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Abstract: The accuracy and real-time performance of 3D object detection are key factors limiting
its widespread application. While cameras capture detailed color and texture features, they lack
depth information compared to LiDAR. Multimodal detection combining both can improve results
but incurs significant computational overhead, affecting real-time performance. To address these
challenges, this paper presents a real-time multimodal fusion model called Fast Transfusion that
combines the benefits of LiDAR and camera sensors and reduces the computational burden of their
fusion. Specifically, our Fast Transfusion method uses QConv (Quick Convolution) to replace the
convolutional backbones compared to other models. QConv concentrates the convolution operations
at the feature map center, where the most information resides, to expedite inference. It also utilizes
deformable convolution to better match the actual shapes of detected objects, enhancing accuracy.
And the model incorporates EH Decoder (Efficient and Hybrid Decoder) which decouples multiscale
fusion into intra-scale interaction and cross-scale fusion, efficiently decoding and integrating features
extracted from multimodal data. Furthermore, our proposed semi-dynamic query selection refines
the initialization of object queries. On the KITTI 3D object detection dataset, our proposed approach
reduced the inference time by 36 ms and improved 3D AP by 1.81% compared to state-of-the-
art methods.

Keywords: 3D object detection; LiDAR–camera fusion; transformer; sparse convolutional neural
network

1. Introduction

Three-dimensional object detection as cutting-edge computer vision technology seeks
to accurately identify and categorize objects within a three-dimensional space. The appli-
cations of 3D object detection are diverse. For instance, in autonomous driving [1,2], it is
imperative to identify the location and category of various objects. In Augmented Reality
(AR), enhanced scene recognition and understanding are required [3]. Furthermore, for
tasks such as robotic object manipulation, knowledge of the object’s location and category
is necessary. And 3D object detection techniques are recently gaining popularity due to the
necessity of object shape and orientation estimation in real-world space [4]. Nowadays, it
is seeing advancements through LiDAR sensors [5], which offer reliable object localization
under varying lighting conditions by capturing depth as point clouds [6]. Despite progress,
LiDAR-based detection performance diminishes for distant objects due to sparse sampling
density [7]. Contrarily, color image sensors furnish high-resolution sampling and abundant
contextual data, thus compensating for the LiDAR limitations. The amalgamation of RGB
image and LiDAR data typically enhances 3D detection performance [8].

Current LiDAR–camera fusion methodologies can be broadly classified into three
categories: result level, proposal level, and point level. Result-level techniques [9], such
as FPointNet [10] and RoarNet [11], leverage pre-existing 2D detectors to initiate 3D
proposals, subsequently employing a PointNet for object localization. Proposal-level
fusion techniques, including MV3D [12] and AVOD [13], execute fusion at the region
proposal level by implementing RoIPool in each modality for shared proposals. However,
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these coarse-grained fusion techniques have demonstrated suboptimal results due to the
high level of background noise typically present in rectangular regions of interest (RoIs).
Recently, most approaches have attempted point-level fusion, yielding promising results.
These methods initially establish a firm association between LiDAR points and image
pixels based on calibration matrices, and subsequently augment LiDAR features with
the segmentation scores or CNN features of the associated pixels through point-wise
concatenation. Similarly, some studies first project a point cloud onto the bird’s eye view
(BEV) plane and then fuse the image features with the BEV pixels [14]. Transfusion [1] as
one of the state-of-the-art techniques is one of the best studies that uses two transformer
decoder layers as the detection head. It is to reposition the focus of the fusion process,
from hard association to soft association, leading to robustness against degenerated image
quality and sensor misalignment.

Despite Transfusion’s superior detection accuracy compared to other models, it suffers
from longer inference durations as shown in Figure 1. It is because Transfusion grapples
with three principal challenges that impede its wider adoption. Firstly, the model’s back-
bone is unoptimized, resulting in inefficient feature extraction. Secondly, the traditional
decoder’s multiscale feature fusion mechanism also imposes significant computational
overhead. At last, Transfusion’s design includes queries that are inherently difficult to
optimize, slowing down the inference speed of the model. As a result, Transfusion becomes
the computational bottleneck of the model due to the high computational cost. What is
obvious is that multimodal models outperform LiDAR-only models in terms of 3D AP;
however, they exhibit slower inference speeds, particularly the Transformer-based mul-
timodal model, Transfusion. Despite its superior detection accuracy, Transfusion’s slow
inference speed limits its practical utility in future applications.

Transfusion
LiDAR-only Multimodal

Figure 1. Three-dimensional AP and inference time across multiple models in the KITTI. It can be
seen that compared with LiDAR-only, multimodal achieves higher accuracy on the basis of sacrificing
inference time.

Therefore, this paper proposes Fast Transfusion, which uses three technologies, QConv,
EH decoder and semi-dynamic query selection, for lightweight modeling. The method
replaces the original convolutional network with the QConv network as the backbone
and substitutes the original transformer decoder with the EH decoder, while employing
semi-dynamic query selection in place of single dynamic query selection or static query
selection. In addition, our proposed detector supports flexible adjustment of the inference
speed by using different decoder layers without the need for retraining, which benefits
from the design of the decoder in the Transformer architecture and facilitates the practical
application of the real-time detector. The main contributions of this paper are as follows:

1. We propose a QConv network as the backbone of the model, which uses QConv
instead of the basic Conv. The QConv applies filters on only a few input channels
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while leaving the remaining ones untouched and uses deformable convolution and
deformable RoI pooling to accelerate training and inference.

2. A novel decoder, EH decoder, is proposed, which decouples the intra-scale interac-
tion and cross-scale fusion of multiscale features to efficiently process features with
different scales.

3. A semi-dynamic query selection is introduced to boost the quality of the initial bound-
ing box predictions for image fusion. The method lets position queries change dynam-
ically associated with the selected top-K features but leaves the content queries static.

4. Our study presents a viable strategy for the real-time application of contemporary
end-to-end detectors, enabling the proposed model to adapt inference speed via
various decoder layers, sidestepping the retraining requirement, a notable hurdle in
current real-time detection systems.

5. The method achieves state-of-the-art 3D detection performance on nuScenes and
competitive results on Waymo. The method also achieves significant acceleration in
inference speed compared to existing models.

2. Related Work
2.1. LiDAR-Based 3D Object Detection

LiDAR-based 3D object detection has garnered considerable attention in recent years,
marking significant advancements in the field. According to different implementation
routes, 3D detection methods based on LiDAR can be divided into three categories: point
cloud methods, voxelization methods, and depth map methods. PointNet [15] and Point-
Net++ [16] are methods that directly extract features from the point cloud, enabling tasks
such as classification and segmentation of the point cloud [17]. Traditional approaches
typically involve projecting LiDAR point clouds onto 2D planes, such as a bird’s eye view
(BEV) or range view images, to facilitate 3D object detection [18,19]. This methodology,
while effective, simplifies the complex spatial relationships inherent within the data. Re-
cent studies have endeavored to process raw point clouds directly, bypassing the need
for data quantization, thereby preserving the richness of the spatial information [3,20].
The design of detection heads for these systems often mirrors those used in 2D detection
frameworks, relying heavily on anchor boxes to identify object boundaries. However, inno-
vative approaches have emerged, utilizing center-based representations to streamline the
3D detection process. Despite the transformative impact of transformer architectures in 2D
detection, their application in 3D object detection, particularly for outdoor environments,
has been primarily confined to feature extraction phases [21]. The computational demands
of the transformer’s attention mechanism, especially when applied to the voluminous
data generated by LiDAR systems, are significant. Therefore, a strategy that can save a
substantial amount of computational resources is required.

Addressing these challenges, this paper proposes a novel combination of a QConv
backbone for feature extraction and an EH decoder equipped with a concise set of object
queries for detection. This hybrid approach significantly reduces the computational burden,
making it a viable solution for real-time applications. Nonetheless, it is imperative to
acknowledge a persistent challenge: the inherently low scanning resolution of LiDAR
systems, especially for distant objects, which exacerbates the issue of data sparsity. Our
research proposes an innovative solution [22], the LiDAR–camera fusion method, by
integrating RGB image data through attentively associating and fusing the object queries,
enhancing the model’s ability to detect and interpret sparse LiDAR data effectively. This
strategy not only mitigates the limitations posed by the LiDAR resolution but also enriches
the detection framework, offering a more robust and accurate detection system [23].

2.2. Image-Based 3D Object Detection

Addressing image-based 3D object detection methodologies have rapidly evolved,
with significant distinctions between monocular and binocular vision techniques. The most
direct approach [24] involves employing neural networks to estimate the 3D box parame-
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ters [25] from the image directly. These methods draw inspiration from the architectural
design of 2D object detection networks such as fast RCNNs [26], which have demonstrated
efficacy in facilitating end-to-end training. Monocular vision-based detection systems
primarily leverage methodologies that include depth estimation, keypoint detection, and
the utilization of CAD-based prior information [27–29]. The fundamental challenge with
monocular images lies in their intrinsic limitation: they offer only a 2D projection of the 3D
world, inherently lacking depth information. This limitation significantly constrains the
accuracy and reliability of depth perception and, by extension, the effectiveness of 3D object
detection. In contrast, binocular vision-based detection methods attempt to overcome these
limitations by exploiting the disparity between two vantage points, simulating human
stereoscopic vision to infer depth. This approach has led to the development of innovative
frameworks and algorithms aimed at generating more accurate 3D data from binocular
images. Noteworthy among these is the 3DOP system [30] proposed by Chen et al., which
estimates point clouds from binocular imagery, and the MLF method [31] by Xu and Chen,
which calculates parallax maps from binocular images to reconstruct depth maps and point
clouds. Additionally, the CGStereo system [32] introduced by Li et al., enhanced with se-
mantic segmentation supervision, significantly advances the precision of foreground depth
estimation. Moreover, Chen et al. developed a technique named pseudo-stereo [33], which
estimates depth maps from binocular images, and Peng et al. introduced an approach for
generating pseudo radar and target-level depth estimation by leveraging the SIDE of dual
branch networks [34]. Despite these advancements, the inherent challenge of accurately
capturing 3D information from 2D images remains a significant hurdle. It is unrealistic
to precisely extract depth and other 3D information from 2D images without relying on
additional modalities. Consequently, while these methodologies mark progress in the field,
the quest for improving detection accuracy through image-based methods continues to
be a complex and evolving challenge [35]. Therefore, as previously mentioned, this paper
employs a LiDAR–camera fusion method to address the issue of information deficiency
inherent in single-modality approaches.

2.3. Multimodal 3D Object Detection

Visual image-based methods excel in offering rich texture details but fall short in pro-
viding depth cues [36]. Conversely, point cloud-based approaches deliver spatial geometric
insights yet lack textural context. Texture details are crucial for accurate object detection
and classification, whereas depth information is vital for estimating the spatial positioning
of objects. Multisensor 3D detection methods enable the integration of information from
diverse sensors [37], offering solutions to address challenges encountered in LiDAR and
camera-based detection methods [38]. The synergistic combination of image and point
cloud features exemplifies the significance of sensor fusion [39], while the integration of
multisensor aids in mitigating single-sensor failures and enhancing adaptability across
diverse environments. Currently, enhancing overall performance by integrating both image
and LiDAR data represents a promising research direction in the domain of multimodal 3D
object detection methods [40–42].

LiDAR–camera 3D detection has garnered significant attention, attributed to the syn-
ergistic qualities of point clouds and images. Initial studies [43,44] primarily employed
result-level or proposal-level fusion techniques, characterized by a relatively coarse fu-
sion granularity that did not fully exploit the potential of the two modalities. The advent
of PointPainting [45] marked a shift towards point-level fusion methods [46,47], which
have demonstrated substantial advantages and encouraging outcomes. However, these
approaches are susceptible to sensor misalignment issues caused by rigid point-pixel
associations defined by calibration matrices [48]. Furthermore, simplistic point-wise con-
catenation overlooks the integrity and contextual interplay between modalities, leading to
performance deterioration when image features are suboptimal. Recently, the introduction
of Transfusion, which is a state-of-the-art technique, has emerged as a more robust and
efficacious fusion mechanism, addressing these challenges in LiDAR–camera fusion.
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Although Transfusion (SOTA) exhibits superior accuracy in multimodal object de-
tection, its inference speed lags compared to single-modality detection approaches. This
discrepancy arises partly due to the inherent computational demands of processing mul-
tiple modalities and partly due to inefficiencies within the Transfusion architecture that
await optimization.

• Transfusion’s reliance on a conventional convolutional neural network backbone
introduces significant computational overhead due to redundancy in feature map-
ping across channels, and the fixed convolutional structures are naturally limited in
capturing geometric transformations, which can also detract from accuracy.

• While the integration of multiscale features in Transfusion enhances performance and
convergence speed into the decoder, it simultaneously escalates computational costs.
Although the deformable attention mechanism mitigates these costs to some extent,
the incorporation of multiscale features into the decoder still imposes a substantial
computational burden.

• Although Transfusion improves the initialization of Object Query and extends it to
content query and position query (anchor), due to the inconsistent distribution of the
classification score and location confidence, some predicted boxes have high scores
but are not close to GT boxes, which results in boxes with high scores and low IoU
scores being selected, while boxes with low scores and high IoU scores are discarded.
This impairs the performance of the detector.

Therefore, this paper proposes QConv, EH decoder, and semi-dynamic query selection,
three approaches to optimize Transfusion to be Fast Transfusion.

3. Methodology

In this section, we introduce Fast Transfusion, a novel approach tailored for multi-
modal 3D object detection. Addressing the high computational demands of the original
Transfusion model, we propose three key technological advancements: QConv (Quick con-
volution), EH Decoder (Efficient and Hybrid Decoder), and semi-dynamic query selection.

As illustrated in Figure 2, multimodal data first undergo feature extraction through
the QConv Network, serving as the backbone. Subsequently, image features are processed
via semi-dynamic query selection to complete Query Initialization. Following this, object
queries and image features are inputted into the EH Decoder, and through a Feed-Forward
Network (FFN), the final prediction output is obtained. By integrating these innovations
into our model, Fast Transfusion achieves an optimal balance, significantly enhancing
both inference speed and detection accuracy in multimodal 3D object detection tasks. At
the same time, we can scale the backbone and decoder of Fast Transfusion using a depth
multiplier and a width multiplier. Below, we will first introduce the method of fusing
LiDAR and camera data.

LiDAR 
BEV 

Features

LiDAR

Camera

Backbone

3D
 Q

C
onv

2D
 Q

C
onv Image

Features

EH decoder

SM
C

A layer

FFN

content

position

Semi-
dynamic 

query 
selection

Figure 2. Overall frame of Fast Transfusion. For semi-dynamic query selection, the yellow means
static part and the green means dynamic part. To enhance the robustness of the fusion, the method
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re-fuses the entirety of the image features with the decoded vectors through the Spatially Modulated
Cross Attention (SMCA) module, achieving superior detection performance.

3.1. LiDAR–Camera Fusion

While point-level fusion techniques [14] have demonstrated notable advancements,
their effectiveness is significantly constrained by the inherent sparsity of LiDAR points. The
scarcity of points per object curtails the ability to harness the comprehensive semantic depth
of high-resolution imagery, as each LiDAR point corresponds to a limited set of image fea-
tures. To circumvent this limitation, our approach eschews the direct correlation of LiDAR
points with image pixels. Instead, this paper preserves the entirety of image features within
a memory bank, employing a cross-attention mechanism within the transformer decoder
as Figure 2. This facilitates a sparse-to-dense, adaptable fusion of features, leveraging
the rich contextual information available across modalities. We utilize the feature vectors
extracted by (QConv) as the input for the fusion process. And we employ the EH Decoder
and semi-dynamic query selection as substitutes for the conventional algorithms in the
fusion process, addressing the issue of high computational costs.

3.2. QConv Network

This paper employs the feature vectors extracted by the QConv (Quick convolution)
network as inputs for the fusion process. The initial step upon receiving LiDAR and camera
data is to extract the pertinent features. Processing these extracted features as opposed to
the raw data is more efficient and yields superior results. Our proposed QConv network,
serving as the backbone of Fast Transfusion, excels at extracting features from both LiDAR
and camera data, surpassing the performance of traditional convolutional neural networks.

For image data as given in Figure 3a, we consider their three dimensions during
feature extraction: the horizontal and vertical coordinates on their plane, and their depth,
i.e., the number of channels. This paper optimizes the extraction of features from both the
plane and depth of the data separately. The overview of the QConv structure is shown in
Figure 3b. Deformable convolution is used in one channel and pointwise convolution in
the remaining channels. The deformable convolutional operation optimizes the extraction
of planar features as Figure 3c. Convolution operations are no longer limited to regular
squares, and each position can be offset, while the partial convolutional operation is
designed to optimize the extraction of depth features as shown in Figure 3d. The dark
parts are convoluted, while the light parts remain the same. In this way, only a portion
of the data is convoluted, which saves a lot of computing resources. Given that the plane
and depth are orthogonal in geometric space, the operations performed on them do not
interfere with each other. This allows us to fuse the Quick convolutional operations in
parallel, achieving comprehensive optimization of feature extraction. The specific steps are
as Algorithm 1.

For the extraction of depth features, this paper uses the partial convolutional oper-
ation to speed up the process by leveraging the feature maps’ redundancy. The feature
maps exhibit considerable redundancy across different channels, a phenomenon widely
acknowledged but underutilized in existing literature. To address this efficiently, we in-
troduce a streamlined partial convolution approach designed to simultaneously reduce
computational redundancy and minimize memory access. As Figure 3 shows, our method
employs a standard convolutional operation on a subset of the input channels to extract
spatial features, while leaving the rest untouched. For efficient memory access, either the
first or the last consecutive dp = 1 channels are utilized as representatives for the entire
feature map computation.
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Figure 3. Workflow of QConv. (a) The input is 3D image data, (b) overview of QConv structure,
(c) deformable convolution for the extraction of planar features, (d) partial convolution for the
extraction of depth features.

Algorithm 1 Quick convolution (QConv).

Input: Image data I ∈ R(d × h × w)
Output: Feature map O ∈ R(d × h × w)

1: Select the first channel of input data as F ∈ (h × w)
2: Apply convolution kernels W ∈ (d × k × k) to it
3: for each unit f on F do
4: f ∈ (i, j); i, j < k for convolution operations
5: if no offset at this position f then
6: The convolution operation is performed as usual
7: else
8: Use a regular grid R over the input
9: Add offset ∆ fi ∈ R to f

10: Calculate the back propagation of gradients via the bilinear operations
11: end if
12: end for
13: Leave the rest of Input as Ir ∈ R((d − 1)× h × w)
14: Concentrate f and Ir
15: return O ∈ R(d × h × w)

Without loss of generality, we maintain consistency by ensuring that the input and
output feature maps contain an equal number of channels d and the plane size of the
input and output is the same. For an input I ∈ R(d × h × w), our QConv applies d filters
W ∈ (d × k × k) to compute the output O ∈ R(d × h × w). When we calculate only a
portion of the channels, that is, dp

d , the FLOPs are only

h × w × k2 × (
dp

d
)2 (1)

Therefore, with a typical partial ratio r =
dp
d = 1

3 , the FLOPs of a partial convolution
are only r2 = 1

9 . Note that the method keeps the remaining channels untouched instead
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of removing them from the feature maps. It is because they are useful for a subsequent
pointwise convolution layer, which allows the feature information to flow through all chan-
nels. Our architecture integrates a partial convolution layer with a pointwise convolution
layer, synergistically enhancing feature extraction efficiency. Their effective receptive field
together on the input feature maps looks like a T-shaped Conv, which focuses more on
the center position compared to a regular Conv uniformly processing a patch. Despite the
reduction in computations, its performance is nearly equivalent to that of a regular convolu-
tion because the center position turns out to be the salient position most frequently among
the filters. In other words, the center position weighs more than its surrounding neighbors.

Finally, we will delineate how QConv accelerates inference speed during the extraction
of depth features. The FLOPs of a QConv are only h × w × (k2 × d2

p + d2) while the FLOPs
of a regular Conv are h×w× (k2 × d2). Under normal circumstances, k2 × d2 is greater than
k2 × d2

p + d2. For example, when d = 3 and k = 3, we take dp as 1 as usual. Theoretically,
the FLOPs of QConv is 2

9 of the FLOPs of the regular Conv. It means that our QConv
is capable of achieving a performance speed that is multiple times faster than that of
regular convolution.

For the extraction of planar features, the method employs the deformable convolu-
tional operation to optimize our convolution and pooling processes. The prior imple-
mentation of the partial convolutional operation ensures our inference speed, while this
adjustment guarantees the precision of our recognition and detection tasks. Given the
variance in object scales or deformations at different locations, an adaptive approach to de-
termining scales or receptive field sizes is essential for achieving accurate visual recognition
coupled with precise localization. What is more, both modules exhibit lightweight character-
istics, introducing a minimal number of parameters and computational overhead for offset
learning. They can seamlessly substitute their conventional counterparts in deep CNNs and
are amenable to end-to-end training using standard back propagation techniques.

Subsequently, we will explicate the mechanism by which QConv facilitates the free-
form deformation of the sampling grid during the extraction of planar features. The regular
grid R is augmented with offsets ∆ fi, i = 1, . . . , N for QConv, while the regular Conv
sample using a regular grid R over the input feature map I. As depicted in Figure 3, offsets
are derived through the application of a convolutional layer on the identical input feature
map. The convolution kernel maintains parity in spatial resolution and dilation with the
origin convolutional layer. The resultant offset fields match the spatial resolution of the
input feature map. Throughout the training phase, the convolutional kernels tasked with
output feature generation and the offsets are learned concurrently. The learning process for
the offsets involves the back propagation of gradients via the bilinear operations as follows:

O(i, j) = ∑
f∈(i,j);i,j<k

i( f0 + f + ∆ fij)/k2 (2)

where k is the convolution kernel size and f is top-left corner pixel.The principle of de-
formable pooling parallels that of convolution, entailing a positional displacement, and
thus, is not reiterated further for brevity.

Next, we will integrate these two components into a unified framework. As the partial
operation and the deformable operation occupy orthogonal geometric spaces without
interference, their integration into QConv merely requires the application of a simple
superposition technique. Specifically, in contrast to a regular convolution, our QConv
engages only the partial channels of the feature map for deformable convolution. One might
question whether this amalgamation of techniques ensures that the computational cost of
QConv remains below that of regular convolution. The answer is affirmative. Although the
deformable operation slightly increases the computational demand, it remains lightweight,
involving only additional additive operations. For instance, with a convolution kernel
size of k = 3, besides the original 9 multiplications and 9 additions, there are only 9 extra
additions. Notably, the computational demand for multiplications significantly surpasses
that of additions. Thus, the theoretical FLOPS of QConv are indicated by b, a value close
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to 1, representing the manageable computational burden introduced by the deformable
operation. In total, the FLOPs of QConv are as follows:

h × w × (k2 × d2
p + d2)× b (3)

Furthermore, not only theoretically but also through experimental validation presented
later, the QConv network demonstrates superior performance compared to other models’
backbones.

3.3. EH Decoder

Although the Transformer decoder has demonstrated commendable performance in
the domain of object detection, the substantial computational demands of the decoder
curtail their practical deployment and hinder the full realization of their advantages, such
as the elimination of post-processing steps like non-maximum suppression. Specifically, the
incorporation of multiscale features, while beneficial for hastening training convergence
and enhancing performance, concurrently augments the sequence length fed into the
decoder. Because the increase in accuracy is huge, we cannot just sacrifice it for the sake
of inference speed. In the following experiment sections, we also verify the necessity of
this mechanism. Consequently, the multiscale feature fusion of the transformer decoder
emerges as a computational bottleneck within the model due to its significant computational
requirements.

In response, this paper introduce the Enhanced Hybrid (EH) decoder as a substitute
for the traditional transformer decoder. This novel approach segregates the interactions
within the same scale from the fusion across different scales of multiscale features, thereby
enabling the efficient processing of diverse scale features. Upon analyzing the computa-
tional redundancies inherent in the multiscale transformer decoder, it becomes evident that
the concurrent handling of intra-scale and cross-scale features is computationally onerous.
Given that high-level features, rich in semantic content, are derived from lower-level fea-
tures, engaging in feature interaction across concatenated multiscale features proves to be
redundant. Thus, by disentangling the multiscale feature interaction into distinct phases of
intra-scale interaction and cross-scale fusion, we significantly diminish the computational
overhead while enhancing the decoder’s efficacy.

This paper propose a reevaluation of the decoder’s architecture. As depicted in
Figure 4, the redesigned decoder is composed of two key modules: the Attention-based
Intra-scale feature Interaction Module (AIM) and the CNN-based Cross-scale Feature
Fusion Module (CCM). The AIM, refining upon the previous decoder’s approach, solely
facilitates intra-scale interaction within last three layers of QConv. This method posits that
applying self-attention to high-level features, imbued with dense semantic information,
enables the capture of relationships among conceptual entities within images, thereby
aiding subsequent modules in object detection and recognition. Conversely, intra-scale
interactions among lower-level features are deemed unnecessary due to their semantic
paucity and the potential for overlap and confusion with high-level feature interactions.
The CCM, also an advancement of the previous decoder, incorporates multiple fusion
blocks, consisting of convolutional layers, into the fusion pathway. The specific fusion
steps are as shown in Algorithm 2. The primary function of these fusion blocks is to
amalgamate adjacent features into a cohesive new feature, thereby streamlining the feature
processing landscape.
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Figure 4. Overview of EH decoder. The method leverage features of the last three layers of the QConv
L1, L2, L3 as the input to the decoder. The EH decoder transforms multiscale features into a sequence
of image features through AIM and CCM.

Algorithm 2 Fusion algorithm.

Input: Feature vectors A, B
Output: Fusion vector F

1: Concentrate A and B to C
2: Use 1 × 1 Conv to get C1
3: for each i ∈ [1, N] do
4: Branch 1: Calculate Ci by 1 × 1 Conv and BN
5: Branch 2: Calculate Ci by 3 × 3 Conv and BN
6: Branch 3: Calculate Ci by BN
7: Sum the three of them
8: Perform ReLU calculations to get Ci+1
9: end for

10: Concentrate C1 and CN+1
11: return Fusion vector F

3.4. Semi-Dynamic Query Selection

The concept of Object Query is a pivotal element within the Transformer framework
for object detection, representing a vector that denotes the predicted bounding boxes for
detected targets. These vectors encapsulate a fusion of content and positional information,
where the content information serves to distinguish between different targets, and the
positional information describes the location of the targets within the image. The design of
Object Query stands as a significant contribution of the Transformer, addressing the issue
present in traditional object detection methods that necessitate the pre-definition of anchor
boxes. In conventional object detection approaches, the size and position of anchor boxes
are pre-specified, potentially resulting in the inadequate coverage of certain targets. By
employing Object Query vectors in lieu of anchor boxes, the Transformer facilitates object
detection without relying on pre-defined anchor boxes, thereby better accommodating
targets of varying sizes and shapes.

Given that Object Query comprises both content and positional information for de-
tected targets, its initialization, or query selection, holds paramount importance. Currently,
there are two primary methods for query selection: static query selection, learned from the
dataset and independent of input images, remains fixed during inference, thus qualifying
as static. However, as static methods do not fully leverage the information from input
images, dynamic query selection has been proposed. This approach utilizes dense features
extracted from input images to predict categories and bounding boxes, thereby initializing
the content and position within the Object Query. Nevertheless, dynamic query selection
still possesses shortcomings: the dynamically obtained content query may not be optimal
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for detection, as these features are unrefined and may harbor ambiguities. For instance,
in the case of the “person” category, the selected feature may only encompass a portion
of the person or objects surrounding the person, rendering it less precise compared to the
static method. Conversely, the position query tends to be more accurate. In light of these
considerations, this paper advocates for semi-dynamic query selection, wherein the static
part is employed for content query selection, while the dynamic part is utilized for position
query selection. In this way, we can make full use of the advantages of both, yielding
improved detection performance.

3.5. Scaled Fast Transfusion

To provide a scalable version of Fast Transfusion, this paper simultaneously scales
the QConv and the Enhanced Hybrid (EH) decoder using a depth multiplier and a width
multiplier. This adjustment results in two variants of Fast Transfusion, differentiated by
their parameter counts and frames per second. For QConv, the design of the dynamic
network structures enables the adaptation of the network’s depth during both training and
inference processes, according to the characteristics of the input data or the requirements of
the task at hand. This approach typically employs conditional logic or learning strategies
to dynamically determine the engagement of each layer or module. Additionally, network
pruning techniques can be leveraged to reduce the complexity and computational demands
of the model while maintaining or enhancing its performance.

For the EH decoder, we modulate the depth and width multipliers by altering the
number of RepBlocks in the Cross-scale Feature Fusion Module (CCM) and the embedding
dimension of the decoder, respectively. Variable-structure decoders allow for the dynamic
modification of the decoder’s architecture, enabling the adjustment of the number of
parameters or modules in response to the needs of diverse tasks or data attributes. This
methodology involves the dynamic addition or removal of neurons, layers, or modules,
which is achieved by constraining the number of parameters or the dimension of the
encoded space. Such constraints enable the decoder to adaptively adjust within different
data distributions or feature spaces. By introducing regularization or sparsity constraints,
the decoder is incentivized to exhibit robust performance across various representations
of input data, while maintaining model simplicity and generalization capabilities. It
is noteworthy that our scaled versions of Fast Transfusion preserve a uniform decoder
architecture, which aids in the knowledge distillation from high-precision, large-scale DETR
models to lighter detectors. This aspect presents a promising avenue for future exploration.

4. Results and Experiments
4.1. Main Results

The KITTI 3D object detection dataset [35] consists of 7481 and 7518 LiDAR and image
frames for training and testing, respectively. Following contemporary methodologies [5,28],
we partitioned the training dataset into a training split of 3712 frames and a validation split
of 3769 frames. We employed the standard evaluation metric of 3D Average Precision (AP)
across 40 recall thresholds (R40), with Intersection over Union (IoU) thresholds set at 0.7,
0.5, and 0.5 for cars, pedestrians, and cyclists, respectively.

We evaluated the performance of our Fast Transfusion model against the original
Transfusion model and other prevalent models on the KITTI dataset. Our experimental
results confirm that our model not only rectifies the inferential speed limitations of the
original model but also enhances detection accuracy. Additionally, we conducted ablation
studies to individually assess the contributions of three specific technologies—QConv, the
Enhanced Hybrid (EH) decoder, and semi-dynamic query selection. Experiments altering
the number of layers in the decoder to modify the model size were also performed. The
training and testing of the network were conducted on an NVIDIA GeForce GTX 3080 Ti
GPU (NVIDIA, Santa Clara, CA, USA) with 12 GB of memory.

Figure 5 illustrates the input and final detection results for the three target types. (1),
(2) and (3) represents three real-life scenes on the street, and they encompass all possible
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entities on the street, i.e., motorized vehicles, non-motorized vehicles, and pedestrians.
Figure 5a,b are the display of these scenes under the camera and LiDAR sensors, and
Figure 5c is their detection result. With the above results, it can be seen that our model has
excellent detection capabilities for different scenarios and classes.

(1)

(2)

(3)

(a) (b) (c)

Figure 5. Input and test result diagram. (a–c) represent camera input, and LiDAR BEV input and
output. (1–3) represent car, pedestrian, and cyclist, the three object classes.

The detection outcomes for small and occluded objects using the baseline and Fast
Transfusion methods are presented in Figure 6. We focus on the car class for this demon-
stration, as issues of small object detection and occlusion are particularly prevalent and
pronounced within this category. As depicted in Figure 6, the farthest black car not only
occupies few pixels but also has occlusion, which is a great challenge for the object detection
task. However, our EH Decoder and query selection can effectively capture small target
features and improve the recognition of occluded objects. It can be seen that our model
demonstrates superior performance in handling these challenges.

（a） （b）

Figure 6. Comparison of small object detection results. Red is the baseline detection result. Green
is our model Fast Transfusion detection result. (a) represents results in real-world scenarios, and
(b) represents the results in LiDAR BEV figures.

In the 3D detection category on the KITTI validation set (presented in Table 1), our
Fast Transfusion significantly outperformed the baseline detector, Transfusion, and other
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multimodal detectors, primarily due to the efficient design of our QConv and EH decoder.
As can be seen from the table, our model has a shorter inference time than other multimodal
models, and the inference time is reduced by 36 ms compared with our baseline Transfu-
sion. While monomodal detectors demonstrate quicker inference times, they fall short in
precision compared to our model, positioning our Fast Transfusion as the current state-of-
the-art model that aptly balances inferential speed and accuracy. Relative to Transfusion [1],
our Fast Transfusion achieved improvements of 1.81%, 0.52%, and 0.75% in 3D AP (R40)
in the moderate car category. And for the other two types of pedestrians and cyclists,
our model AP has also been improved to varying degrees. These performance gains are
largely attributed to the innovations in QConv and semi-dynamic query selection, which
effectively address issues stemming from complex data distributions and the initialization
of object queries.

Table 1. The Car, Ped (pedestrian) and Cyc (cyclist) 3D detection results on the KITTI validation set,
where the best fully supervised methods are in bold.

Class Modality Method
3D AP (%) BEV AP (%)

Times (ms)
Easy Mod. Hard Easy Mod. Hard

Car

LiDAR
FPRCNN 74.79 68.26 60.17 80.09 76.16 70.37 70
VRCNN 78.43 71.97 63.17 84.16 80.14 75.62 65

PVRCNN 79.44 73.19 65.02 86.75 81.56 78.24 97

LiDAR+RGB

3D-CVF 80.88 71.56 63.24 88.14 80.46 72.15 110
FConv 84.16 76.06 66.14 89.15 81.66 75.23 115

Transfusion 86.25 78.91 70.83 90.15 82.23 75.80 130
Ours 88.06 79.43 71.58 90.99 83.14 76.85 94

Ped

LiDAR
FPRCNN 42.76 35.49 30.79 50.14 45.26 38.19 70
VRCNN 46.45 40.71 35.19 51.60 46.97 42.07 64

PVRCNN 50.12 40.16 34.78 61.45 52.79 46.89 96

LiDAR+RGB

3D-CVF 53.44 46.06 39.99 65.47 60.72 53.71 110
FConv 56.67 49.81 43.15 68.79 60.18 56.62 115

Transfusion 59.04 52.11 42.18 75.04 70.16 62.18 131
Ours 61.84 54.39 45.17 78.41 70.16 63.48 93

Cyc

LiDAR
FPRCNN 60.17 49.73 43.17 62.19 50.19 47.26 70
VRCNN 65.17 51.47 46.28 65.79 53.16 49.69 64

PVRCNN 68.03 51.79 49.23 70.25 61.33 55.74 97

LiDAR+RGB

3D-CVF 68.21 59.14 50.41 70.14 59.94 54.62 110
FConv 73.52 61.11 55.49 75.05 64.50 60.75 116

Transfusion 76.10 62.26 57.27 76.98 65.22 60.64 129
Ours 78.28 65.37 60.17 79.17 69.06 63.25 93

4.2. Ablation Study

As shown in Tables 2–4, we conducted ablation studies on the KITTI validation
dataset to assess the efficacy of each component of the proposed Fast Transfusion method,
specifically QConv, the Enhanced Hybrid (EH) decoder, and semi-dynamic query selection.
To evaluate the impact of QConv on detection time and accuracy, we compared the original
Transfusion model with a version where the backbone was substituted with a QConv
network (Transfusion-PD). According to Table 2, the QConv-equipped model outperformed
the standard convolutional backbone model in terms of both accuracy and inference
time, showing improvements of 3.43%, 4.63%, and 5.58% in 3D AP for the moderate
car category, respectively. The inference time was also reduced by 1.2 ms, 1.6 ms, and
1.8 ms. Additionally, we tested the generalizability of our approach across other categories
such as pedestrians and cyclists, confirming that QConv effectively addresses complex data
distributions while conserving computational resources.
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Table 2. Ablation results on the KITTI validation set by using different backbones based on Transfu-
sion (our baseline).

Class Method
3D AP (%)

Times (ms)
Easy Mod. Hard

Car Conv 86.25 78.91 70.83 130
QConv 87.51 79.04 70.99 109

Ped Conv 59.04 52.11 42.18 131
QConv 60.67 53.92 43.75 109

Cyc Conv 76.10 62.26 57.27 129
QConv 78.05 63.57 59.37 110

Regarding the effectiveness of the EH decoder, we compared it against a standard
decoder utilizing conventional multiscale feature fusion as Table 3. In this table, naive
means the naive decoder, which is a decoder without multiscale feature fusion. Standard
means standard decoder as our baseline, which is now a commonly used decoder with
multiscale feature fusion.

Table 3. Ablation results on the KITTI validation set by using different decoders based on Transfusion
(our baseline).

Class Method
3D AP (%)

Times (ms)
Easy Mod. Hard

Car
naive 82.77 74.19 62.14 112

standard 86.25 78.91 70.83 130
EH decoder 87.09 79.02 71.07 117

Ped
naive 56.03 48.75 36.84 112

standard 59.04 52.11 42.18 131
EH decoder 60.40 52.94 44.77 117

Cyc
naive 74.38 59.75 55.30 112

standard 76.10 62.26 57.27 129
EH decoder 78.11 62.97 58.88 117

Table 4. Ablation results on the KITTI validation set by using different query selection based on
Transfusion (our baseline). Dynamic is baseline and Semi-dyn (semi-dynamic) is our method.

Class Method
3D AP (%)

Times (ms)
Easy Mod. Hard

Car
static 83.37 75.69 66.18 129

dynamic 86.25 78.91 70.83 130
Semi-dyn 86.59 79.00 71.02 130

Ped
static 57.08 49.70 39.00 129

dynamic 59.04 52.11 42.18 131
Semi-dyn 60.04 52.50 43.77 130

Cyc
static 75.38 60.79 55.99 128

dynamic 76.10 62.26 57.27 129
Semi-dyn 77.66 62.54 58.03 129

It is shown in Table 3 that the models incorporating the EH decoder demonstrate a
0.84% increase in AP and a reduction of 13 ms in inference time for car class, validating
our approach of decoupling the multiscale feature fusion mechanism into AIM and CCM.
We also included results from a baseline model without multiscale feature fusion (naive
decoder), which showed a significant decrease in accuracy, thereby underscoring the
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necessity of the multiscale feature fusion mechanism for maintaining performance without
compromising significantly on inference speed.

We also compared three query selection strategies, static query selection, dynamic
query selection, and our proposed semi-dynamic query selection, to validate the efficacy of
our semi-dynamic approach in enhancing performance. According to Table 4, our method
showed improvements of 0.34% and 3.22% in Average Precision (AP) over the two prior
methods for car class, respectively.

4.3. Experiments on Scaled Fast Transfusion

Figure 7 illustrates the accuracy and inference speed associated with each decoder
layer of the Fast Transfusion model equipped with varying numbers of decoder layers.
Optimal accuracy is attained with a five-layer decoder, achieving a 3D Average Precision
(AP) of 88.06%. Our analysis further evaluates the impact of each decoder layer on inference
speed, establishing that each layer contributes approximately 1 ms to the total processing
time. Additionally, we observe a diminishing discrepancy in accuracy between successive
layers as the layer count increases. Specifically, employing a six-layer decoder as opposed
to a five-layer decoder results in a marginal loss of 0.26% in AP (from 88.06% to 87.8% AP),
while concurrently reducing the latency by 1.6 ms (from 94.3 ms to 95.9 ms).

Figure 7. Results of the ablation study on the number of EH decoder layers. Our model with a
five-layer decoder achieved the best performance.

This finding underscores the capability of the Transfusion model to accommodate
flexible adjustments in inference speed by selecting different numbers of decoder layers
without necessitating retraining for inference purposes. Such flexibility significantly en-
hances the practical utility of the 3D real-time detector, allowing for tailored performance
optimization based on specific operational requirements.

5. Discussion

This paper proposed Fast Transfusion, a novel approach tailored for multimodal 3D
object detection. Addressing the high computational demands of the original Transfusion
model, the paper proposed three key technological advancements: QConv, EH Decoder
and semi-dynamic query selection. The proposed model was investigated and compared
with current advanced methods on the KITTI dataset, and the effectiveness of the proposed
modules was verified through ablation experiments.

In the 3D detection category on the KITTI dataset, our model has a shorter inference
time than other multimodal models, and the inference time is reduced by 36 ms compared
with our baseline Transfusion. And our model achieves improvements of 1.81%, 0.52%, and
0.75% in 3D AP (R40) in the moderate car category relative to the baseline. As evidenced by
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the results, our model outperforms the state-of-the-art (SOTA) in both inference speed and
detection accuracy. In terms of inference speed, our designed feature extraction network,
QConv, effectively captures essential information while discarding a significant amount of
redundant computations. Additionally, our EH decoder leverages a coupling mechanism
to substantially reduce the amount of feature interaction computation. In terms of detection
accuracy, these performance gains are largely attributed to the innovations in QConv and
semi-dynamic query selection, which effectively address issues stemming from complex
data distributions and the initialization of object queries.

The detection method employed in this paper falls under the category of multisensor
fusion for three-dimensional object detection, which captures a more comprehensive array
of feature information, thereby offering superior detection performance compared to single-
sensor approaches. The enhanced feature extraction network and decoder significantly
reduce the computational load, allowing for faster inference speeds compared to other
multimodal detection methods. Additionally, the use of variable convolution and attention
mechanisms enables the detection of finer details, providing exceptional performance
in detecting distant or small objects. Thus, this method effectively facilitates the three-
dimensional detection of small objects. Owing to hardware constraints, our model has not
yet been implemented on edge computing devices. Additional validation of the detection
accuracy and performance of our method is necessary in real-world scenarios.

6. Conclusions

Three-dimensional object detection functions as a critical upstream subsystem within
autonomous driving systems and is integral to the advancement of smart cities. Accurate
3D detection results are essential, allowing vehicles to monitor dynamic objects in their
vicinity in real-time, identify potential collision hazards, and enhance safety performance.
Consequently, the precision and environmental robustness of 3D object detection algorithms
are paramount. In smart cities, autonomous vehicles can engage in intelligent transportation
collaboration by sharing data with urban traffic management systems. Utilizing 3D object
detection data, vehicles can more effectively communicate with traffic signal systems,
road condition monitors, and other infrastructures to collectively optimize traffic flow and
reduce congestion.

In this paper, we introduce Fast Transfusion, an advanced model tailored for multi-
modal 3D object detection. We have designed three key modules—QConv, EH decoder,
and semi-dynamic query selection—to enhance the performance of the traditional LiDAR–
camera detection model based on the Transformer architecture. These modules address the
computational redundancies in convolution operations, complexities in multiscale feature
fusion in the Transformer decoder, and limitations of dynamic query selection. Conse-
quently, our model outperforms our baseline on the KITTI dataset. Specifically, the average
inference time is reduced by 36 ms, and the detection accuracy as measured by 3D Average
Precision at the 40-meter range (3D AP [R40]) is enhanced by 1.81%. Moreover, we facilitate
practical application adjustments by allowing modifications to the number of decoder lay-
ers to optimize model size. Extensive testing on the KITTI dataset confirms the superiority
of our model, while ablation studies validate the effectiveness of the proposed components.

We will further concentrate on deep sensor fusion, investigating more profound
strategies for data association and integration, such as methods based on Graph Neural
Networks (GNNs), to better comprehend and amalgamate data from diverse sensors. Given
the complexity of real-world environments faced by autonomous driving, the generalization
capability of the model across various scenarios presents a significant challenge to us.
Future research will explore how domain adaptation techniques can enhance the robustness
and generalization ability of the model under different conditions.
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Abbreviations
The following abbreviations are used in this manuscript:

QConv Quick Convolution
EH Decoder Efficient and Hybrid Decoder
AR Augmented Reality
RoI Regions of Interest
BEV Linear Bird’s Eye View
d, h, w depth, height, width of feature maps
k, f , dp convolution kernel size, top-left corner pixel, partial convolution depth
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