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Abstract: A monocular ranging method for forward vehicles in intelligent driving is proposed. This
method measures vehicle distance more accurately under the condition of a single camera and can
estimate camera attitude in real-time. For the estimation of camera pitch and yaw angles, it is achieved
using road vanishing points. The images collected by the camera are sequentially processed through
the Roberts operator amplitude calculation, feature point extraction, feature line segment generation,
road vanishing point voting, and estimation of camera attitude to obtain pitch and yaw angles. A
distance estimation network was designed, which is divided into multiple levels based on image size
and incorporates image feature, integrating vehicle grounding point, and vehicle width information,
effectively improving ranging accuracy. Finally, validation was conducted on KITTI data, with a
relative error (AbsRel) of 8.3%. Additionally, the TuSimple dataset and continuous driving scenarios
were also validated, resulting in improved performance compared to previous algorithms.

Keywords: machine vision; monocular; vehicle ranging; camera pose; ranging network

1. Introduction

In the process of implementing autonomous driving, Computer Vision (CV) plays an
important role, including vehicle ranging, vehicle speed measurement, vehicle detection,
and traffic sign recognition [1]. Among these, distance perception is a key technology for
traffic safety and path planning. With the continuous improvement in visual intelligence,
vehicle ranging has significantly improved in accuracy and efficiency [2].

Demonstrating the importance of this solution, monocular distance measurement
for vehicles ahead can be applied to assist driving safety, autonomous driving, and has a
simple structure that is easy to implement. Compared to radar, lidar, stereo-cameras, etc.,
monocular cameras are more economical and suitable for vehicles with limited budgets. In
addition, the monocular camera has a compact structure and is easier to install in different
positions of the vehicle. The data processing of monocular cameras is usually relatively
simple and requires low computing resources.

Due to the complexity of vehicle driving under various road conditions, the images
captured by cameras are influenced by various factors, such as posture changes, rain and
snow, etc. Therefore, the effectiveness of camera image acquisition significantly affects the
subsequent vehicle detection and distance measurement. At present, the main theories
for camera pose correction include those based on six lane points [3], road disappear-
ance points [4], virtual horizontal lines [5], feature point motion [6], etc. Among these,
correcting the camera pose based on road disappearance points can effectively improve
measurement accuracy.

The traditional distance measurement methods for vehicles ahead include those based
on the contact point between the vehicle and road [7], and the estimated information of
the vehicle target [5]. The method of using ground point distance measurement is greatly
affected by road bumps due to its reliance on camera angle parameters [8]. Because the
width of the vehicle ahead is unknown, ranging based on vehicle width often requires
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estimating the vehicle width based on the type of vehicle [9], and the accuracy of vehicle
width prediction has a significant impact on the ranging effect.

This article proposes a monocular distance measurement method for forward vehicles,
which includes camera attitude estimation and a multi-reference distance estimation net-
work. It was validated on the KITTI 2012 dataset [10] and showed improvement compared
to previous algorithms.

For the camera pose estimation, the specific process includes edge feature point
extraction, edge feature segment generation, road disappearance point voting, and cam-
era angle estimation. The estimation of pose improves the accuracy of subsequent dis-
tance measurement.

For the network ranging method with grounding point and vehicle width, a network
with multiple image size levels and contour information was designed to address the
shortcomings of traditional ranging methods. Combined with geometric ranging methods,
the accuracy of distance estimation was effectively improved.

2. Camera Pose Estimation
2.1. Road Disappearance Point Detection

During the driving of vehicles, due to the dynamic changes in road conditions and
the bumps and undulations of the vehicle itself, the heading angle and pitch angle of
the camera will change, and this uncertain parameter causes errors in vehicle distance
measurement. This article uses road disappearance points to correct the heading and pitch
angles of the camera and improve ranging accuracy.

Firstly, in order to obtain the disappearance point of the road, it is necessary to extract
the features of the image. In order to obtain image features with reasonable time complex-
ity, a texture (gradient)-based algorithm is chosen to obtain edge feature information of
the image.

Common edge extraction operators include Roberts, Prewitt, Sobel, and Laplacian.
KITTI (2012) is used as the dataset, which is converted into grayscale images, and the
accuracy of lane line extraction is obtained with a threshold of 50%. The accuracy of
lane line extraction will be greatly improved during the subsequent line segment filtering
process. Currently, the accuracy of each operator’s extraction is shown in the Figure 1.
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Figure 1. The accuracy of each edge extraction operator in extracting lane lines.

As shown in Figure 1, compared to other operators, the Roberts operator has a signifi-
cantly higher efficiency in extracting lane lines. In traffic scenarios, lane markings are an
obvious feature, and complex operators extract a large number of image detail elements,
which results in low efficiency in extracting simple features. The Roberts operator itself is a
relatively simple operator that can effectively extract the obvious feature of lane lines. The
calculation formula for the Roberts operator with a size of 2 × 2 is as follows:
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G (x, y) =
√

G2
x (x, y) + G2

y (x, y)

Gx (x, y) = 1
2

[
−1 1
−1 1

]
× I (x, y)

Gy (x, y) = 1
2

[
−1 −1
1 1

]
× I (x, y)

, (1)

where G (x,y) is the gradient amplitude of the image, and Gx (x,y) and Gy (x,y) are the
components of the gradient on the X and Y axes.

For lane markings, the segment information is more important, and the extraction
results of the segment are shown in Figure 2c. In order to improve the efficiency of
line segment generation, the least squares method is used for fitting. Firstly, traverse
all extracted feature points and preliminarily fit a large number of small line segments.
Comparing all small segments, if the difference in slope and intercept between the two is
within 5%, it is considered that they are unified segment information and replaced with
extended segments. Repeatedly repeating the pairwise merging process of line segments
ultimately obtains the preliminary line segment features of the image.
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Figure 2. In road vanishing point detection, the results of each step: (a) the original image, No. 11 of
the KITTI test set; (b) edge feature extraction; (c) filtered feature line segments; (d) road vanishing
point voting; (e) road vanishing point detection results. (The red line is the characteristic line of the
road, and the red dot is the point where the road disappears.)

Although the feature line segments of the image have been obtained, there are also
a large number of useless line segments in addition to the lane lines. In traffic scenarios,
lane lines have distinct characteristics, and useless line segment features can be filtered
according to the following principles:

1. In traffic scenarios, the slope of lane markings has certain characteristics. During
driving, features such as road signs, greenery, and buildings that are close to vertical
can be filtered. In addition, due to the fact that the characteristic lines of shadows and
other shadows generated by lighting are mostly horizontal, they can be filtered. In
practical operation, line segments smaller than 5◦ and larger than 85◦ are filtered to
improve the accuracy of feature line segments.

2. During normal driving, the road is not undulating and the lane markings are located
in the lower half of the image. Therefore, the line segments in the upper half of the
image can be filtered.

3. The lane markings are clearly bright colors, with green indicating road greening in
the bright colors. Therefore, the line segments with dark and green background colors
can be filtered to improve the accuracy of feature line segments.
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As shown in Figure 2d, based on the extracted features of the line segments, the
position of the disappearance point on the road is determined by voting. The weight
parameters for voting adopt the following length and direction criteria:

• Segment length

In driving scenes, lane lines, as obvious features, often run through the entire picture,
meaning that lane lines are often longer feature segments. So, the longer the line segment,
the higher the score in the voting process at the disappearance point of the road.

• Segment direction

During the process of driving along the lane line, in the image, the angle of the lane
line is close to 45◦/135◦ (slope ± 1). After normalization, the direction of the line segment
can be obtained.

The calculation formula for voting on road disappearance points can be obtained by
combining the length weight and direction of the line segments as follows:

W = WL + WO

WL = λL Lx
Lmax

WO = λO
|kx |

2k2
x+1

, (2)

where W is the vote obtained at the disappearance point of the road; WL and WO represent
the length and direction of the vote; Lx is the length of a certain feature line segment; Lmax
is the length of the longest feature line segment; λL is the voting weight of the length of the
line segment; kx is the slope of the line segment; and λO is the voting weight for the length
of the line segment.

Furthermore, for the voting results, there are often multiple peaks near the vanishing
point, all of which have some degree of deviation. By using Gaussian distribution, the
voting space can be smoothed.

Finally, the disappearance point of the road was obtained, as shown in Figure 2e.
As shown in Figure 3, the road vanishing point detection proposed in this article

mainly relies on the main feature of the images. Therefore, it has good performance when
driving straight during the day and at night. For curved driving, the algorithm in this
article can only predict the extension direction of nearby roads. Although it is difficult to
accurately predict the disappearance point of a road on a bend, it can still rely on the trend
of nearby lanes to provide guidance for camera attitude correction.
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2.2. Camera Pose

After determining the location of the disappearance point on the road, the camera’s
yaw and pitch angles can be estimated based on the offset of the disappearance point’s
position. After the previous calculation, the coordinates of the disappearance point P on
the captured image are P (uP, vP), and the coordinates of the camera’s optical axis and the
initial position O on the captured image are O (uO, vO).
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As shown in Figure 4b, the yaw angle is γ. After determining the disappearance
point of the road, the yaw angle can be calculated based on the initial position of the
disappearance point and the camera’s optical axis, combined with the camera’s parameter
fx. Similarly, as shown in Figure 4a, the camera pitch angle is the angle in the image θ. After
determining the location of the disappearance point on the road, it can be obtained based
on the relationship shown in the diagram. Based on the disappearance point of the road
and the initial position of the camera’s optical axis, combined with the camera’s parameter
fy, the calculation formula for the camera’s yaw and pitch angles is as follows:γ = tan−1

(
uP−uO

fx

)
θ = tan−1

(
vP−vO

fy

) , (3)
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3. Monocular Ranging of the Forward Vehicle
3.1. Distance Measurement Based on Vehicle Grounding Point and Vehicle Width

Due to the lack of degrees of freedom in monocular cameras, external references must
be introduced for distance measurement, and the longitudinal position of the front vehicle
in the image is a feasible solution. When the camera height is known, the distance between
the front vehicle and the self vehicle is shown in Figure 5a.
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As shown in Figure 5a, the formula for calculating the distance D1 between the
preceding vehicle and the self-driving vehicle based on the grounding point of the preceding
vehicle is as follows:  D1 = h

tan(µ)

µ = tan−1
(

vC−vO
fy

) , (4)

where h is the height of the car-mounted camera; optical center C (uC, vC), µ is the angle
between the vehicle optical center line and the vertical direction of the optical axis and is
calculated by calculating the pixel difference value on the collected image.
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The distance measurement scheme based on vehicle width is less affected by the
camera attitude angle, but depends on the accuracy of the estimated vehicle width. For
the front vehicle, intelligent recognition algorithms can roughly determine the type of
front vehicle and estimate the width of the vehicle based on its type. When the width of
the vehicle is known, the distance D2 between the preceding vehicle and the self-driving
vehicle can be measured. The specific scheme is shown in Figure 5b, and the distance
measurement formula based on the width estimation of the preceding vehicle is as follows:

D2 =
fxW
w

(5)

where W represents the estimated width of the front car, and w represents the pixel width
of the front car.

3.2. The Influence of Attitude Angle on Distance Measurement

The pitch angle will have a certain impact on the ranging results, and the specific
impact process is shown in Figure 6a.
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According to Figure 6, the distance measurement D1 based on the grounding point
should be adjusted. θ represents the camera elevation angle, and D1

′ is the distance
measurement result adjusted based on the elevation angle of the grounding point.

D1
′ =

tan µ

tan(θ+ µ)
D1

′ (6)

Similarly, the yaw angle also has a certain impact on the ranging results, as shown in
Figure 6b. Due to the yaw angle, D1

′ is only the distance from the horizontal projection
point of the vehicle on the optical axis. The true distance D1

′ can be calculated according to
the following equation: D1

′′ = D1
′

cosφ· cos(φ+γ)

φ = tan−1
(

uc−uo
fx

) , (7)

where φ is the angle between the vehicle optical center line and the horizontal direction of
the optical axis.

3.3. The Fusion of Two Ranging Schemes

Two ranging results were obtained based on the grounding point and vehicle width.
In order to improve ranging accuracy, it is necessary to design appropriate parameters,
integrate two ranging schemes, and obtain the final ranging result D as follows:

D = ωD1
′′ + (1 − ω)D2, (8)

ω represents the weights of two ranging schemes. In order to determine their specific
values, the deep learning method was chosen. The network structure and parameters are
shown in Figure 7 and Table 1.



World Electr. Veh. J. 2024, 15, 339 7 of 12

World Electr. Veh. J. 2024, 15, 339 7 of 12 
 

3.3. The Fusion of Two Ranging Schemes 
Two ranging results were obtained based on the grounding point and vehicle width. 

In order to improve ranging accuracy, it is necessary to design appropriate parameters, 
integrate two ranging schemes, and obtain the final ranging result D as follows: 𝐷  =   𝜔𝐷ଵ′′ + (1 −  𝜔)𝐷ଶ, (8)

ω represents the weights of two ranging schemes. In order to determine their specific 
values, the deep learning method was chosen. The network structure and parameters are 
shown in Figure 7 and Table 1. 

Original image

S/2

S/4 ω3

ω2

ω1

L1co
nv

1
la

ye
r1

ResNext

L2

R2

R1

Conv Upconv Upsampling  
Figure 7. Weighted parameter training network. 

Table 1. Detailed structure of the network. 

Block Filter Size Channel Input 
Encoder 

conv1 7 × 7 3/64 Original image 
maxpool 3 × 3 64/64 F (conv1) 

layer1 3 × 3 64/256 F (maxpool) 
Decoder 

reduction 1 × 1 256/128 F (layer1) 
dec3 3 × 3 128/1 F (reduction) 

dec2up 3 × 3 128/64 F (dec3bneck) 
dec2reduc 1 × 1 128/60 F (conv1 ⊕ dec2up) 
dec2bneck 3 × 3 64/64 F (dec2reduc ⊕ R2 ⊕ dec3 *) 

dec2 3 × 3 64/1 F (dec2bneck) 
dec1up 3 × 3 64/60 F (dec2bneck) 

dec1bneck 3 × 3 64/64 F (dec1up ⊕ R1 ⊕ dec2 *) 
dec1 3 × 3 64/1 F (dec1bneck) 

* for upsampling results, ⊕ for summation. 

As shown in Figure 8, during the weight determination process, a parameter network 
is trained using dataset images. For a certain ranging image, a unique corresponding 
weight parameter is calculated based on the network to improve ranging accuracy. 

Figure 7. Weighted parameter training network.

Table 1. Detailed structure of the network.

Block Filter Size Channel Input

Encoder

conv1 7 × 7 3/64 Original image
maxpool 3 × 3 64/64 F (conv1)

layer1 3 × 3 64/256 F (maxpool)

Decoder

reduction 1 × 1 256/128 F (layer1)

dec3 3 × 3 128/1 F (reduction)

dec2up 3 × 3 128/64 F (dec3bneck)
dec2reduc 1 × 1 128/60 F (conv1 ⊕ dec2up)
dec2bneck 3 × 3 64/64 F (dec2reduc ⊕ R2 ⊕ dec3 *)

dec2 3 × 3 64/1 F (dec2bneck)

dec1up 3 × 3 64/60 F (dec2bneck)
dec1bneck 3 × 3 64/64 F (dec1up ⊕ R1 ⊕ dec2 *)

dec1 3 × 3 64/1 F (dec1bneck)
* for upsampling results, ⊕ for summation.

As shown in Figure 8, during the weight determination process, a parameter network
is trained using dataset images. For a certain ranging image, a unique corresponding
weight parameter is calculated based on the network to improve ranging accuracy.

The network contains multiple sizes of image inputs, with S/2 and S/4 images being
upsampled once and twice, respectively. At the same time, when designing the network,
the contour information of the images was taken into consideration, with L1 and L2 as
inputs for image contours of different sizes. For the design of the loss function, MSE Loss
was adopted.

Images of different sizes focus on features of different sizes; adding more sizes can
help improve ranging accuracy, but excessive size input increases network complexity and
reduces computational efficiency. The network is divided into multiple levels, with multiple
images of different sizes input. When the input is S/4 or S/2, the distance measurement
for the preceding vehicle has good accuracy. Different scales of images are inputted to
calculate different ranging results, and as the accuracy of the images improves, the ranging
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of vehicles ahead becomes more accurate. In Figure 7, ω1, ω2, and ω3 correspond to
different size inputs, and their ranging accuracy is shown in Figure 8 (using KITTI test set
11 as an example):

In the process of distance measurement, the network introduces the features L1 and
L2 of the image for training. By introducing the image contour, the training efficiency of
the weight network has been significantly improved. It can be seen that the contour of the
image during driving is very important information, which is crucial for the design of the
training network.
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4. Results
4.1. Ablation Experiment

The ranging model in this article was validated on two datasets (KITTI and TuSimple),
and the prediction results in continuous scenes were tested based on real vehicle, proving
that the model has good ranging ability.

As shown in Figure 9, in the distance measurement process of the vehicle ahead,
attitude angle estimation and a distance measurement network were introduced. In order
to verify the effectiveness of these two modules, ablation experiments were designed. The
ablation experiment was based on the KITTI dataset and compared the results of our model,
Camera pose estimation, Ranging based on ground point, and Ranging based on vehicle
width ranging. The specific values are shown in Table 2.

Table 2. Verification of modules.

Module (a) (b) (c) (d)

Ranging based on grounding point
√ √ √

Ranging based on vehicle width
√ √ √

Camera pose estimation
√ √ √

Training network
√ √

MSE ↓ 1.23 — — 1.51
Accuracy ↑ 0.917 0.853 0.811 0.892

↑ for higher value and better performance, ↓ for lower value and better performance, — for meaninglessness, and√
for usage of blocks.

From the table, it can be observed that compared to traditional ground point or vehicle
width ranging, our model introduces camera pose estimation and weight training networks,
resulting in a significant improvement in ranging accuracy. The accuracy (relative accuracy,
complementary to AbsRel) reaches 91.7%, and the loss is relatively low.
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4.2. Dataset Validation

To demonstrate the wide applicability of the model, the ranging model proposed in
this paper was validated on two datasets, KITTI and TuSimple. The KITTI 2012 dataset
contains 7480 training images and 7517 test images, while the TuSimple dataset contains
3626 training images and 2782 test images. The validation results are shown in the Figure 10.
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From Figure 10, it can be seen that the model in this article performs well on the KITTI 
dataset, with a relative error (AbsRel) of 8.3% after 100 network iterations. On the TuSim-
ple dataset, the accuracy of distance measurement in this paper reached 93.1%, proving 
that the model can be widely used in various scenarios. The comparison between the 
model and other literature is shown in Table 3. 
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posture, which in turn affects ranging accuracy. Compared with reference [11], the esti-
mation of camera attitude effectively improves the ranging accuracy. Compared to refer-
ence [10], multiple geometric schemes as prior conditions for the network have better ro-
bustness to changes in road undulations and vehicle widths. However, the ranging net-
works also requires the consumption of more computing resources. 

4.3. Continuous Image Verification 
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Figure 10. Validation results.

From Figure 10, it can be seen that the model in this article performs well on the KITTI
dataset, with a relative error (AbsRel) of 8.3% after 100 network iterations. On the TuSimple
dataset, the accuracy of distance measurement in this paper reached 93.1%, proving that
the model can be widely used in various scenarios. The comparison between the model
and other literature is shown in Table 3.

The model in this article has shown good performance in parameters such as AbsRel,
RMS, and δ < 1.252, which is an improvement in performance compared to previous
models. During driving, vehicle suspension and road undulations can cause changes in
camera posture, which in turn affects ranging accuracy. Compared with reference [11],
the estimation of camera attitude effectively improves the ranging accuracy. Compared
to reference [10], multiple geometric schemes as prior conditions for the network have
better robustness to changes in road undulations and vehicle widths. However, the ranging
networks also requires the consumption of more computing resources.
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Table 3. Result comparison table based on KITTI.

3Dbbox Liu et al. [10] Zhao et al. [11] Proposed Method

AbsRel ↓ 0.222 0.095 0.085 0.083
SqRel ↓ 1.863 0.454 0.375 0.402
RMS ↓ 7.696 4.728 4.114 4.100

RMSlog ↓ 0.228 0.153 0.108 0.121
δ < 1.251 ↑ 0.659 0.903 0.974 0.952
δ < 1.252 ↑ 0.966 0.995 0.997 0.998
δ < 1.253 ↑ 0.994 1.000 1.000 1.000

↑ for higher value and better performance, ↓ for lower value and better performance.

4.3. Continuous Image Verification

The vehicle visual system experimental platform in this article consists of an experi-
mental vehicle, one monocular onboard camera, one Jetson Nano (NVIDIA, Santa Clara,
CA, USA), and a display, as shown in Figure 11. The monocular camera is installed on
the inside of the front windshield of the experimental vehicle and connected to the Xavier
development board through a USB conversion cable. The entire system is powered by the
onboard inverter.
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The experiment was conducted on a structured road, with the vehicle moving at a
constant speed and the target vehicle stationary in the side lane. A total of 1415 frames of
images were captured by the camera, and six frames were selected based on the markers
placed every 10 m on the lane. The actual longitudinal distance was obtained through
distance markers, and the ranging results of our method are shown in Table 4.

Table 4. Results based on actual vehicles.

No.
Pitch Angle Yaw Angle Distance

True
Value

Estimated
Value

Relative
Error/%

True
Value

Estimated
Value

Relative
Error/%

True
Value/m

Estimated
Value/m

Relative
Error/%

1 1.31 1.86 41.98 2.78 3.02 8.63 27.3 26.94 1.32
2 3.27 3.49 6.73 5.08 5.24 3.15 37.3 36.7 1.61
3 4.96 5.08 2.42 7.81 8.21 5.12 47.3 46.98 2.79
4 7.53 7.97 5.84 9.36 9.69 3.53 57.3 55.77 2.67
5 11.87 12.35 4.04 14.85 15.42 3.84 67.3 65.04 3.36
6 14.38 14.89 3.55 16.97 17.51 3.18 77.3 74.51 3.61
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This article proposes a forward vehicle monocular ranging method, which includes
camera attitude estimation and a distance estimation network. Common vehicle ranging
solutions often use a combination of cameras and radars [12]. This approach has better
robustness to weather changes. Compared to radar, lidar, stereo-cameras, etc., monocular
cameras are more economical and suitable for vehicles with limited budgets. In addition,
the monocular camera has a compact structure and is easier to install in different positions
of the vehicle. The data processing of monocular cameras is usually relatively simple and
requires low computing resources.

Another monocular ranging scheme is to use a 3D detection frame [13]. This approach
provides location information and size estimation of objects, which helps to understand
their physical properties. However, it is more complex than two-dimensional detection and
more sensitive to noise, especially when the appearance of the occluded object is similar to
that of the occluded object.

5. Conclusions

This article proposes a forward vehicle monocular ranging method, which includes
camera attitude angle estimation correction and a distance estimation network, and vali-
dates KITTI, TuSimple, and continuous scenes. Compared with previous algorithms, this
method has improved performance. The model mainly has the following characteristics:
(1) For the camera pose estimation scheme, it is achieved through road vanishing points.
The specific process is edge feature point extraction, edge feature line segment genera-
tion, road vanishing point voting, and camera pose angle estimation. (2) For the distance
measurement method of the fusion network of the grounding point and vehicle width, a
distance measurement network with multiple image size levels and considering contour
information was designed, effectively integrating the distance measurement method of the
grounding point and vehicle width. (3) The proposed approach was verified on KITTI data
with a relative error of 8.3%, showing good performance on parameters such as AbsRel,
RMS, and δ < 1.252. On the TuSimple dataset, the relative error was 6.9%, and tracking
distance measurement can also be achieved in continuous driving scenarios, which has
improved performance compared to previous algorithms.
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