, etc. The ARM
board being fixed architecture board, time as well as memory optimization are not possible.
To further improve the solver time, high-speed hardware need to be used. Hence, it is
necessary to explore options like reconfigurable hardware like FPGA. The solver speed
can be improved due to inherent parallelism available in the FPGA. Further, the complete
potential of MPC as applied to ADAS can be fully explored by adding few more control
options. This outlines the path for future work in this area.
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Abbreviations
ABS Anti-lock Breaking System
ADAS Advanced Driver Assistance System
CFTOC Continuous Finite Time Optimal Control
DoF Degrees of Freedom
EKF Extended Kalman Filter
EV Electric Vehicle
FGM Fast Gradient Method
FPGA Field Programmable Gated Array
HIL Hardware-in-The-Loop
IAE Integral Absolute Error
IEKF Iterative Extended Kalman Filter
IPM Interior Point Method
ISE Integral Square Error
ITAE Integral Time Absolute Error
ITSE Integral Time Square Error
KF Kalman Filter
KPI Key Performance Indicators
LKA Lane Keep Assist
LMPC Linear Model Predictive Control
LMV Light Motor Vehicle
LTI Linear Time Invariant
MIMO Multiple-Input Multiple-Output
MPC Model Predictive Control
MSE Mean Square Error
NLP Nonlinear Problem
NMPC Nonlinear Model Predictive Control
OCP Optimal Control Problem
OFSOL-NMPC Offset-Free SOL-NMPC
PID Proportional-Integral-Derivative
PSO Particle Swarm Optimization
QP Quadratic Programming
RHC Receding Horizon Control
SIL Software-in-The-Loop
SMC Sliding Mode Control
SOL-NMPC Successive Online Linearization-based Nonlinear Model Predictive Control
SQP Sequential Quadratic Programming

References
1. Ziebinski, A.; Cupek, R.; Grzechca, D.; Chruszczyk, L. Review of Advanced Driver Assistance Systems. AIP Conf. Proc. 2017,

1906, 120002.
2. Guo, H.; Liu, F.; Xu, F.; Chen, H.; Cao, D.; Ji, Y. Nonlinear Model Predictive Lateral Stability Control of Active Chassis for

Intelligent Vehicles and Its FPGA Implementation. IEEE Trans. Syst. Man, Cybern. Syst. 2019, 49, 2–13. [CrossRef]
3. Zhang, F.; Gonzales, J.; Li, S.E.; Borrelli, F.; Li, K. Drift Control for Cornering Maneuver of Autonomous Vehicles. Mechatronics

2018, 54, 167–174. [CrossRef]
4. He, Y.; Ciuffo, B.; Zhou, Q.; Makridis, M.; Mattas, K.; Li, J.; Li, Z.; Yan, F.; Xu, H. Adaptive Cruise Control Strategies Implemented

on Experimental Vehicles: A Review. IFAC-PapersOnLine 2019, 52, 21–27. [CrossRef]
5. Farag, W. Complex Trajectory Tracking Using PID Control for Autonomous Driving. Int. J. Intell. Transp. Syst. Res. 2020,

18, 356–366. [CrossRef]
6. Xu, T.; Liu, X.; Li, Z.; Feng, B.; Ji, X.; Wu, F. A Sliding Mode Control Scheme for Steering Flexibility and Stability in All-wheel-

steering Multi-axle Vehicles. Int. J. Control. Autom. Syst. 2023, 21, 1926–1938. [CrossRef]
7. Wanaskar, V.; Shendge, P.; Phadke, S. A Disturbance Observer Based Sliding Mode Control for Anti-Lock Braking System. In

Proceedings of the Conference on Advanced Computational and Communication Paradigms, Gangtok, India, 5–28 February
2019; pp. 1–6.

8. Moser, D.; Waschl, H.; Kirchsteiger, H.; Schmied, R.; Del Re, L. Cooperative Adaptive Cruise Control Applying Stochastic
Linear Model Predictive Control Strategies. In Proceedings of the European Control Conference, Linz, Austria, 15–17 July 2015;
pp. 3383–3388.

http://doi.org/10.1109/TSMC.2017.2749337
http://dx.doi.org/10.1016/j.mechatronics.2018.05.009
http://dx.doi.org/10.1016/j.ifacol.2019.09.004
http://dx.doi.org/10.1007/s13177-019-00204-2
http://dx.doi.org/10.1007/s12555-021-0742-4


World Electr. Veh. J. 2024, 15, 299 17 of 18

9. Suslov, K.; Gerasimov, D.; Solodusha, S. Smart Grid: Algorithms for Control of Active-Adaptive Network Components. In
Proceedings of the IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 9 June–2 July 2015; pp. 1–6.

10. Li, Y.; Li, S.E.; Jia, X.; Zeng, S.; Wang, Y. FPGA Accelerated Model Predictive Control for Autonomous Driving. J. Intell. Connect.
Veh. 2022, 5, 63–71. [CrossRef]

11. Baras, N.; Nantzios, G.; Ziouzios, D.; Dasygenis, M. Autonomous Obstacle Avoidance Vehicle Using LIDAR and an Embedded
System. In Proceedings of the International Conference on Modern Circuits and Systems Technologies, Thessaloniki, Greece,
13–15 May 2019; pp. 1–4.

12. Kasem, A.; Reda, A.; Vásárhelyi, J.; Bouzid, A. A Survey About Intelligent Solutions for Autonomous Vehicles Based on FPGA.
Carpathian J. Electron. Comput. Eng. 2021, 13, 7–11. [CrossRef]

13. Incremona, G.P.; Rubagotti, M.; Ferrara, A. Sliding Mode Control of Constrained Nonlinear Systems. IEEE Trans. Autom. Control.
2017, 62, 2965–2972. [CrossRef]

14. Musa, A.; Pipicelli, M.; Spano, M.; Tufano, F.; De Nola, F.; Di Blasio, G.; Gimelli, A.; Misul, D.A.; Toscano, G. A Review of Model
Predictive Controls Applied to Advanced Driver-Assistance Systems. Energies 2021, 14, 7974. [CrossRef]

15. Van Parys, R.; Pipeleers, G. Distributed MPC for Multi-Vehicle Systems Moving in Formation. Robot. Auton. Syst. 2017,
97, 144–152. [CrossRef]

16. Tan, Q.; Dai, P.; Zhang, Z.; Katupitiya, J. MPC and PSO Based Control Methodology for Path Tracking of 4WS4WD Vehicles. Appl.
Sci. 2018, 8, 1000. [CrossRef]

17. Hu, M.; Li, C.; Bian, Y.; Zhang, H.; Qin, Z.; Xu, B. Fuel Economy-Oriented Vehicle Platoon Control Using Economic Model
Predictive Control. IEEE Trans. Intell. Transp. Syst. 2022, 23, 20836–20849. [CrossRef]

18. Czibere, S.; Domina, Á.; Bárdos, Á.; Szalay, Z. Model Predictive Controller Design for Vehicle Motion Control at Handling Limits
in Multiple Equilibria on Varying Road Surfaces. Energies 2021, 14, 6667. [CrossRef]

19. Aulia, A.I.; Hindersah, H.; Rohman, A.S.; Hidayat, E. Design of MPC-based motion cueing for 4 DoF simulator platform. In
Proceedings of the International Conference on System Engineering and Technology, Shah Alam, Malaysia, 7 October 2019;
pp. 183–188.

20. Buchheit, B.; Schneider, E.N.; Alayan, M.; Dauth, F.; Strauss, D.J. Motion Sickness Prediction in Self-Driving Cars Using the
6DOF-SVC Model. IEEE Trans. Intell. Transp. Syst. 2021, 23, 13582–13591. [CrossRef]

21. Antehunegn, Y.; Belete, M. Control of 8-DOF Vehicle Model Suspension System by Designing Second Order SMC Controller. GSJ
2020, 8, 272–280.

22. Chen, S.p.; Xiong, G.m.; Chen, H.y.; Negrut, D. MPC-based path tracking with PID speed control for high-speed autonomous
vehicles considering time-optimal travel. J. Cent. South Univ. 2020, 27, 3702–3720. [CrossRef]

23. Li, Y.; Deng, H.; Xu, X.; Wang, W. Modelling and Testing of In-Wheel Motor Drive Intelligent Electric Vehicles Based on
Co-Simulation With Carsim/Simulink. IET Intell. Transp. Syst. 2019, 13, 115–123. [CrossRef]

24. Jiang, N.; Qiu, R. Modelling and Simulation of Vehicle ESP System Based on CarSim and Simulink. J. Physics Conf. Ser. 2022,
2170, 012032. [CrossRef]

25. CarSim. Using CarSim and TruckSim. Available online: https://www.carsim.com/publications/technical/index.php (accessed
on 4 March 2024).

26. Hosseinzadeh, M.; Sinopoli, B.; Kolmanovsky, I.; Baruah, S. Robust-to-Early Termination Model Predictive Control. IEEE Trans.
Autom. Control 2024, 69, 2507–2513. [CrossRef]

27. Gharbi, M.; Ebenbauer, C. Anytime MHE-based output feedback MPC. IFAC-PapersOnLine 2021, 54, 264–271. [CrossRef]
28. Borrelli, F.; Bemporad, A.; Morari, M. Predictive Control for Linear and Hybrid Systems: Textbook; Cambridge University Press:

Cambridge, UK, 2017; pp. 251–287.
29. Allgöwer, F.; Findeisen, R.; Nagy, Z.K. Nonlinear Model Predictive Control: From Theory to Application. J. Chin. Inst. Chem. Eng.

2004, 35, 299–315.
30. Patne, V.; Ingole, D.; Sonawane, D. Towards Fast Nonlinear Model Predictive Control for Embedded Applications. IFAC-

PapersOnLine 2022, 55, 304–309. [CrossRef]
31. Kang, C.M.; Lee, S.H.; Chung, C.C. Linear Parameter Varying Design for Lateral Control using Kinematics of Vehicle Motion. In

Proceedings of the Annual American Control Conference, Milwaukee, WI, USA, 27–29 June 2018; pp. 3239–3244.
32. Sánchez, G.; Murillo, M.; Genzelis, L.; Deniz, N.; Giovanini, L. MPC for Nonlinear Systems: A Comparative Review of

Discretization Methods. In Proceedings of the 017 XVII Workshop on Information Processing and Control, Mar del Plata,
Argentina, 4–9 December 2017; pp. 1–6.

33. Nocedal, J.; Wright, S. Penalty and Augmented Lagrangian Methods. In Numerical Optimization; Springer: Berlin/Heidelberg,
Germany, 2006; Chapter 17, pp. 497–528.

34. Nesterov, Y.E. A Method for Solving the Convex Programming Problem with Convergence Rate O( 1
k2 ) . Dokl. Akad. Nauk SSSR

1983, 269, 543–547.
35. Markus, K.; Rolf, F. A Fast Gradient Method for Embedded Linear Predictive Control. IFAC Proc. Vol. 2011, 44, 1362–1367.
36. Berry, A.; Lemus, D.; Babuška, R.; Vallery, H. Directional Singularity-Robust Torque Control for Gyroscopic Actuators. IEEE/ASME

Trans. Mechatronics 2016, 21, 2755–2763. [CrossRef]
37. Ayyildiz, E.; Gazi, V.P.; Wit, E. A Short Note on Resolving Singularity Problems in Covariance Matrices. Int. J. Stat. Probab. 2012,

1, 113–118. [CrossRef]

http://dx.doi.org/10.1108/JICV-03-2021-0002
http://dx.doi.org/10.2478/cjece-2020-0007
http://dx.doi.org/10.1109/TAC.2016.2605043
http://dx.doi.org/10.3390/en14237974
http://dx.doi.org/10.1016/j.robot.2017.08.009
http://dx.doi.org/10.3390/app8061000
http://dx.doi.org/10.1109/TITS.2022.3183090
http://dx.doi.org/10.3390/en14206667
http://dx.doi.org/10.1109/TITS.2021.3125802
http://dx.doi.org/10.1007/s11771-020-4561-1
http://dx.doi.org/10.1049/iet-its.2018.5047
http://dx.doi.org/10.1088/1742-6596/2170/1/012032
https://www.carsim.com/publications/technical/index.php
http://dx.doi.org/10.1109/TAC.2023.3308817
http://dx.doi.org/10.1016/j.ifacol.2021.08.555
http://dx.doi.org/10.1016/j.ifacol.2023.03.051
http://dx.doi.org/10.1109/TMECH.2016.2603601
http://dx.doi.org/10.5539/ijsp.v1n2p113


World Electr. Veh. J. 2024, 15, 299 18 of 18

38. Varga, R.S. Geršgorin and His Circles. Springer Ser. Comput. Math. 2004, 36, 226.
39. Adhau, S.; Phalke, K.; Nalawade, A.; Patil, S.; Ingole, D.; Sonawane, D. Implementation and Analysis of Offset-Free Explicit

Model Predictive Controller on FPGA. In Proceedings of the Indian Control Conference, New Delhi, India, 18–20 December 2019;
pp. 231–236.

40. Sonawane, D.; Hanwate, S.; Ubare, P.; Marathe, R.; Rao, G.S.; Sahu, M. Development of Vehicle Dynamic Plant Model and
Embedded Co-Simulation with ARM Platform. In Proceedings of the IEEE International Conference on Power Electronics, Drives
and Energy Systems, Jaipur, India, 14–17 December 2022; Volume 1, pp. 1–6.

41. Mehdi Khosrow-Pour, D. Autonomous Vehicles. In Encyclopedia of Information Science and Technology; IGI Global: Hershey, PA,
USA 2020; Chapter 1, pp. 1–11.

42. Fink, M. Implementation of Linear Model Predictive Control–Tutorial. arXiv 2021, arXiv:2109.11986.
43. Liu, Z.; Stursberg, O. Recursive Feasibility and Stability of MPC with Time-Varying and Uncertain State Constraints. In

Proceedings of the 18th European Control Conference, Naples, Italy, 25–28 June 2019; pp. 1766–1771.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Proposed Method for Ultra-Fast Control
	Nonlinear Model Predictive Control (NMPC)
	Successive Online Linearization-Based NMPC (SOL-NMPC)
	Nonlinear Model
	Linearization
	Discretization
	Formulation of Quadratic Programming (QP) Problem
	Singularity Issues
	Disturbance Model
	State Estimator and Disturbance Observer

	The 14-DoF Vehicle Model
	Embedded Implementation
	Results
	Results of SIL Using matlab-Simulink
	Results of CarSim Validation

	Performance Discussion 
	Performance Analysis
	Time Profile
	Stability and Feasibility
	HIL Co-Simulation Results

	Conclusions
	References

