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Abstract: The link between the world of communications and the world of racing is provided by
the telemetry systems in electric racing cars. These systems send real-time data about the vehicle’s
behavior and systems to enable informed decisions during the race. The objective of this research
was to integrate telemetry into the battery bank of an electric racing car in order to find the optimal
values of current and voltage that optimize the charging process and thus improve the performance
of the vehicle in competition using Response Surface Analysis. Specifically, the telemetry system
consisted of an Arduino Mega, a digital wattmeter, and temperature sensors, all installed in the
vehicle. Once the telemetry data were obtained, a response surface design was fitted with current,
voltage, and temperature as factors varying from low to high values, with the objective function
being to minimize the battery charging time. Using the response surface methodology and the
steepest descent algorithm, it was found that all factors significantly affect the charging time, with
the minimum charging time being 6961 s, obtained with a current of 2.4 amps and voltages of
50.5 volts and 43.6 volts.

Keywords: battery bank optimization; battery management system; electric vehicles; lithium-ion
batteries, response surface methods

1. Introduction

A number of energy storage systems have been the subject of investigation, including
hydroelectric power, capacitors, compressed air energy storage, flywheels, and electric
batteries [1]. Energy systems are increasingly being designed to be “electrically controllable”
or to integrate with the “electric vector”, as this is the most convenient and efficient way
to transport, convert, or control power [2]. Also, as part of the global carbon neutrality
initiative, the utilization of renewable energy has expanded, resulting in a heightened
interest in energy storage systems [3].

According to [4], 65% of global greenhouse emissions are due to carbon dioxide
attributable to fossil fuel and industrial processes. The energy transition is an urgent need
faced by various industries, primarily the automotive industry. We, as a society, have the
obligation to adopt economic and sustainable solutions for the environment and the fight
against climate change, which is increasingly close to becoming irreversible [5]. In this
scenario, batteries play an important role in electrical systems by making them smarter,
more flexible, and resilient through their controllability, providing auxiliary services to
maintain system stability while increasing the penetration of renewable energy [6].
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The rising costs and concerns regarding environmental pollution have prompted the
development of electric and hybrid vehicle technologies [7]. The attention being paid
to electric vehicles is a reflection of their potential to offer an efficient and sustainable
alternative to conventional fossil-fuel powered vehicles [8,9]. However, their adoption
and widespread use present significant technical and scientific challenges, given that the
storage of electrical energy can be achieved through electrochemical means in batteries [10],
and the battery pack represents the primary energy storage component in an electric
vehicle powertrain.

Lithium-ion batteries are currently the most suitable energy storage device for pow-
ering electric vehicles due to their attractive properties [11]. These include high energy
efficiency, lack of memory effect, long cycle life, high energy density and high power
density [12,13]. The challenges for batteries include driving range (currently from 200 to
350 km with a full charge), charging time (full charging takes 4 to 8 h), battery cost, and bulk
and weight (battery packs are heavy and take up considerable vehicle space) [14]. If the
widespread adoption of this mode of transport is sought, these challenges must be ad-
dressed through efficient and environmentally sustainable solutions.

The literature review on lithium-ion battery thermal management highlights several
approaches, each with its own limitations. Air cooling, for instance, has limited cooling
capacity and is less effective for high-power applications, while liquid cooling, though more
effective, is complex and expensive to implement. Phase-change materials (PCMs) add
weight and diminish in effectiveness over time, and heat pipes can be bulky and degrade
with wear and tear. Thermoelectric cooling is low in efficiency and high in cost, refrigeration
systems consume a lot of energy and are complex, and nanomaterial-assisted cooling,
though promising, faces challenges with integration and cost. Machine learning and data-
driven methods require large datasets and significant computational resources, with the
prediction accuracy being heavily dependent on data quality [15,16].

This study focuses on optimizing the charging time of batteries in electric racing
cars through telemetry-integrated battery charging and a response surface analysis (RSM)
approach. The innovative application of RSM helps identify optimal charging conditions,
minimizing charging time and maximizing vehicle efficiency. Integrating real-time teleme-
try data provides detailed insights into thermal and electrical behavior during the charging
process, addressing the limitations of previous methods and offering a more efficient and
safe solution. This research not only enhances thermal management and battery safety but
also establishes an adaptable methodology for future energy storage applications.

The behavior of a battery can be understood through a combination of physical and
electrochemical model-based explanations, as well as data. The collection of data plays an
important role in understanding the different models required for accurate fuel gauging.
It is important to note that the collection of data and the development of battery models
are inextricably linked until adequate models have been defined and the parameters
estimated [17].

To address these challenges and develop solutions, real-time monitoring tools are
required for battery performance, enabling actions to improve battery efficiency and ve-
hicle performance. Various Industry 4.0 tools, such as sensors, web applications, mobile
applications, and communication protocols, among others, along with new technologies
and telemetry, collect data on battery performance. These data can be analyzed to deter-
mine performance factors and generate solutions that optimize batteries and address the
challenges posed.

One of the prominent optimization techniques is response surface methodology (RSM),
a statistical and mathematical approach used to model and analyze complex phenomena.
The primary objective of RSM is to optimize a response variable influenced by multiple
factors and their interactions [18]. This methodology supports decision-making by identify-
ing which adjustments to the causal variables yield the optimal response. RSM is widely
utilized across various fields, including the characterization of materials [19], engine per-
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formance and fuel emissions [20], catalytic oligomerization in chemistry [21], pollutant
adsorption [22], and environmental applications [23], among others.

In the present study, the main objective is to integrate a telemetry system that mea-
sures the charging time of a battery bank (lithium-ion power batteries), which are the
foundation of electric vehicles [24]. Using RSM, we aim to determine the optimal values of
current, voltage, and temperature to improve the efficiency of the vehicle. The vehicular
telemetry system integrates current, voltage, and temperature sensors into a prototype with
a microcontroller. Data are acquired during electric battery charge cycles and a 3 response
surface design is employed to minimize the battery charging time using the steepest descent
optimization algorithm.

2. Materials and Methods

The objective of this study is to optimize the charging process of a battery bank in an
electric vehicle. Telemetry is used to integrate current, voltage, and temperature sensors
through a prototype that is seamlessly integrated into the battery bank. The RSM methodol-
ogy is applied to the data generated by the sensors to optimize and minimize the charging
time. The input variables for the optimization are current, voltage, and temperature dif-
ference. This section is divided into two subsections: the first section describes the study
methods, and the second section outlines the six steps of the experimental analysis.

2.1. Study Methods
2.1.1. Battery Bank of Electric Vehicle

Batteries can come in an infinite number of shapes, sizes, and storage capacities.
The main differences lie in the electrochemical characteristics needed to meet specific
requirements. As a result, there is a specific battery for every need and application. For this
reason, solutions are often based on the use of basic storage units that are commercially
available and standardized. One of these units is the 18,650 battery, so named because
it is standardized in shape and size: 18 mm in diameter and 65 mm in length, with the
“0” indicating its cylindrical shape. The only aspects that have changed as electrolyte
technology has improved are the storage capacity and the charging technology. Other
battery types have been developed, but the 18,650 remains one of the most widely used.
In fact, the energy storage in the first versions of the famous Tesla Roadster electric vehicle
was obtained from a special configuration of 18,650 battery packs.

The energy storage system studied can be seen in Figure 1. It consists of basic
18,650 battery packs with a nominal capacity of 2500 mAh at 3.6 V. The configuration
includes a small pack of four batteries connected in parallel, equivalent to a 3.6 V, 10 Ah
battery. Thirteen of these packs are connected in series to make a total pack or equivalent
battery of 10 Ah at 46.8 V.

oo
Qoo

Figure 1. The 10 Ah battery at 46.8 V with a mixed configuration of 18,650 batteries. Source: Author’s
own elaboration.

The actual battery configuration is shown in Figure 2. This battery arrangement also
requires an external physical protection system. The pack is encased in a 1.1 mm thick
aluminum case to increase the isolation between the case and the batteries. This aluminum
cover not only encloses and shields the batteries from shock, but also provides a surface to
dissipate the heat generated inside the battery pack. The configuration includes a lithium
battery protection system (BMS 48 V 13S) and a PCB 135S protection plate rated up to 30 A.
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Figure 2. Internal configuration 18,650 battery pack. Source: Author’s own elaboration.

The internal structure of a lithium battery is shown in Figure 3. The electrode stack
of commercial Li-ion batteries on the market today is a multi-layer structure. A single
repeatable unit consists of a cathode, an anode, and two separator layers. The cathode
consists of an aluminum foil coated on both sides with an active material and a binder.
Similarly, the anode consists of a copper foil coated with graphite (or silicon) particles [1,25].

Positive

Terminalw

Case 4 / o egative Plate)

Separator

Cathode
(Positive Plate)

Li-Metal
oxides

Figure 3. Internal structure lithium battery. Source: Author’s own elaboration.

One of the most critical factors affecting battery performance is the operating tem-
perature of the batteries. Each individual cell or unit behaves as a heat source due to
the heat released from the electrochemical process and the inherent internal resistance
of the battery itself. The thermal and impedance characteristics of a Li-ion battery have
a significant impact on the optimal charging process. Temperature plays a critical role
in the electrochemical reactions within the battery. At low temperatures, internal resis-
tance increases and chemical activity decreases, resulting in a loss of battery capacity and
reduced chargeability.

A battery thermal management system (BTMS) is required to quickly preheat the
battery to an optimal temperature for efficient charging in low temperature environments.
In addition, high internal resistance can generate a lot of heat during charging, which must
be controlled to prevent thermal runaway and ensure safety. One of the most critical factors
affecting battery performance is the operating temperature of the batteries. Each individual
cell or unit behaves as a heat source due to the heat released from the electrochemical
process and the inherent internal resistance of the battery itself. The thermal and impedance
characteristics of a Li-ion battery have a significant impact on the optimal charging process.
Temperature plays a critical role in the electrochemical reactions within the battery. At low
temperatures, internal resistance increases and chemical activity decreases, resulting in
a loss of battery capacity and reduced chargeability. A battery thermal management
system (BTMS) is required to quickly preheat the battery to an optimal temperature for
efficient charging in low temperature environments. In addition, high internal resistance
can generate a lot of heat during charging, which must be controlled to prevent thermal
runaway and ensure safety [26].
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Impedance, which refers to the internal resistance of the battery, varies with tempera-
ture and state of charge (SOC). Elevated impedance can lead to increased heat generation
and energy loss during charging. Techniques such as electrochemical impedance spec-
troscopy (EIS) can be used to monitor and manage these impedance changes to optimize
the charging process. By integrating thermal management with impedance monitoring,
it is possible to develop charging strategies that minimize energy loss and thermal stress,
thereby improving overall battery efficiency and lifetime [27,28]. This integration will be
considered a potential improvement in future research. The energy balance of the cell is
expressed by the Equation (1) [29]

oT
Pcvg = Geett — M(Ts — Tam) (1)

The cell energy balance equation, expressed in Equation (1), is used to quantify the
heat generation and thermal characteristics of the battery during operation. This equation
is essential for understanding and predicting the thermal behavior of the battery, which is
critical for optimizing its performance and ensuring its safety. To achieve this, the equation
must include the major sources of heat generation within the battery: reaction heat, ohmic
(resistive) heat, polarization heat, and secondary heat. This comprehensive approach
allows an accurate assessment of the total heat generation within the cell, which is critical
for managing thermal performance and preventing overheating. By incorporating the
convective heat transfer coefficient (h), and the difference between the surface temperature
(Ts) and the ambient temperature (1), the equation facilitates the evaluation of the
effectiveness of thermal management systems.

Proper thermal management is critical to maintaining battery efficiency and longevity.
It is important to note that these equations are dynamic and therefore include the rate
of change of temperature (0T /0dt), allowing the thermal response of the battery to be
studied under varying operating conditions. This is particularly relevant for applica-
tions such as electric vehicles, where batteries undergo rapid charge and discharge cycles.
From an optimization and safety perspective, understanding the thermal behavior using
this equation helps to optimize the charging and discharging processes to minimize heat
generation. This is essential to improve battery life and ensure battery safety, especially in
high-power applications.

h is the convective heat transfer coefficient, and T and T, are the surface and am-
bient temperatures, respectively, q..; is the average rate or total heat generation, which
includes the sum of all the heats generated in the battery: the reaction heat, the ohmic heat,
the active polarization heat, and the secondary or lateral heat, respectively, according to
Equation (2) [30].

Geetl = Grea + Gonm + Gpol + Gsia )

However, the latter heat, 45,7 in Equation (4), is usually not considered:
Gsia = (T = Tam) + ekB(TE — T3) 3)

The equivalent circuit model used to characterize batteries is the simplified Thévenin
model, which provides an effective representation of battery behavior. This model has an
ideal voltage source representing the open-circuit voltage of the battery, in series with an
internal resistor [2] as shown in Figure 4.

In this representation, the battery’s open-circuit voltage and internal resistance are
functions of its state of charge. The open-circuit voltage is mathematically defined by [31]

Vi = Voc — I % Ripy (4)

where V; represents the nominal voltage, V¢ is the open-circuit voltage, I denotes the
discharge current, and R int is the internal resistance (58.5 Q2) [32].
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The theory can be extended to more complex models involving parallel RC elements,
although analytical closed-form solutions are not possible in this latter case [33]. In addition,
we use data for the optimization process.

Rint

Voc C 0 Vn

Figure 4. Simple battery model. Source: Author’s own elaboration.

2.1.2. Telemetry

The implementation of an efficient and accurate telemetry system is critical to ensure
proper monitoring of the battery bank in electric vehicle applications. A variety of sensors
and devices are used to collect critical data, including temperature, current, and voltage
measurements. Each of these components plays a critical role in tracking the operational
status of the battery bank in real time, providing vital information for optimizing the
charging and discharging process, preventing potential failures, and maximizing energy
efficiency. The communication protocol between the temperature, voltage, and current
sensors and the ESP32 controller (Espressif Systems, Shanghai, China) is achieved through
the ADC (Analog-to-Digital Converter) inputs of the ESP32. Calibrations are performed
according to each sensor’s data sheet to ensure accurate data acquisition. This section
describes the technical aspects and key features of the MCP9701 temperature sensors
(Microchip Technology Inc., Chandler, AZ, USA), the ACS709 current sensors, and the
Analog Voltage Divider module for voltage measurement.

The choice of the ESP32 controller with LoRa module for data acquisition and trans-
mission was made considering its advantages in terms of cost, ease of use, flexibility,
and community support. Additionally, the Raspberry Pi 4 (Raspberry Pi Trading, UK) with
LoRa module acts as a Node-RED server for storing and visualizing the collected informa-
tion. These characteristics are particularly valuable in the initial phase of development and
prototyping of the telemetry system.

Temperature:

The telemetry system implemented for the battery bank uses temperature probes
based on the MCP9701 sensor. This sensor can accurately measure temperature over a wide
range from —10 °C to +125 °C. The output of the MCP9701 is calibrated with a slope of
19.53 mV/°C and has a DC offset of 400 mV. These features provide reliable and accurate
temperature measurement of both the battery bank and the surrounding environment.
The temperature data captured by the MCP9701 are integrated with the rest of the telemetry
data and transferred to the central database at a sampling rate of 1 s, allowing real-time
monitoring and the creation of detailed logs for further analysis.

Current:

The battery bank telemetry system uses the Allegro ACS709 sensor (Allegro MicroSys-
tems, Shanghai, China) for accurate current measurement. This sensor is specifically
designed for real-time current monitoring applications. The board used is a simple carrier
for the ACS709 sensor, which uses the Hall effect to measure current over a range up to
+75 A. The sensor provides a low-resistance current path of approximately 1.1 mQ) and
electrical isolation of up to 2.1 kV RMS. The ACS709 has been optimized for optimum
accuracy in the current range of —37.5 A to 37.5 A. Its analog voltage output is linear for
currents up to 75 A, with the output voltage centered at VCC/2 and a typical error of +2%.

In addition, it can operate over a voltage range of 3 V to 5.5 V, allowing direct connec-
tion to 3.3 V and 5 V systems. This precise measurement capability and wide operating
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range make the ACS709 sensor an ideal choice for monitoring battery bank charge current
with high reliability and accuracy. The current data collected by the ACS709 are integrated
with the rest of the telemetry data and logged to the central database, allowing continuous
monitoring and optimization of the battery bank’s charging process.

Voltage:

The Analog Voltage Divider module was utilized for the purpose of voltage measure-
ment in the battery bank telemetry system. The module is capable of detecting the supply
voltage over a wide range, from 8 V to 100 V. The module operates on the principle of
the voltage divider, which allows the input voltage to be reduced by a factor of 20. Given
that the ESP32’s analog input is typically limited to 5 V, the maximum input voltage of the
analog voltage detection module is 5 V multiplied by 20, or 100 V. This feature guarantees
that the input voltage is within the safe range and compatible with the ESP32. The ability to
detect voltages over a wide range, in conjunction with the module’s compatibility with the
ESP32’s analog input, renders the Analog Voltage Divider module an appropriate choice
for the accurate measurement of the battery bank voltage. The voltage data captured by
this module are integrated with other telemetry data and logged into the central database,
thereby facilitating the continuous monitoring and efficient management of the battery
charging process.

Controller:

The ESP32 controller, equipped with a LoRa module enabling its connection to a
Raspberry Pi 4, is used for data acquisition. The Raspberry Pi 4, in turn, is equipped
with a LoRa module serving as a Node-RED server, which is responsible for storing and
visualizing the collected information. The ESP32 functions as a remote node, collecting
data from the battery bank’s telemetry system. These data are transmitted to the Raspberry
Pi 4 wirelessly via the ESP32’s LoRa module. The Raspberry Pi 4, acting as a Node-RED
server, receives these data and processes them for storage in a database and subsequent
visualization in the form of graphs or tables. This configuration allows for efficient and
wireless communication between the ESP32 and the Raspberry Pi.

2.1.3. Response Surface Methods

The response surface methodology (RSM) is a set of mathematical and statistical tools
whose primary objective is to optimize a response of interest influenced by a variety of vari-
ables and determine the optimal operating conditions of a system. The advantages of using
RSM over other optimization techniques primarily stem from its capability to efficiently
explore and model complex relationships between variables. RSM enables the construction
of polynomial models to describe the behavior of complex systems. By focusing on local
regions of interest near optimal solutions, RSM effectively refines and enhances designs or
processes without the need for exhaustive exploration of the entire solution space. This
targeted approach conserves computational resources and time. Moreover, the resulting
models are often interpretable due to their mathematical simplicity, such as polynomial
equations. This interpretability enhances understanding of how variable changes influ-
ence the response, thereby supporting informed decision-making and facilitating process
improvement efforts.

The modeling is carried out through the estimation of a polynomial of the first order
or higher, generally applying the ordinary least squares method, to develop a second-order
model on a response surface as illustrated in Equation (5):

k k
Y= /30 + 2 ,Bixi + Z ﬁiixlz + ZZﬁi]-xixj +€ (5)
i=1 i=1

i<j

where y is the response variable, x;, x;: are the entrance variables or factors, fy is the
intercept, f; is the effect of the x; over y, f;; is the effect of the interaction between x; and
xj, and € is the error term.
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RSM is a sequential procedure where current operating conditions are considered
non-optimal if the appropriate model is not first order. The objective is, starting from the
current operating conditions, to find the trajectory towards the optimum, applying an
algorithm such as the one with the highest rise to maximize the response (or descent to
minimize), through a second-order model, where the top represents the point of maximum
response [18]. In order to characterize the shape of the surface and locate the optimum,
response surfaces are plotted in two (contour) or three dimensions (response surface).
The coefficients of the second-order model can be estimated through regression analysis
and analysis of variance (ANOVA), which is applied in order to interpret the effect that the
input variables have on the response.

The initial voltage, final voltage, and current were selected as input variables, with
the charge time serving as the response variable. The levels and variables are outlined in
Table 1. The selection of current, voltage, and temperature ranges was based on several
factors critical to the study’s goals. These factors included adhering to the operational
limits of the equipment under investigation, ensuring safe and reliable operation within
manufacturer-recommended specifications, and covering a sufficiently wide range to
capture significant variations in charge time.

Table 1. Variables and levels for the experimental design.

Level Values

Variable Low (1) High (+1) Central Point (0)
Initial voltage 41.90 47.10 43.62
Final voltage 48.40 51.40 50.95
Current 1.00 3.00 1.87

2.2. Experimental Analysis

The process was conducted in six phases, which are delineated in the following sections.

Step 1. Experimental Design

The critical variables selected for investigation were the charging current, battery
voltage, and the temperatures of the battery and its surrounding environment. These
variables were selected on the basis of their direct impact on system efficiency and their
pivotal role in the design of a highly effective telemetry system for electric vehicles. The ex-
perimental design is presented in Table 1. The current levels ranged between 1.0 and 3.0,
the voltage varied between 51.0 and 51.4, and an RSM design of 3% with three central points
was selected.

Step 2. Design and Development of the Prototype

The developed prototype is distinguished by the integration of current, voltage,
and temperature sensors, in accordance with the previously conceived design. To guarantee
consistent operation and precise communication, the sensor configuration was optimized,
and an appropriate microcontroller was configured.

Step 3. Data Acquisition and Registration

Once the prototype was installed in the electric vehicle, it was configured to capture
telemetry data on battery charge and discharge cycles. This enabled the accurate collection
of relevant information during crucial operational situations.

Step 4. Data Analysis

The data obtained underwent a rigorous pre-processing process to eliminate outliers
and rectify possible errors in the acquisition system. To guarantee the integrity and reliabil-
ity of the data, advanced statistical techniques were applied. These techniques allowed for
the discovery of subtle patterns and interdependent relationships between key variables.

Step 5. Determination of the Optimal Charge Current

A statistical analysis based on a 3° response surface design, which explored different
combinations of current and voltage levels, enabled us to establish the optimal charging
time. This resulting value, which aimed to maximize electric vehicle efficiency by minimiz-
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ing battery charging time, was derived directly from the results obtained from this detailed
analysis. A confidence level of 95% (a = 0.05) was established.

Step 6. Validation of the Prototype and Results

To ensure the reliability and effectiveness of the prototype, it underwent tests under
various operating conditions. The results obtained were evaluated in accordance with the
objectives previously outlined, providing an accurate assessment of the feasibility and
coherence of the approach adopted.

All mathematical and statistical calculations were performed using RStudio Desk-
top 4.3.2.

3. Results and Discussion

This article presents a telemetry system designed to measure the factors that affect
the charging time of a lithium-ion battery bank. The system integrates current, voltage,
and temperature sensors into a microcontroller-based prototype. The primary objective
was to minimize charging time as a response variable by improving the efficiency of the
vehicle. To achieve this goal, data were collected throughout the electric battery charging
cycles. Once the telemetry data were collected, a response surface design was applied
using current and voltage as factors that varied from low to high values with the goal of
minimizing the battery charging time.

Telemetry System for Competitive Electric Vehicles

The telemetry system designed for competitive electric vehicles is shown in Figure 5.
This system includes key sensors, including those for current, voltage, battery temperature,
ambient temperature, distance, and GPS.

AN

Figure 5. Schematic of the designed telemetry system for competitive electric vehicles. Source:
Author’s own elaboration.

Data transmission is facilitated by LoRa technology, which ensures reliable communi-
cation over long distances. Data are encapsulated in JSON format. The Node-RED platform
serves as the interface for data visualization and management, allowing competition teams
to monitor vehicle performance in real time. The customization of the PCB and rendering is
shown in Figure 6, ensuring the resilience of the system under extreme conditions. This is
supported by a Raspberry Pi hosting a Node.js server for real-time data processing and storage.

Figure 6. Customized PCB and render for the telemetry system. Source: Author’s own elaboration.
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The prototype, which has been assigned a Technology Readiness Level (TRL) of 6,
has been completed, soldered, and tested. Figure 7 depicts the fully assembled prototype.
The robust construction of the prototype ensures its resistance to vibrations, impacts,
and adverse conditions. Additionally, progress has been made in filling out the registration
forms for both the prototype and the software used in the telemetry system. At the sixth
Technology Readiness Level (TRL), the prototype has been subjected to testing in a relevant
environment, thereby ensuring that the conditions under which it has been evaluated are
very close to those expected in actual operation.

Figure 7. Assembled prototype of the telemetry system. Source: Author’s own elaboration.

Moreover, a Human-Machine Interface (HMI) has been developed to graphically
represent the telemetry data obtained from the vehicle. The HMI is implemented using the
Node-RED dashboard, which allows for real-time visualization of key parameters such as
temperature, current, and voltage. Additionally, the HMI provides detailed insights into the
battery voltage, current consumed by the electric vehicle, power output, distance traveled
during the test, ambient temperature, and battery temperature. This comprehensive
visualization enables operators to monitor the vehicle’s performance and battery status
effectively, ensuring optimal operation and timely detection of any anomalies. Figure 8
illustrates the implemented HMI.

ard  x | B NodeRED

Voltage Current Distance

5
I \ 5
49.45 115 25

163400 16:3900

Power Ambient Temperature Battery Temperature

’ ' 212 '\ 24
o e 100 o e

Figure 8. Node-RED dashboard: real-time telemetry visualization of temperature, current, and volt-
age. Source: Author’s own elaboration.

Screening experiments
The previously described experimental design methodology was employed. The re-
sponse surface methodology is a sequential process. The initial step was to identify the
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factors that influence the response variable, based on the selected factors. In the second
stage, the optimal value of the response variable was identified. A response surface design
of 3% was adjusted, with the objective of minimizing the battery charging time using the
steepest descent algorithm. The coefficients are presented in Table 2, and the results of the
analysis of variance (ANOVA) are shown in Table 3.

Table 2. Significance of the coefficients of the second-order model.

Variable Estimated Coefficient Standard Error t-Value p-Value
(Intercept) 10,847.14 59.01 183.81  0.0000297
Initial voltage —7623.16 132.58 —57.50  0.0003023
Final voltage —925.51 111.35 —8.31  0.0141686
Current 2160.70 328.60 6.58 0.0223553

Initial voltage:Final voltage 604.88 140.52 431 0.0499609
Initial voltage:Current 3188.83 983.85 3.24 0.0834490
Final voltage:Current —3081.11 1273.96 —242 0.1367503
Initial Voltage2 3150.71 76.42 41.23  0.0005878
Final Voltage2 —2187.42 153.35 —14.27 0.0048787
Current? —3245.88 1365.87 —2.38  0.1406564

Table 3. ANOVA for the second-order model.

Effect Degree of Freedom Sum Squared Mean Squared F Value p-Value

Individual 3 252,049,528.00  84,016,509.00  32,585.70 0.00

Interactions 3 11,876,795.00 3,958,932.00 1535.50 0.00
Quadratic 3 16,040,688.00 5,346,896.00 2073.80 0.00
Residuals 2 5157.00 2578.00

From Tables 2 and 3, it can be concluded that all the coefficients are statistically
significant due to the p-values being less than 0.05. The current is also statistically significant
due to its interaction with the initial voltage. The second-order model is therefore adequate
for finding the optimal operating conditions, with an R-squared value of 99%. The optimal
conditions as determined by the steepest descent algorithm are presented in Table 4.

As indicated by the estimated coefficients in Table 2, the initial voltage was identified
as the primary variable influencing the minimization of the charge time. With regard to the
interactions, it can be observed that there is a positive relationship between the initial and final
voltage. This is due to the battery’s capacity to store more energy during charging, thereby
enhancing the efficiency of the process. In contrast, the inverse relationship between the
current and final voltage can be attributed to the internal resistance inherent to the battery,
which causes a voltage drop as current flows through. An increase in charge current intensity
intensifies the internal resistance within the battery, resulting in a more pronounced voltage
decline and a subsequent reduction in the available voltage at the battery terminals.

Table 4. Optimal operating conditions.

Initial Voltage Final Voltage Current Estimated Charge Time
43.56 50.46 2.38 6961.08

It is crucial to acknowledge that while integrated temperature sensors were incorpo-
rated into the system for monitoring purposes, temperature was not utilized as a variable in
the optimization process. This is due to the inherent difficulties associated with controlling
temperature in a real-world setting.

Figures 9-11 illustrate the response surface plots, where the z-axis indicates the re-
sponse variable “loading time”, and the x- and y-axes represent the corresponding input
factors. The objective is to reduce the time required for battery charging, with the optimal
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conditions indicated by red hues as shown by the color bar on the right side of each figure
as explained below.
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Figure 9. Response surface and contour graph initial voltage and final voltage. Source: Author’s
own elaboration.
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Figure 9 depicts the response surface, which illustrates the relationship between the
charging current and the battery bank charging time. It can be observed that the optimal
charging current is approximately 2.38 A, with an estimated charging time of approximately
6961.08 s. Given that the objective is to minimize the charging time, this configuration is
considered optimal.

The figure also demonstrates that as the charging current increases, the charging
time decreases significantly as evidenced by the red areas on the surface. It is, however,
important to note that an increase in the charging current also leads to an increase in the
battery temperature. It is important to note that an increase in battery temperature can lead
to battery failure and a reduction in battery lifespan, and pose risks to the electric vehicle.

Consequently, although augmenting the charging current may appear to be an effi-
cacious strategy for reducing charging time, it is of the utmost importance to achieve a
balance that considers both the efficiency of the charging time and the safety and durability
of the battery. It is therefore essential that optimization strategies encompass not only the
reduction in charging times but also the implementation of effective thermal management
techniques to prevent overheating and ensure the safe and prolonged operation of the
battery system.

Some authors have investigated various aspects of charging optimization, reliability
analysis, and project-based learning related to lithium-ion batteries and electric vehicles.
The aforementioned topics encompass a range of subjects, including charging strategies
based on temperature rise and charge time, multi-objective optimization methods, reliabil-
ity optimization for battery packs, and project-based learning for electric vehicle innovation.
A number of charging optimization strategies have been put forth for lithium-ion bat-
teries, with a particular emphasis on achieving a balance between charging time and
battery longevity.
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Figure 11. Response surface and contour graph initial voltage and current. Source: Author’s
own elaboration.
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Figure 10 illustrates the response surface and contour plot for varying charging cur-
rents and initial voltages. The optimal region is observed to be around 6000 s. As illustrated
by the response surface, an increase in the initial charging voltage results in a reduction
in the charging time. Furthermore, it is evident that a higher charging current results in a
shorter charging time, with the initial voltage having a lesser influence on this relationship.

It is crucial to acknowledge that lithium batteries necessitate meticulous regulation of
the charging current to avert an escalation in temperature, which could result in battery
deterioration, diminished lifespan, and potential safety concerns. While an increase in the
charging current can significantly reduce the charging time, it is essential to balance this
with thermal management strategies to maintain battery integrity and ensure safe operation.

Figure 11 illustrates the response surface and contour plot for the final voltage of the
battery bank in relation to the charging current. It can be observed that as the final charging
voltage increases, the charging time will also be longer. The time required for the battery
to reach a full charge can be reduced by increasing the charging current, as illustrated
in the contour plot, where the optimal region is approximately 8000 s. Nevertheless, it
is of paramount importance to regulate this phenomenon, as an increase in the charging
current also results in an elevated battery temperature. Such temperature increases have
the potential to impact performance, reduce the battery’s lifespan, and pose safety risks.

The optimization of the charging process must strike a balance between reducing the
time required for charging and ensuring thermal safety. Although augmenting the charging
current may appear to be an efficacious method for reducing charging time, it is imperative
to implement temperature control measures to prevent damage and mitigate risks. It is
of paramount importance to implement effective thermal management strategies in order
to maintain the integrity of the battery throughout the charging process. In conclusion,
Figure 11 illustrates the intricate relationship between the final voltage and charging
current in the battery charging process, underscoring the significance of identifying optimal
conditions and implementing thermal management strategies to achieve a balance between
charging efficiency and operational safety.

In order to enhance the precision of the solution at elevated charging currents, the au-
thors of this study [34] devised a strategy that integrated an Enhanced Thermal Behavior
Model and a genetic algorithm (GA). This method employs a polarization-based opti-
mization strategy, which aims to achieve a balance between charging speed and battery
lifetime. The GA is employed to identify the optimal charging current trajectories, taking
into account temperature rise constraints and charging time.

In their study, ref. [35] employed a multi-objective charging optimization method that
divides the charging process into multiple stages. This method optimizes the charging
currents for each stage. The objective of this method is to reduce both the charging time
and temperature rise, taking into account the limitations of charging current in different
states of charge (SOCs) stages. An offline first-order equivalent circuit model and a battery
thermal model are employed to estimate temperature rise and to balance the charging
time and temperature increase. The optimal charging currents for the eight stages were
determined to be 39.4, 36.4, 30.1, 14.0, 13.1, 12.4, 8.2, and 10.0 A, resulting in a charging
process that took 1620 s with a temperature rise of 3.37 °C. Nevertheless, attaining this
optimal time necessitates the use of a high-capacity battery, which differs considerably
from the one employed in the present study.

Ref. [36] employed a Variable Frequency Pulse Charge System (VFPCS) to identify
the optimal pulse charge frequency for providing optimal pulse current (PC) charging to
the battery, thereby reducing charging time. In comparison to the conventional constant
current—constant voltage (CC-CV) charge system, the proposed method demonstrated a
21% enhancement in charging speed. A novel optimization approach was developed, uti-
lizing Particle Swarm Optimization (PSO) and a fuzzy-deduced fitness evaluator, with the
objective of determining an optimal charging pattern. This approach was able to charge
batteries to above 80% capacity in 3060 s. This approach resulted in a 56.8% reduction in
charging times in comparison to the conventional CC-CV method.
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Other studies concentrate on the optimization of the charging process, with the objec-
tive of enhancing battery performance and longevity. This is achieved by the management
of current and voltage profiles. In their study, ref. [33] introduced a method for selecting
optimal charging parameters that maximize battery cycle life while minimizing charging
time. This approach considers the effects of voltage and current on capacity curves. The bat-
tery is charged at a constant current until a specified voltage is reached, after which the
voltage is maintained at that level while the current is gradually decreased. The optimal
current in the constant current (CC) stage is determined by the ratio of the weighting on
total charging time (TTC) and energy loss (EL), as well as the battery’s resistance. The paper
presents models that accurately predict the capacity of the battery over multiple cycles.
The models and methods are validated with experimental data, thereby demonstrating
their effectiveness in real-world scenarios.

As stated in reference [37], the maximum acceptable terminal voltage and the max-
imum current during charging represent pivotal parameters that exert a considerable
influence on the charging process. These parameters not only affect the lifespan of the
battery but also the efficiency and speed of charging. For example, elevated current levels
can reduce the time required for charging (TTC) but also increase energy losses (EL) due to
the proportional relationship between EL and the square of the current.

In regard to the identification of battery state of charge (SOC) from experimental
data, the article [38] examines algorithms for estimating SOC in lithium-ion batteries
using model-adaptive Kalman filters. The study examines a range of approaches for
parameterizing battery models and assesses the performance of algorithms across diverse
scenarios, with the objective of enhancing the accuracy and reliability of SOC estimation
for electric vehicles. Moreover, the research highlights the pivotal importance of precise
measurements and comprehensive battery models in advancing the capabilities of SOC
estimation for lithium-ion batteries.

4. Conclusions

The principal objective of this study was to reduce the time required for vehicle
charging, which was treated as the response variable, with the aim of enhancing vehicle
efficiency. The study was informed by telemetry data collected during electric battery
charging cycles. Subsequently, a response surface design was employed, whereby the
current and voltage were varied across a range of low to high values, with the objective of
minimizing the charging time of the battery. The response surface methodology and the
steepest descent algorithm demonstrated that both current and voltage have a significant
impact on charging time. The minimum charging time of 6961 s was achieved with a current
of 2.4 amps and voltages of 50.5 volts and 43.6 volts. As previously stated, temperature
was monitored but not utilized as a variable in the optimization process.

The detailed analysis of response surfaces reveals the importance of striking a balance
between charging efficiency and thermal management to maximize the performance and
durability of batteries in electric vehicles. It has been demonstrated that reducing the
charging time necessitates maintaining a low final charging voltage and increasing the
charging current. For instance, it was observed that a charging current of approximately
2.38 A resulted in an optimal charging time of approximately 6961.08 s. However, it
should be noted that this time may vary depending on specific charging conditions and
battery capacity. The study’s results highlight the critical role of the charging current in
battery charging time. The results demonstrated that an increase in the charging current
resulted in a significant reduction in charging time. However, this advantage must be
weighed against the potential detrimental impact on battery temperature. An increase
in the charging current was observed to result in elevated temperatures, which could
potentially compromise the long-term safety and durability of the battery.

While fast charging offers benefits in terms of convenience and practicality for electric
vehicle users, it also presents significant challenges in terms of thermal management and
battery safety. The findings of this study underscore the necessity for further research
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and the development of fast charging strategies that minimize the negative impacts on
battery temperature while maximizing charging efficiency. The advent of novel thermal
management techniques and advanced battery materials presents a promising avenue
for addressing these challenges and advancing towards more efficient and secure energy
storage systems.

RSM is a robust methodology for optimizing processes and elucidating intricate vari-
able relationships. However, it is not without limitations. For example, RSM requires
the assumption of polynomial relationships. However, if the true relationship between
variables such as charge time, voltage, and current is highly nonlinear or exhibits com-
plex interactions beyond the experimental range, RSM may not accurately model system
behavior. It is therefore recommended that future research should explore alternative opti-
mization approaches, such as genetic algorithms, surrogate models, or simulated annealing,
which can accommodate more complex and non-linear relationships effectively.
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