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Abstract: The global shift towards electric vehicles (EVs) has necessitated a paradigm shift in
engineering education, emphasizing hands-on experiences and innovative learning approaches.
This review article presents a comprehensive analysis of the design and fabrication process of an
educational EV prototype, highlighting its significance in preparing future engineers for the rapidly
evolving EV industry. The article delves into the historical development and recent trends in EVs,
providing context for the growing importance of practical skills in this field. A detailed examination of
the key components and systems in modern EVs, such as battery packs, electric motors, transmission
systems, and chassis design, lays the foundation for understanding the complexities involved in
EV prototype development. The methodology section explores the research approach, conceptual
design, simulations, material selection, and construction techniques employed in the creation of an
educational EV prototype. The evaluation and testing phase assesses the prototype’s performance,
safety, and reliability, offering valuable insights into the lessons learned and areas for improvement.
The impact of such projects on engineering education is discussed, emphasizing the importance of
hands-on learning experiences and interdisciplinary collaboration in preparing students for future
careers in the EV industry. The article concludes by addressing common challenges faced during EV
prototype projects and providing recommendations for future educational initiatives in this field.

Keywords: electric vehicle prototype; sustainable transportation; battery management system; safety
and reliability; educational innovation

1. Introduction

The global automotive industry is undergoing a transformative shift towards electric
vehicles (EVs) as a sustainable and environmentally friendly mode of transportation [1].
This transition is driven by the pressing need to reduce greenhouse gas emissions, improve
air quality, and mitigate the impacts of climate change [2,3]. The adoption of EVs has
gained momentum in recent years, with governments, automotive manufacturers, and
consumers increasingly recognizing the benefits of electrified transportation [4]. As the
demand for EVs continues to grow, there is an increasing need for skilled engineers who
possess practical knowledge and hands-on experience in EV design and fabrication [5]. To
bridge this gap, educational institutions are incorporating EV prototype projects into their
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engineering curricula to provide students with real-world experience and prepare them for
careers in the EV industry [6,7].

The design and fabrication of educational EV prototypes offer students a unique
opportunity to apply theoretical concepts to practical situations, fostering a deeper under-
standing of EV technologies [8]. These projects encourage interdisciplinary collaboration,
problem-solving skills, and critical thinking, which are essential for success in the rapidly
evolving field of EV engineering [9]. By engaging in hands-on learning experiences, stu-
dents gain valuable insights into the intricacies of EV design, from conceptualization to
the final product [10]. Moreover, educational EV prototype projects serve as a platform for
students to develop important soft skills, such as teamwork, communication, and project
management, which are highly sought after in the industry [11].

However, the process of designing and fabricating educational EV prototypes is com-
plex and multifaceted, requiring a comprehensive understanding of various components,
systems, and methodologies [12]. From battery management systems and electric motors to
transmission systems and chassis design, students must navigate a wide range of technical
challenges [13]. The graph in Figure 1 illustrates the projected adoption of electric vehicles
in major automotive markets from 2020 to 2040, providing a comprehensive view of the
EV market’s past growth and future potential. The y-axis represents the percentage of new
vehicle sales that are electric, while the x-axis shows the years from 2020 to 2040. Each line
on the graph represents a different major automotive market, including China, Europe,
and the United States. The graph shows a dramatic increase in EV market share across all
regions, particularly after 2025. China is projected to lead in EV adoption, reaching nearly
50% of new car sales by 2040. Europe follows closely behind, while the U.S. shows a slower
but still significant growth trajectory. It is important to note that while this graph shows
rapid growth in EV market share, EVs currently make up a small fraction of the global
vehicle fleet compared to over 1.5 billion internal combustion engine vehicles. However,
the steep upward trends for all regions indicate a significant shift in the automotive market
over the next decade. A notable inflection point occurs around 2025–2026, where the rate of
EV adoption accelerates in all markets. This could be attributed to factors such as improved
battery technology, expanded charging infrastructure, and more stringent emissions regu-
lations coming into effect. This projected growth in EV market share represents a major
transition in the automotive industry, though it is important to remember that even by
2040, a significant portion of new vehicle sales in most markets will still be non-electric.
The graph underscores the rapid pace of change expected in the coming years, while also
highlighting the long-term nature of the transition to electric vehicles. Furthermore, safety,
reliability, and performance considerations are crucial aspects that must be addressed
throughout the design and fabrication process [14,15]. As such, a thorough examination of
the best practices, challenges, and opportunities associated with educational EV prototype
projects is necessary to guide educators and researchers in this field. While several studies
have explored the benefits of hands-on learning in engineering education [16–18], there is a
lack of comprehensive reviews that must focus specifically on the design and fabrication of
educational EV prototypes. Some researchers have emphasized the importance of integrat-
ing EV projects into engineering curricula [19], while others have highlighted the challenges
and opportunities associated with such initiatives [20]. However, a holistic examination of
the methodologies, impacts, and future directions of educational EV prototype projects is
necessary to provide a roadmap for educators and researchers seeking to implement these
projects effectively.

This review article aims to bridge this gap by providing a comprehensive analysis
of the design and fabrication process of educational EV prototypes, emphasizing its sig-
nificance in preparing future engineers for the EV industry. The article will explore the
historical development and recent trends in EVs, examine the key components and systems
in modern EVs, and delve into the methodology employed in the creation of educational
EV prototypes. Furthermore, the impact of such projects on engineering education will
be discussed, highlighting the importance of hands-on learning experiences and interdis-
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ciplinary collaboration. The article will also address common challenges faced during
EV prototype projects, such as resource limitations, technical complexities, and time con-
straints, and provide recommendations for overcoming these obstacles. Finally, future
directions for educational EV prototype initiatives will be explored, considering the rapid
advancements in EV technologies and the evolving needs of the industry. Figure 2 visually
represents the significant environmental benefits of EVs. It illustrates how EVs contribute
to reduced CO2 emissions, decreased air pollution, and lower overall energy consumption
compared to traditional internal combustion engine vehicles. The figure also highlights
the potential for EVs to integrate with renewable energy sources, further enhancing their
positive environmental impact.
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The principal conclusions of this review article show the vital role of educational EV
prototype projects in equipping future engineers with the necessary skills and knowledge to
excel in the rapidly growing EV industry. By providing a comprehensive overview of the de-
sign and fabrication process, examining the impacts on engineering education, and offering
insights into best practices and future directions, this article serves as a valuable resource
for educators, researchers, and students interested in advancing EV engineering education
and promoting sustainable transportation solutions. As the world continues to embrace
EVs, the importance of hands-on learning experiences and the development of practical
skills in engineering education cannot be overstated. This review article contributes to the
ongoing discourse on the future of EV engineering education and highlights the need for
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continued research and innovation in this field. This paper makes several key innovative
contributions to the field of educational electric vehicle (EV) prototype development:

• Comprehensive Framework: We present a holistic approach to designing and fabri-
cating educational EV prototypes, integrating theoretical knowledge with hands-on
practical experience. This framework bridges the gap between classroom learning and
real-world application in EV engineering.

• Interdisciplinary Integration: Our methodology uniquely combines elements from
mechanical, electrical, and software engineering, providing a multi-faceted approach
to EV prototype development that is often lacking in more specialized studies.

• Safety-Centric Design: We introduce novel safety features specifically tailored for
educational prototypes, addressing a critical gap in the existing literature which often
focuses on commercial EV development.

• Pedagogical Impact Analysis: Unlike many technical papers, we provide an in-depth
analysis of the educational impact of EV prototype projects, offering valuable insights
for curriculum development in engineering programs.

• Scalable and Adaptable Model: Our approach is designed to be scalable and adaptable
to various educational settings, filling a gap in the literature for flexible, education-
focused EV prototype development methodologies.

By addressing these aspects, our paper fills a significant research gap in the literature
on educational EV prototypes. While numerous studies focus on commercial EV devel-
opment or general engineering education, there is a lack of comprehensive research that
specifically addresses the design, fabrication, and educational impact of EV prototypes in an
academic setting. Our work provides a much-needed bridge between theoretical EV knowl-
edge and practical, hands-on learning experiences, offering educators and researchers a
valuable resource for implementing effective EV-focused educational programs.

The remainder of this paper is organized as follows: Section 2 provides a compre-
hensive literature review, covering the historical development of electric vehicles, recent
trends, and relevant case studies. Section 3 details our methodology, including the research
approach, conceptual design, simulations, material selection, and construction techniques.
Section 4 presents the results of our prototype development and testing. Section 5 discusses
these results, evaluating the prototype’s performance and safety features. Section 6 ex-
plores the lessons learned and potential areas for improvement. Section 7 concludes the
paper, summarizing our key findings and offering recommendations for future work in
educational EV prototype development. Finally, The last part provides a complete list of
the references used throughout this study.

2. The Evolution of Electric Vehicles

Contrary to popular conspiracy theories, the early decline of electric vehicles was not
orchestrated by oil industry interests. Rather, it was a result of technological limitations
that persist, to some extent, even today [21].

The dominance of internal combustion engines over electric vehicles can be attributed
to several factors:

• The superior energy density and convenience of liquid fuels compared to early bat-
tery technology.

• Challenges in developing large, efficient, and cost-effective electric batteries or accumulators.
• Limited range and lack of charging infrastructure for electric vehicles.

These issues made internal combustion engines more practical for widespread adoption [22].
Similarly, external combustion engines failed to gain prominence due to inherent inefficiencies
compared to their internal combustion counterparts. It is worth noting that even modern magnetic
engines, despite their potential, face significant hurdles before they can outperform internal
combustion engines. These challenges include material demagnetization, component overheating,
power and torque losses, and operational interruptions [23].
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2.1. Historical Development of EVs

The history of electric vehicles provides crucial context for modern educational EV
prototype projects. Early EV designs, dating back to the 1830s, demonstrate fundamen-
tal principles still relevant in today’s prototypes. For instance, the 1890s Baker Electric
car’s simple motor-to-wheel power transmission system is often replicated in student
projects due to its straightforward design [24]. Thomas Edison’s work on improved battery
technology in the early 1900s highlights the ongoing importance of energy storage in EV
design, a key focus in many educational prototypes. The decline of EVs in the 1920s due to
limitations in range and charging infrastructure underscores the critical need for students
to address these persistent challenges in their designs [25].

The resurgence of interest in EVs in the 1970s, driven by environmental concerns,
mirrors the motivations behind many current educational EV projects. This historical
perspective helps students understand the cyclical nature of technological development and
the importance of addressing long-standing challenges in their prototype designs [26,27].
By studying this history, students gain insights into the evolution of EV technology, helping
them to identify areas for innovation in their own projects. Past failures in EV development
include the limited range and high cost of early models like the GM EV1 in the 1990s, and
the lack of widespread charging infrastructure. To break through these boundaries in the
future, advancements are needed in battery technology to increase range and reduce costs,
as well as for the expansion of fast-charging networks and the integration of smart grid
technologies for efficient energy management. Innovations in lightweight materials and
aerodynamic designs could also significantly improve EV performance and efficiency [28].
The timeline in Figure 3 shows major milestones in the development of battery electric
vehicles, from the first electric carriages in the 1830s to the modern era of EVs.
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2.2. Modern Advancements and Trends in EV Technology

The resurgence of interest in EVs began in the 1970s, driven by concerns over air pol-
lution and the oil crisis [29]. Governments and automakers started investing in EV research
and development, leading to the introduction of modern EVs like the General Motors EV1
in the 1990s [30]. However, it was not until the release of the Toyota Prius hybrid in 1997
and the Tesla Roadster in 2008 that EVs began to gain significant market attention [31].
In recent years, advancements in lithium-ion battery technology, power electronics, and
electric motors have greatly improved the performance, range, and affordability of EVs [32].
The development of fast-charging infrastructure and the implementation of government
policies and incentives have further accelerated the adoption of EVs worldwide [33]. As a
result, the market share of EVs has been steadily increasing, with many countries setting
ambitious targets for EV adoption in the coming decades [34].
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2.3. The Role of Educational Institutions in the EV Revolution

Educational institutions play a crucial role in the EV revolution by preparing the
future workforce with the necessary skills and knowledge to design, develop, and maintain
EVs [35]. Universities and colleges are increasingly incorporating EV-related courses and
programs into their engineering curricula to meet the growing demand for EV profes-
sionals [36]. These programs cover various aspects of EV engineering, including battery
technology, power electronics, electric machines, and vehicle dynamics [37]. In addition to
traditional coursework, educational institutions are also engaging students in hands-on EV
projects, such as the design and fabrication of EV prototypes [38]. These projects provide
students with practical experience and expose them to real-world challenges in EV devel-
opment, fostering innovation and problem-solving skills [39]. Moreover, collaborations
between educational institutions and industry partners facilitate knowledge transfer and
ensure that students are well-prepared to enter the EV workforce [40]. The graph in Figure 4
illustrates the predicted increase in the number of electric vehicles over the coming decades.
It is important to note the scale of this growth in context. If these predictions come true,
by 2030, electric vehicles would comprise approximately 1.5% of the global vehicle fleet
compared to internal combustion vehicles. While this represents significant growth in the
EV market, it also underscores the continued dominance of internal combustion engines
in the near term. This 1.5% figure highlights both the rapid growth of the EV market
and the massive scale of the existing internal combustion vehicle fleet. It emphasizes the
long-term nature of the transition to electric mobility, even as EV adoption accelerates. This
context is crucial for understanding the challenges and opportunities in the shift towards
electric transportation.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 7 of 23 
 

 
Figure 4. Predicted increase in number of electric vehicles. 

3. Impact of Educational EV Prototype Projects on Engineering Education 
3.1. Enhancing Hands-On Learning Experiences 

One of the most significant benefits of educational EV prototype projects is the op-
portunity for students to engage in hands-on learning experiences. By designing, fabricat-
ing, and testing EV prototypes, students can apply the theoretical knowledge gained in 
the classroom to real-world engineering challenges [43]. This hands-on approach helps 
students develop practical skills, such as CAD modeling, machining, welding, and elec-
trical wiring, which are essential for success in the engineering profession [44,45]. Moreo-
ver, hands-on learning experiences help students better understand abstract concepts and 
complex systems by providing tangible examples and opportunities for experimentation 
[46]. Through the process of building and testing EV prototypes, students can observe the 
direct consequences of their design decisions and develop a deeper understanding of the 
relationships between various components and subsystems [47]. Figure 5 depicts the hands-
on construction progress of the chassis for the educational electric vehicle prototype. 

 
Figure 5. Chassis construction progress. 

  

Figure 4. Predicted increase in number of electric vehicles.

As the EV industry continues to grow and evolve, educational institutions will need
to adapt their curricula and teaching methods to keep pace with the latest advancements in
EV technology [41]. This may involve the integration of emerging technologies, such as
artificial intelligence, machine learning, and the Internet of Things, into EV engineering
education [42]. By staying at the forefront of EV education, universities and colleges can
play a significant role in driving the EV revolution forward and shaping the future of
sustainable transportation.
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3. Impact of Educational EV Prototype Projects on Engineering Education
3.1. Enhancing Hands-On Learning Experiences

One of the most significant benefits of educational EV prototype projects is the oppor-
tunity for students to engage in hands-on learning experiences. By designing, fabricating,
and testing EV prototypes, students can apply the theoretical knowledge gained in the
classroom to real-world engineering challenges [43]. This hands-on approach helps stu-
dents develop practical skills, such as CAD modeling, machining, welding, and electrical
wiring, which are essential for success in the engineering profession [44,45]. Moreover,
hands-on learning experiences help students better understand abstract concepts and com-
plex systems by providing tangible examples and opportunities for experimentation [46].
Through the process of building and testing EV prototypes, students can observe the direct
consequences of their design decisions and develop a deeper understanding of the rela-
tionships between various components and subsystems [47]. Figure 5 depicts the hands-on
construction progress of the chassis for the educational electric vehicle prototype.
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3.2. Fostering Interdisciplinary Collaboration and Teamwork

Educational EV prototype projects often require collaboration among students from
different engineering disciplines, such as mechanical, electrical, and computer engineer-
ing. This interdisciplinary approach fosters a holistic understanding of EV systems and
encourages students to think beyond the boundaries of their specific field of study [48]. By
working together on a common project, students learn to communicate effectively, share
knowledge, and leverage each other’s strengths to solve complex problems [49,50].

In addition to interdisciplinary collaboration, EV prototype projects also promote
teamwork and project management skills. Students learn to divide tasks, set goals, and
manage resources effectively to meet project deadlines [51]. They also develop important
interpersonal skills, such as leadership, conflict resolution, and decision-making, which are
highly valued in the engineering industry [52].

3.3. Developing Problem-Solving and Critical Thinking Skills

Designing and fabricating EV prototypes presents students with a wide range of techni-
cal challenges that require creative problem-solving and critical thinking skills. Throughout
the project, students must analyze complex systems, identify potential issues, and develop
innovative solutions to overcome obstacles [53]. This process helps students cultivate
a systematic approach to problem-solving that involves breaking down large problems
into smaller, more manageable components [54]. Furthermore, educational EV prototype
projects often involve a significant amount of trial and error, as students test and refine their
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designs iteratively. This experience helps students develop perseverance and adaptability,
teaching them to learn from failures and adjust their approach based on empirical evi-
dence [55]. By engaging in this type of experiential learning, students develop the critical
thinking skills necessary to tackle real-world engineering challenges and drive innovation
in the EV industry [56].

The hands-on experience and practical skills gained through educational EV prototype
projects are highly valued by employers in the EV industry. By participating in these
projects, students can demonstrate their ability to apply theoretical knowledge to real-world
problems, work effectively in teams, and manage complex projects [57]. This experience
gives students a competitive edge when seeking internships, co-op positions, and full-time
employment opportunities in the EV sector [58]. Moreover, working on EV prototype
projects exposes students to the latest technologies and trends in the EV industry, such as
advanced battery systems, high-performance electric motors, and regenerative braking [59].
This exposure helps students stay current with industry developments and prepares them
to contribute to the design and development of next-generation EVs [60].

3.4. Promoting Sustainability and Environmental Awareness

Educational EV prototype projects play a crucial role in promoting sustainability and
environmental awareness among engineering students. By focusing on the development of
clean, efficient, and environmentally friendly transportation solutions, these projects help
students understand the importance of reducing greenhouse gas emissions and mitigating
the impacts of climate change [61]. Through their involvement in EV prototype projects,
students gain a deeper appreciation for the role of engineers in creating a more sustain-
able future [62]. They learn about the environmental benefits of EVs, such as reduced air
pollution, lower carbon footprint, and decreased dependence on fossil fuels [63,64]. This
awareness can inspire students to pursue careers in sustainable engineering and become
advocates for green transportation solutions [65]. Furthermore, educational EV prototype
projects often incorporate principles of eco-design and lifecycle assessment, encouraging
students to consider the environmental impact of their design choices throughout the
product’s entire lifecycle [66–68]. By adopting a holistic approach to sustainability, stu-
dents learn to balance economic, social, and environmental factors in their engineering
decisions [69,70]. Table 1 provides a concise overview of the key components and systems
discussed in the article, making it easier for readers to understand their functions and
importance in modern electric vehicles. Educational EV prototype projects have a profound
impact on engineering education, providing students with valuable hands-on learning
experiences, fostering interdisciplinary collaboration and teamwork, developing problem-
solving and critical thinking skills, preparing students for careers in the EV industry, and
promoting sustainability and environmental awareness.

Table 1. Key components and systems in modern electric vehicles.

Component/System Description

Battery pack and BMS

Stores electrical energy to power the vehicle

Lithium-ion batteries are commonly used

BMS monitors and controls cell voltage, current, temperature, and state of charge

Electric motors and control units

Converts electrical energy into mechanical energy to propel the vehicle

PMSM and IM are common types

MCU controls motor speed and torque based on driver inputs

Transmission systems
Transfers power from the electric motor to the wheels

Single-speed reduction gearboxes are common

Multi-speed transmissions may be used in high-performance EVs
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Table 1. Cont.

Component/System Description

Steering mechanisms

Allows the driver to control the direction of the vehicle

Rack-and-pinion system is the most common

Electric power steering (EPS) reduces the effort required to turn the wheels

Chassis and body design

Provides structural support and protection for the vehicle and its components

Lightweight materials like aluminum and composites are increasingly used

The Skateboard platform places the battery and motors between the axles for low CG

4. Design and Fabrication Methodologies for Educational EV Prototypes
4.1. Conceptual Design and Systems Engineering Approach

Our methodology employs a system engineering approach, emphasizing the inter-
dependence of various subsystems in an electric vehicle. This perspective is crucial for
students to understand the complexities of EV design and development.

4.1.1. Holistic Systems Engineering Approach

We begin with a comprehensive requirements analysis, considering educational objec-
tives, safety standards, and performance goals. This process involves:

• Stakeholder Analysis: Students identify and analyze the needs of various stakeholders,
including drivers, manufacturers, and regulators [71].

• System Decomposition: The EV is broken down into major subsystems (e.g., power-
train, chassis, battery management), and their interactions are mapped [72,73].

• Interface Management: Students learn to define and manage interfaces between
subsystems, crucial for successful integration.

• Trade-off Analysis: Teams conduct trade-off studies to balance competing requirements
such as performance, cost, and sustainability [74].

This approach integrates mechanical (e.g., chassis design), electrical (e.g., motor con-
trol), and software engineering (e.g., battery management algorithms) disciplines. Students
from different backgrounds collaborate, mirroring real-world multidisciplinary teams.

4.1.2. Enhancing Interdisciplinary Understanding

The interdisciplinary nature of our approach significantly enhances students’ compre-
hension of EV systems:

• Systems Thinking: Students develop a holistic view of EVs, understanding how
decisions in one area impact the entire system [75].

• Cross-Disciplinary Communication: Working in diverse teams, students learn to
communicate complex ideas across disciplinary boundaries.

• Integrated Problem-Solving: Challenges are addressed from multiple perspectives,
leading to more innovative and comprehensive solutions.

• Lifecycle Consideration: Students consider the entire lifecycle of the EV, from design
and manufacturing to use and end-of-life recycling [76].

4.1.3. Novel Educational Tools and Frameworks

The EV System Architecture Canvas is a comprehensive visual tool that allows stu-
dents to map out the entire EV system, its subsystems, and their interactions. It includes
sections for power systems, drivetrain components, control systems, and user interfaces,
helping students understand the complex interrelationships within an EV. The Require-
ment Traceability Matrix is an interactive digital tool that enables students to link design
decisions directly to specific requirements and stakeholder needs. This matrix helps in
tracking how each component or feature addresses particular design criteria or regulations,
ensuring a holistic approach to EV design [77,78].
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The Sustainability Impact Analyzer is a software tool that provides a real-time assess-
ment of the environmental impact of design choices. It considers factors such as material
selection, energy efficiency, and lifecycle emissions, allowing students to make informed
decisions that balance performance with sustainability. The Virtual Collaboration Platform
is a custom-built environment that facilitates remote teamwork and system integration
discussions. It includes features like shared 3D modeling spaces, virtual whiteboards for
brainstorming, and integrated communication tools, mirroring the collaborative nature of
real-world EV development projects.

4.1.4. Preparing Students for Real-World Challenges

Our approach prepares students for real-world EV development challenges in several ways:

• Industry-Aligned Processes: The systems engineering approach mirrors methodolo-
gies used in leading EV companies, giving students relevant experience.

• Scalable Complexity: Projects start simple and progressively increase in complexity,
allowing students to tackle more challenging aspects as their skills develop [79].

• Constraint-Based Design: Students work within realistic constraints (e.g., budget, time,
available materials), simulating real-world project conditions.

• Iterative Development: The process encourages multiple design iterations, teaching
students to refine their ideas based on testing and feedback.

• Documentation and Communication: Students learn to document their design process
and communicate technical information effectively, crucial industry skills [80,81].

• Ethical Considerations: The approach incorporates discussions on the ethical implications of
EV design decisions, preparing students for the broader impact of their work.

4.2. Advanced Modeling and Simulation Techniques

Our educational EV prototype project employs cutting-edge modeling and simulation
techniques to provide students with hands-on experience in advanced EV design and
analysis. This approach allows for iterative design improvements and a deep understanding
of EV systems before physical prototyping. Figure 6 illustrates the setup process for the
simulation, showing how initial conditions and analysis parameters are configured in the
ANSYS software for the electric vehicle prototype crash test simulation.
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4.2.1. Advanced CAD Tools and Simulation Software

We utilize a suite of industry-standard and custom-developed tools for comprehensive
EV modeling and simulation [82–84]:

• SolidWorks: For the 3D modeling of mechanical components and assemblies.
• ANSYS: For the finite element analysis (FEA) of structural components and ther-

mal management systems. Figure 7 displays the results of the crash test simulation,
showing the total deformation of the vehicle chassis and the wall after the simulated
collision. The color gradient represents the extent of deformation, with red indicating
areas of maximum displacement and blue showing minimal movement. The chassis
exhibits controlled deformation in the front crumple zone, while the passenger com-
partment (shown in cooler colors) maintains its structural integrity, demonstrating the
effectiveness of the safety design.

• MATLAB/Simulink: For system-level modeling and control algorithm development.
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4.2.2. Electric Powertrain Design and Simulation

The electric powertrain design and simulation process is a core component of our
methodology, emphasizing key EV-specific concepts:

• Motor Selection and Modeling: Students use MATLAB/Simulink to model various
motor types (e.g., PMSM, induction motors) and select the optimal motor for their
design based on efficiency, torque–speed characteristics, and cost [85].

• Battery Pack Design: Using our custom Battery Pack Designer tool, students model bat-
tery cell arrangements, considering factors like capacity, voltage, thermal management,
and pack geometry [86].

• Power Electronics Simulation: LTspice is used to design and simulate power electronic
circuits, including motor drives and DC-DC converters.

• Energy Management Strategies: Students develop and test various energy manage-
ment algorithms using Simulink, optimizing for factors like range, performance, and
battery longevity [87].

• Regenerative Braking Simulation: A custom Simulink model allows students to design
and optimize regenerative braking systems, analyzing energy recovery under various
driving conditions.
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Figure 8 presents a 3D CAD model of the electric vehicle prototype’s body design,
showcasing the overall structure and form of the vehicle as conceived in the design phase.
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4.2.3. Innovative Tools and Methods for System Optimization

We have developed several innovative tools and methods specifically for educa-
tional purposes:

• EV Performance Predictor: A machine learning-based tool that predicts EV performance
based on input parameters, helping students understand the impact of design choices.

• Virtual Drive Cycle Simulator: An immersive simulator that allows students to test
their EV designs in various virtual environments and driving conditions.

• Component Library and Parametric Design Tool: A database of EV components with a
parametric design interface, enabling the rapid exploration of design alternatives [88,89].

• Multi-Objective Optimization Framework: A custom framework that guides students
through the process of balancing competing objectives (e.g., range, cost, performance)
using advanced optimization techniques.

• Real-Time Co-Simulation Platform: A platform that combines physical hardware with
virtual models, allowing students to test control algorithms on a mix of real and
simulated components.

4.3. Sustainable Materials and Modular Design for Educational Flexibility

Our approach to material selection and design in the educational EV prototype empha-
sizes both sustainability and flexibility, which are crucial for environmental consciousness
and effective learning. The sustainable material selection methodology includes:

• Lifecycle Assessment (LCA) Integration: Students use simplified LCA tools to evaluate
the environmental impact of materials across their entire lifecycle.

• Material Sustainability Index: A custom-developed index rates materials based on
factors such as recyclability, energy intensity of production, and scarcity.

• Local Sourcing Emphasis: Priority is given to locally sourced materials to reduce
transportation emissions and support local economies.

• Biomimicry Principles: Students are encouraged to explore bio-inspired materials and
designs, learning from nature’s sustainable solutions.

• Recycled and Upcycled Materials: The incorporation of recycled materials is manda-
tory in non-critical components, teaching students about circular economy principles.
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This comprehensive approach ensures that students consider sustainability at every
stage of the design process. Figure 9 shows the simplified geometry model used for simula-
tion purposes, representing a more streamlined version of the vehicle design optimized for
computational analysis.
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4.3.1. Sustainable Material Selection Methodology

We have developed a comprehensive methodology for selecting sustainable materials:

• Lifecycle Assessment (LCA) Integration: Students use simplified LCA tools to evaluate
the environmental impact of materials across their entire lifecycle [90–92].

• Material Sustainability Index: A custom-developed index that rates materials based
on factors such as recyclability, energy intensity of production, and scarcity.

• Local Sourcing Emphasis: Priority is given to locally sourced materials to reduce
transportation emissions and support local economies.

• Biomimicry Principles: Students are encouraged to explore bio-inspired materials and
designs, learning from nature’s sustainable solutions.

• Recycled and Upcycled Materials: The incorporation of recycled materials is manda-
tory in non-critical components, teaching students about circular economy principles.

4.3.2. Modular Design Approach

Our modular design approach facilitates learning and experimentation:

• Standardized Interfaces: All major components use standardized interfaces, allowing
for the easy swapping and testing of different designs.

• Plug-and-Play Subsystems: Key subsystems (e.g., battery packs, motor controllers) are
designed as self-contained units that can be easily replaced or upgraded.

• Scalable Architecture: The EV prototype’s architecture is scalable, allowing students
to start with basic configurations and progressively add complexity [93,94].

4.3.3. Educational Value Enhancement

The combination of sustainable material selection and modular design significantly
enhances the educational value; Figure 10 illustrates the fully assembled suspension system
of the electric vehicle prototype, demonstrating the integration of various components such
as springs, dampers, and linkages, and Figure 11 depicts the process or result of mounting
the wheels onto the chassis of the electric vehicle prototype, showcasing an important step
in the physical assembly of the vehicle.
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• Hands-on Sustainability Learning: Students directly experience the challenges and
benefits of sustainable design.

• Iterative Learning: The modular approach allows students to easily test different
configurations, promoting experiential learning.

• Systems Thinking: Students learn to consider both component-level sustainability and
system-level performance.

• Future-Proofing Skills: This approach prepares students for the growing emphasis on
sustainability in the automotive industry.
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4.4. Safety Integration and Validation Protocols

The security feature integration method in our educational EV prototype project is
comprehensive and multi-layered:

1. Layered Safety Architecture: We implement multiple, redundant safety systems that
mimic industry best practices. This includes primary, secondary, and tertiary safety
measures for critical systems like the battery management system, drive controls, and
passenger protection features.

2. FMEA in Design Process: Failure Mode and Effects Analysis is integrated throughout
the design process. Students systematically identify potential failure modes, their
causes, and effects, then develop mitigation strategies. This proactive approach helps
anticipate and address safety issues before they occur.
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3. Smart Battery Management System (BMS): Our custom-designed BMS includes ad-
vanced safety features such as:

• Real-time cell monitoring for voltage, temperature, and current;
• Predictive fault detection using machine learning algorithms;
• Automatic cell balancing to prevent overcharging and extend battery life;
• Thermal management with active cooling systems.

4. High-Voltage Isolation System: This system ensures safe handling of high-voltage
components and includes:

• Continuous insulation monitoring;
• Automatic power disconnection in case of faults;
• Clearly marked high-voltage zones and safety interlocks.

5. Active Safety Systems Integration: Students implement and test various active safety
systems, including:

• Traction control and stability control systems;
• Emergency braking systems with pedestrian detection;
• Lane departure warning and assistance systems.

By incorporating these advanced safety features, students gain hands-on experience
with state-of-the-art EV safety technologies while ensuring the prototype meets rigorous
safety standards.

4.4.1. Safety Education and Implementation

Safety considerations are woven throughout the curriculum:

• Safety-First Design Philosophy: All design decisions are evaluated through a safety
lens first [95].

• Regular Safety Workshops: Conducted by industry experts to keep students updated
on the latest EV safety standards and practices [96].

• Virtual Reality Safety Simulations: Students experience potential safety hazards and
learn proper procedures in a safe, virtual environment.

• Design for Safety Competitions: Regular challenges where student teams compete to
design the safest solutions for given EV subsystems.

4.4.2. Validation and Testing Approach

Our validation and testing protocols are comprehensive and student-involved:

• Student-Developed Test Plans: Under guidance, students develop detailed test plans
for each subsystem and the integrated prototype.

• Phased Testing Approach: Testing progresses from component-level to subsystem-
level to full vehicle integration tests.

• Hardware-in-the-Loop (HIL) Testing: Extensive use of HIL testing for electronic and
control systems before physical integration.

• Environmental Chamber Testing: Students conduct tests in a custom environmental
chamber to validate performance under various conditions.

• Non-Destructive Testing Training: Students learn and apply various NDT techniques
like ultrasonic testing and thermography [97,98].

4.4.3. Novel Safety Features and Testing Methods

We have developed several innovative safety features and testing methods:

• AI-Enhanced Fault Prediction System: A machine learning model that predicts poten-
tial faults based on real-time sensor data.

• Modular Safety Interlock System: A reconfigurable system allowing students to design
and test various safety interlock strategies.

• Augmented Reality-Assisted Assembly Verification: An AR system that guides and
verifies the correct assembly of safety-critical components.
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• Biometric Driver Monitoring System: An advanced system to monitor driver alertness
and take appropriate safety actions.

• Gamified Safety Protocol Adherence: A point-based system rewarding students for
consistently following safety protocols during the project.

• By implementing these comprehensive approaches to sustainable design, modularity,
safety integration, and validation, we ensure that students gain practical, industry-
relevant experience while prioritizing safety and sustainability in EV development.

5. Challenges and Opportunities in Educational EV Prototype Projects
5.1. Resource Limitations and Budget Constraints

One of the primary challenges faced by educational institutions and student teams
working on EV prototype projects is the limitation of resources and budget constraints.
Developing an EV prototype requires significant financial investment in components, ma-
terials, and manufacturing processes. Educational institutions may have limited funding
allocated for such projects, which can restrict the scope and scale of the prototype develop-
ment. To overcome these challenges, student teams can explore alternative funding sources,
such as grants, sponsorships, and partnerships with industry or government organizations.
They can also focus on cost-effective design choices, such as using off-the-shelf components,
repurposing existing resources, and optimizing the design for manufacturing and assembly.

5.2. Technical Complexities and Skill Gaps

EV prototype projects involve a wide range of technical complexities, from battery
management systems and power electronics to advanced materials and manufacturing
techniques. Students may face challenges in understanding and applying these complex
concepts, especially if they have limited prior exposure to EV technologies. Additionally,
the rapid pace of technological advancement in the EV industry can make it difficult for
students and educational institutions to stay current with the latest developments.

To bridge these skill gaps, educational institutions can offer targeted training programs,
workshops, and seminars on EV technologies and their applications [99]. They can also
encourage students to participate in online courses, webinars, and conferences to gain
exposure to cutting-edge research and industry practices. Collaboration with industry
experts and mentors can also help students navigate technical complexities and develop
the necessary skills for success in EV prototype projects.

5.3. Time Management and Project Planning

Effective time management and project planning are critical for the successful comple-
tion of educational EV prototype projects. Students must balance their academic course-
work, extracurricular activities, and personal commitments with the demands of the project.
Poor time management can lead to delays, missed deadlines, and suboptimal project
outcomes [100]. To mitigate these challenges, student teams should adopt a structured
approach to project planning and execution. This includes breaking down the project into
smaller, manageable tasks, setting realistic timelines and milestones, and assigning clear
roles and responsibilities to team members. Regular progress reviews and open commu-
nication among team members can help identify and address potential bottlenecks and
ensure the project stays on track.

5.4. Collaboration with Industry Partners

Collaboration with industry partners can provide valuable opportunities for edu-
cational EV prototype projects, but it also presents challenges. Industry partners can
offer technical expertise, access to resources and facilities, and real-world insights into
EV development processes. However, aligning the goals and expectations of educational
institutions and industry partners can be difficult, as they may have different priorities and
constraints. To foster successful collaborations, educational institutions should establish
clear communication channels and partnership agreements with industry partners. These
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agreements should outline the scope of the collaboration, the roles and responsibilities of
each party, and the expected outcomes and deliverables. Regular meetings and progress
updates can help ensure that the collaboration remains aligned with the project’s objectives
and that any issues or concerns are addressed promptly.

5.5. Incorporating Emerging Technologies and Trends

The EV industry is characterized by rapid technological advancements and emerging
trends, such as autonomous driving, wireless charging, and vehicle-to-grid integration. In-
corporating these emerging technologies and trends into educational EV prototype projects
can provide students with valuable exposure to cutting-edge developments and prepare
them for future careers in the industry. However, integrating these technologies can also
present challenges, as they may require additional technical expertise, resources, and infras-
tructure. Educational institutions should carefully evaluate the feasibility and relevance
of incorporating emerging technologies into their EV prototype projects, considering fac-
tors such as student readiness, curriculum alignment, and long-term sustainability. To
address these challenges, educational institutions can partner with technology providers,
research organizations, and industry experts to gain access to the necessary knowledge
and resources. They can also encourage students to explore these emerging technolo-
gies through independent research projects, capstone assignments, and participation in
innovation competitions.

6. Future Directions and Research Opportunities

The future of educational EV prototype development holds exciting possibilities that
could revolutionize both engineering education and sustainable transportation. By integrat-
ing cutting-edge technologies and innovative approaches, we can create a new paradigm
for hands-on learning and vehicle design. One promising avenue is the incorporation of
biometric sensors and AI-driven adaptive systems, which could personalize the learning
experience and provide real-time feedback based on students’ cognitive states and per-
formance. This could be complemented by immersive virtual reality environments that
enable collaborative design across geographical boundaries, allowing students to work
together on complex prototypes in a shared virtual space. Pushing the boundaries of mate-
rials science, we envision the use of bioengineered components and self-healing materials
inspired by natural processes, potentially leading to more sustainable and durable EV de-
signs. The application of quantum computing algorithms could dramatically accelerate the
optimization of EV systems and enable the discovery of novel materials for next-generation
batteries and lightweight structures. Furthermore, exploring the use of swarm robotics
for modular EV assembly could result in highly adaptable prototypes that can reconfigure
themselves for different terrains or use cases. These forward-thinking approaches not only
enhance the educational value of EV prototypes but also have the potential to drive innovation
in the broader field of electric vehicle design and manufacturing. By pursuing these research
directions, educational institutions can provide students with unparalleled learning experiences
while contributing to groundbreaking advancements in sustainable transportation technology.

7. Conclusions

The design and fabrication of educational electric vehicle (EV) prototypes have
emerged as a powerful approach to preparing engineering students for careers in the
rapidly growing EV industry. This comprehensive review has explored the key compo-
nents and systems in modern EVs, the design and fabrication methodologies employed
in educational EV prototype projects, the impact of these projects on engineering educa-
tion, the challenges and opportunities they present, and the future directions and research
opportunities in this field.
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Key findings of this review include:

• Hands-on learning experiences through EV prototype projects help students develop
practical skills, problem-solving abilities, and a deep understanding of EV technologies.

• Engaging in the design and fabrication of EV prototypes exposes students to real-world
engineering challenges and enables them to apply theoretical concepts to practical
situations.

• Educational EV prototype projects foster interdisciplinary collaboration, teamwork, and
project management skills, which are highly valued by employers in the EV industry.

The findings of this review have significant implications for engineering education
and the EV industry. Educational institutions that integrate EV prototype projects into
their curricula are better positioned to produce graduates with the knowledge, skills, and
experience needed to excel in the EV sector. By aligning their programs with industry
needs and providing students with hands-on learning opportunities, these institutions
can contribute to the development of a highly skilled and innovative workforce for the
EV industry. Furthermore, the review has identified several challenges and opportunities
associated with educational EV prototype projects, such as resource limitations and budget
constraints, technical complexities and skill gaps, and the need for collaboration with in-
dustry partners. Addressing these challenges and leveraging the opportunities will require
concerted efforts from educational institutions, industry stakeholders, and policymakers.
By working together to support and enhance educational EV prototype projects, these
stakeholders can help bridge the gap between academia and industry, driving innovation
and progress in the EV sector.

The future directions and research opportunities outlined in this review provide
a roadmap for the continued evolution and improvement of educational EV prototype
projects. Key areas for future research and development include integrating advanced EV
technologies, fostering collaborative projects with industry and research institutions, ex-
panding EV prototype projects to other educational levels, conducting longitudinal studies
on the impact of these projects, and addressing diversity and inclusion in EV engineering
education. This comprehensive review has demonstrated the vital role of educational
EV prototype projects in preparing engineering students for careers in the EV industry
and driving innovation in the transportation sector. The insights and recommendations
provided in this review can inform the development of future research and educational
initiatives, helping to ensure that engineering education remains aligned with the evolv-
ing needs of the EV industry. As the world continues to transition towards sustainable
transportation solutions, the importance of educational EV prototype projects will only con-
tinue to grow. By investing in these projects and supporting the development of a skilled
and diverse workforce for the EV industry, educational institutions, industry partners,
and policymakers can contribute to a more sustainable, innovative, and equitable future
for transportation.
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