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Abstract: The modern Internet of Autonomous Vehicles (IoVs) has enabled the development of
autonomous vehicles that can interact with each other and their surroundings, facilitating real-time
data exchange and communication between vehicles, infrastructure, and the external environment.
The lack of security procedures in vehicular networks and Controller Area Network (CAN) protocol
leaves vehicles exposed to intrusions. One common attack type is the message injection attack, which
inserts fake messages into original Electronic Control Units (ECUs) to trick them or create failures.
Therefore, this paper tackles the pressing issue of cyber-attack detection in modern IoV systems,
where the increasing connectivity of vehicles to the external world and each other creates a vast
attack surface. The vulnerability of in-vehicle networks, particularly the CAN protocol, makes them
susceptible to attacks such as message injection, which can have severe consequences. To address this,
we propose an intelligent Intrusion detection system (IDS) to detect a wide range of threats utilizing
machine learning techniques. However, a significant challenge lies in the inherent imbalance of
car-hacking datasets, which can lead to misclassification of attack types. To overcome this, we employ
various imbalanced pre-processing techniques, including NearMiss, Random over-sampling (ROS),
and TomLinks, to pre-process and handle imbalanced data. Then, various Machine Learning (ML)
techniques, including Logistic Regression (LR), Linear Discriminant Analysis (LDA), Naive Bayes
(NB), and K-Nearest Neighbors (k-NN), are employed in detecting and predicting attack types on
balanced data. We evaluate the performance and efficacy of these techniques using a comprehensive
set of evaluation metrics, including accuracy, precision, F1_Score, and recall. This demonstrates how
well the suggested IDS detects cyberattacks in external and intra-vehicle vehicular networks using
unbalanced data on vehicle hacking. Using k-NN with various resampling techniques, the results
show that the proposed system achieves 100% detection rates in testing on the Car-Hacking dataset
in comparison with existing work, demonstrating the effectiveness of our approach in protecting
modern vehicle systems from advanced threats.

Keywords: car hacking; Internet of Vehicles; imbalanced data; intrusion detection systems; RANDOM
over-sampling (ROS); NearMiss; machine learning

1. Introduction

Recently, machine learning models have had numerous applications across various
fields, including healthcare, finance, transportation, and industries [1–4]. Some common
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applications of machine learning include image recognition, fraud detection, and cyber-
security. Cybersecurity is essential to detect attacks on the Internet of Things (IoT) and
Industrial IoT systems [5–7]. Multiple learning methods are evaluated using dataset attack
detection scenarios in various applications such as SDN, IoT, and Cloud. The increased
reliance on computers and the internet has made cybersecurity a growing source of concern.
Building effective Intrusion Detection Systems is necessary to identify cyberattacks, and
the foundation for doing so is the ability to analyze traffic flow data swiftly and efficiently,
referred to here as cybersecurity data in modern communication systems.

Modern cars have evolved into network-controlled vehicles, including Autonomous
vehicles, vehicle-to-grid, and grid-to-vehicle, as a result of the rapid growth of information
technology and IoV technologies [8]. Intra-vehicle networks (IVNs) and external networks
are common components of IoV systems. The primary system of IVNs that permits com-
munication between Electronic Control Units (ECUs) to carry out activities and implement
functionality is a Controller Area Network (CAN) bus. In contrast, External vehicle connec-
tions enable communication linking intelligent cars and other IoV units, such as roadside
infrastructure, road users, and roadside units [9–11].

Due to its many advantages over conventional cars, autonomous electric vehicles
(AEVs) are the future of transportation [8]. AEVs use cutting-edge technologies such
as radar, cameras, satellite navigation systems, artificial intelligence, and the internet to
navigate roads safely and effectively without requiring human intervention. They connect
with other vehicles, infrastructure, and cloud systems via a variety of wireless technologies,
including 4G and 5G networks, to enable real-time information transmission, allowing
autonomous vehicles to monitor and adapt to their environment, thereby increasing road
safety, traffic management, and the overall driving experience. Additionally, features like
automated parking, remote control, and real-time traffic alerts add to the convenience of
AEVs. Due to their reliance on remote control and internet connectivity, AEVs may present
security problems [12–19]. These threats include software flaws, sensor spoofing, remote
exploitation of software systems and wireless communication protocols, and unauthorized
access to vital vehicle functions. Car companies must adopt safe connectivity practices to
reduce intrusion behavior, as shown in Figure 1.
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Autonomous vehicles, which are sometimes referred to as self-driving automobiles,
have enormous growth potential in the automotive industry, as shown in Figure 2. Several
automakers are developing self-driving vehicles, such as Tesla, Audi, Waymo, General
Motors, Mercedes-Benz, and Nissan [20,21]. Therefore, self-driving technology has been
a major research topic recently. Because it can revolutionize transportation, it is regarded
with both excitement and caution. Among the many benefits of self-driving cars is their
ability to decrease human error and increase traffic efficiency. By providing a means of
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independent transportation that eliminates the need for driving, these cars can also benefit
older people and those with visual or hearing problems [22–26].
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Figure 2. The forecast for the global market of self-driving cars with increase 25% yearly.

Because it enables more advanced and focused attacks on automobiles, machine
learning has grown in popularity as a technique in the car hacking industry. Machine
learning algorithms can find trends and weaknesses in automotive systems through the
analysis of vast volumes of data that human analysts might not see right away. This may
result in the creation of more potent hacking strategies, such as making use of common
vulnerabilities in hardware or software. Furthermore, malware that is more sophisticated
and resistant to detection by conventional security measures can be created via machine
learning. Automakers and cybersecurity experts must keep abreast of the most recent
developments to defend against the growing threat posed by machine learning-based
automotive hacking. To safeguard contemporary industrial control systems from sophisti-
cated severe attacks, it is important to provide an attack Detection System in automobile
systems employing machine learning. On balanced datasets, however, machine learning
models complete classification. Unfortunately, car-hacking datasets are unbalanced by
nature. Therefore, imbalanced intrusion data classes are a considerable challenge due to
the imbalanced class distribution deceiving algorithms from precisely assigning a trivial
attack class. This work aims to resolve the imbalanced car-hacking data problem using
different handling imbalanced pre-processing procedures and then to decide and predict
the car attack. The experimental results proved that the performance of the proposed frame-
work is assessed based on different metrics of accuracy, precision, and recall in comparing
prevailing algorithms.

Machine learning models perform best when the number of samples in each class
is roughly equal. This is so since many algorithms aim to minimize errors and increase
accuracy. However, in the case of imbalanced data, one can still predict the majority class
with a relatively high degree of accuracy, but it will not be able to capture the minority
class, which is typically the main reason for building the model in the beginning. There are
many methods of handling imbalanced data, as follows:

• NearMiss: A method of under-sampling. Using a distance will equalize the majority
class with the minority class rather than resampling the minority class;

• Random over-sampling (ROS): A commonly used method for handling highly imbal-
anced datasets. It entails including additional instances from the minority class;

• Tomek links: Data can be cleaned up or under-sampled using Tomek connections.
Tomek bases his data-cleaning method on the oversampled training set.

In brief, this paper presents an efficient Car Attack detection framework for handling
imbalanced data problems in modern Internet of Autonomous Vehicles (IoV) systems. The
proposed framework combines the ML method and imbalanced data techniques to fully
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increase system accuracy of attack detection and classification. The performance of the
proposed framework is evaluated through a case study of the Car-Hacking dataset for
car attack detection in the IoV applications in the context of a smart city. The essential
contributions of this work can be summarized as follows:

• An efficient car attack detection framework for Vehicle systems is developed to help
an asset in real-time intrusion detection. The proposed framework utilizes a combina-
tion of imbalanced techniques and Machine Learning models such as LR, LDA, NB,
and k-NN effectively. The proposed hybrid IDS framework is endorsed using a car
hacking dataset;

• From the experimental results, different resampling techniques such as NearMiss, ROS,
and Tom-Links are used for pre-processing the car hacking dataset, which improves in
converting imbalanced datasets into balanced datasets;

• The suggested IDS has shown 100% detection rates on the Car-Hacking dataset, a
widely used benchmark IoV security dataset using k-NN with ROS and TomLinks
Resampling Techniques. This demonstrates how well the suggested IDS detects
cyberattacks in external and intra-vehicle networks using unbalanced data on vehicle
hacking with imbalanced car hacking data.

The remainder of this paper is planned as follows. Section 2 presents the Materials
and methods that are used, while Section 3 presents the details of the proposed attack
prediction in the IoV systems framework. The proposed High-Level IDS-IoV Framework
for Car Attacks Prediction is provided in Section 4, while Section 5 discusses the used
dataset, evaluation metrics, and the analysis of the results. Finally, the conclusions of this
paper are given in Section 6.

2. Materials and Methods
2.1. Overview of Car Hacking

Recently, vehicle system security has gradually become a key matter due to the
expanded reliance on vehicle systems particularly with the advance of the Internet of
Vehicles (IoV) in smart cities. In [10], their effort aims to defend both internal and external
vehicular networks by creating an IDS that can identify different forms of threats. Figure 3
depicts the design of an IDS-protected vehicle as well as the usual assault scenario. By
transmitting malicious traffic packets, Cybercriminals can use wireless interfaces to launch
external assaults on external vehicle networks and the On-Board Diagnostics II (OBD II)
interface to launch internal attacks on IVNs. Thus, both IVNs and external networks should
use the recommended IDS.
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On the Car-Hacking dataset and the CICIDS2017 dataset, two commonly used public
benchmark IoV security datasets, the suggested IDS has exhibited above 99.25% detection
rates and F1_Scores in the trials. This demonstrates how well the suggested IDS works to
identify cyberattacks in both internal and external vehicular networks [10]. To detect and
predict car attacks in smart city systems, it is prudent that we build efficient Car Attack



World Electr. Veh. J. 2024, 15, 356 5 of 21

Detection Systems to efficiently analyze and detect car attack data. The development of
CNN-based IDS for automotive networks was the subject of several earlier publications.

A report [11] reveals that the vehicle industry has experienced a significant increase in
cyberattacks on cars in the past decade. The frequency of attacks has increased by more
than 200% within three years, with most attacks carried out remotely. There is an estimated
loss for the auto industry that could reach $505 billion by 2024. These findings highlight
the urgent need for robust cybersecurity measures in the automotive industry to protect
against cyber threats and ensure the safety and privacy of drivers and passengers.

Mehedi et al. [8] presented the PLeNet approach for deep transfer learning-based
in-vehicle network intrusion detection. On the car hacking dataset, the P-LeNet model
received a good F1_Score above 97%. To solve several time-series data analytics difficulties,
Authors in [12] suggested a one-dimensional CNN (1D-CNN) based IDS for intra-vehicle
intrusion detection. To identify attacks on IVNs, Song et al. [13] suggested a deep CNN
(DCNN) based IDS model utilizing reduced InceptionResnet. The Car-Hacking dataset
demonstrates the great accuracy of the DCNN model. To detect security risks against
in-vehicle networks early on, the study in [14] suggests using a deep learning architec-
ture called DeepSecDrive. Lightweight, effective, and comprehensible units are used in
the design of the framework to improve feature extraction and interpretability. The ex-
perimental results demonstrate that DeepSecDrive outperforms current state-of-the-art
detection approaches in terms of effectiveness and durability against real-world IVN at-
tacks. Khan et al. [15] introduced a multi-stage intrusion detection framework to identify
intrusions from ITSs with a low rate of false alarms. Similarly, Ashraf et al. [16] presented
a deep learning-based Intrusion Detection System (IDS) specifically designed for ITS to
detect suspicious network activity in In-Vehicles Networks (IVN), vehicles-to-vehicles
(V2V) communications, and vehicles-to-infrastructure (V2I) networks. The vulnerability of
autonomous vehicles to hacking has been acknowledged by legal experts and authors. The
paper [17] discusses the development of self-driving cars and self-parking systems that
enhance safety and convenience using advanced electronics, information communication,
and function control technologies. Additionally, it proposes a research methodology based
on the Enhanced Security Model in Self-Driving Cars to defend against hacking attacks on
smart cars, focusing on Availability Attacks, Man-in-the-middle Attacks, Imperial Password
Use, and Inclusive Access Control attacks.

In IoT edge device implementations, a federated learning-based intrusion detection
system (FL-IDS) is presented in [18] to improve the security of automotive networks. By
adopting local learning, where devices only communicate model updates with an aggregate
server, the FL-IDS system preserves data privacy. After that, the server creates an improved
detection model. Additionally, the FL-IDS system includes a detection model that uses
deep learning and machine learning classifiers to achieve overall accuracy of 94% and 99%,
as well as loss of 0.28 and 0.009 for the Car-Hacking and NSL-KDD datasets, respectively.
The efficacy of an intrusion detection system that combines the LightGBM algorithm for
multiclass attack categorization in automotive CAN networks with an artificial neural
network for feature extraction is demonstrated in [19], which achieves accuracy, precision,
recall, F1_Scores, and an AUC-ROC score of 99.99%. A clear and organized comparison of
the related works, highlighting their main advantages and disadvantages, is tabulated and
explored in Table 1.

Proposing an IoV-based Intrusion Detection System (IoV_IDSs) using machine learning
is an essential need to protect modern vehicle systems from advanced severe attacks. Nev-
ertheless, machine learning models accomplish classification nicely on balanced datasets.
Unluckily, car-hacking datasets are naturally imbalanced. Therefore, imbalanced class
distribution causes algorithms to incorrectly label the small attack class, which makes
imbalanced car-hacking classification a severe issue. This paper aims to resolve the im-
balanced car hacking data problem using different imbalanced pre-processing procedures
such as NearMiss, ROS, and TomLinks and then to decide and predict the kind of attack
using ML models such as LR, LDA, NB, and k-NN.
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Table 1. Advantages and disadvantages of related work on vehicle system security.

Study Approach Advantages Disadvantages

[10]
IDS for both internal and external

vehicular networks using
CNN-based IDS

High detection rate (above 99.25%)
on Car-Hacking and CICIDS2017

datasets—comprehensive protection
for internal and external networks

Potential complexity in
implementing CNN-based

IDS—may require significant
computational resources

[11] Analysis of cyber-attack trends in
the automotive industry

Highlights the increasing frequency
and impact of

cyberattacks—emphasizes the need
for robust cybersecurity measures

Does not propose a specific IDS
solution—mainly descriptive,

lacking actionable recommendations

[8]
PLeNet approach using deep

transfer learning for in-vehicle
network intrusion detection

High F1_Score (above 97%) on
Car-Hacking dataset—effective use

of transfer learning for
improved performance

Focused solely on in-vehicle
networks—may not address

external threats comprehensively

[12] 1D-CNN-based IDS for
intra-vehicle intrusion detection

Effective for time-series data
analytics—high accuracy in

identifying IVN attacks

Limited to intra-vehicle network
protection—may not scale well to
larger datasets or external threats

[13]
Deep CNN (DCNN) using

reduced InceptionResnet for IVN
attack detection

High accuracy with Car-Hacking
dataset—advanced model

architecture for improved detection

Potentially high computational
requirements—focused on IVN, not

addressing external networks

[14]
DeepSecDrive: deep learning

architecture for early IVN
attack detection

Lightweight, effective, and
interpretable—outperforms

state-of-the-art detection approaches

Limited to in-vehicle
networks—may require specialized

knowledge for implementation

[15] Multi-stage IDS framework for
ITSs with low false alarm rate

Low rate of false
alarms—multi-stage approach
enhances detection accuracy

Complexity in multi-stage
implementation—focused on ITSs,

not broader vehicular networks

2.2. Car-Hacking Dataset

The Car-Hacking dataset includes DoS attacks, fuzzy attacks, spoofing the drive gear,
and spoofing the RPM gauge. Figure 4 shows the class distribution of the car hacking_5%
dataset. The detailed description of the dataset can be as follows [13]:

1. DoS Attack: CAN ID messages ‘0000’, which are the most common messages, are
injected every 0.3 ms;

2. Fuzzy Attack: Every 0.5 ms, injecting messages with completely random CAN ID and
DATA values;

3. Spoofing Attack (RPM/gear): Sending specific CAN ID messages pertaining to gear
and RPM data every millisecond. The data attributes are Timestamp, CAN ID, DLC,
DATA{0}, DATA{1}, DATA{2}, DATA{3}, DATA{4}, DATA{5}, DATA{6}, DATA{7}, Flag.

1. Timestamp: recorded time (s);
2. CAN ID: identifier of CAN message in HEX (ex. 043f);
3. DLC: number of data bytes, from 0 to 8;
4. DATA {0~7}: data value (byte);
5. Flag: T or R, T represents an injected message, while R represents a normal message.

To examine the proposed framework, several performance metrics, such as accuracy,
precision, recall, and F-measure, are used. These metrics are calculated from the confusion
matrix for attack detection as illustrated in Table 2 as follows [27].

Table 2. Confusion Matrix (CM) for Attack Detection.

Predicted Normal Predicted Attack

Actual Normal True Positive (TP) False Negative (FN)
Actual Attack False Positive (FP) True Negative (TN)

Accuracy =
TP + TN

TP + FP + FN + TN
(1)
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Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1−score = 2 × Precision × Recall
Precision + Recall
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3. Proposed Attack Detection Framework

In this work, an effective methodology for automatically determining the state of
assaults on vehicle systems is presented in this paper. The suggested intrusion architecture
is illustrated in Figure 5 utilizing various machine learning techniques implemented on the
unbalanced datasets, which are the automobile hacking dataset in IoV systems. The sug-
gested framework includes several crucial steps to accomplish the car attacking detection
system as follows:

• Phase 1: Data Preparation and Pre-processing

In this phase, the focus shifts to addressing the imbalance present in the industrial
intrusion data through the utilization of resampling techniques. Specifically, methods
such as NearMiss, ROS, and TomLinks are employed to rebalance the distribution of
data instances across different classes. By implementing these techniques, the aim is to
mitigate the challenges posed by imbalanced datasets, where certain classes are significantly
underrepresented compared to others. NearMiss focuses on selecting a subset of majority
class samples that are closest to minority class instances; ROS randomly replicates minority
class samples to match the size of the majority class, while TomLinks identifies and removes
overlapping instances between classes. Through the application of these resampling
techniques, the imbalance within the data is effectively addressed, laying a solid foundation
for subsequent processing and analysis within the proposed framework.

• Phase 2: Training and Testing of Selected Model

The pre-processed dataset is split 70–30 to begin the training phase of choosing and
fine-tuning a specific machine learning algorithm. Random selections of training car
hacking data are then sub-sampled for the machine learning algorithms, and performance
evaluation metrics are applied to estimate the suggested framework.

• Phase 3: Car Attack Detection and Classification
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In this phase, the testing car attack data are fed to the tuned machine learning algo-
rithms to detect all the input real data into one of two types: Normal (negative) or attack
(positive). To conclude, the comprehensive performing evaluation for every single machine
learning algorithm will be evaluated based on classification-based performance metrics
such as accuracy, precision, recall, and F1_Score.
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The detailed pseudocode of the final proposed IDS Framework, where this framework
is structured to follow the three specified phases, ensuring the intrusion data are properly
handled, the model is trained and tested, and the results are evaluated effectively, can be as
in Algorithm 1:

Algorithm 1. Car Hacking Detection Framework using ML

Input: Raw car hacking dataset (D) with features (X) and target (Y)
Output: Classify Car Hacking in IoVs

1. Import Libraries:
- Import necessary data manipulation libraries (e.g., pandas, numpy)
- Import resampling techniques (NearMiss, RandomOverSampler, TomekLinks)
2. Load Dataset: Load the raw car hacking dataset (D) into a DataFrame
3. Split Features and Target: Split (D) into features (X) and target (Y)
4. Apply Resampling Techniques: (NearMiss, RandomOverSampler, TomekLinks)
5. Split Dataset: Use ‘train_test_split’ to divide into a training set and a testing set. (Parameters:
test_size = 0.3, random_state = 42)
6. Train/Test Classifier: Fit the classifier on the training/testing data
7. Evaluate Model: Generate evaluation metrics

End of Algorithm

From the algorithm above, the data are pre-processed and then the resampling tech-
nique library is utilized for the class imbalance in the dataset. These techniques are used
to balance the dataset. Then, the dataset is loaded into a DataFrame for processing and
analysis. After that, the resampling technique is applied to handle the imbalanced data in
the dataset. The machine learning is trained on the dataset, and then the assessment metrics
are used to evaluate the proposed algorithm. This pipeline provides a comprehensive
approach to handling a car hacking dataset, from initial data loading and pre-processing to
model evaluation, ensuring that the model is trained on balanced data and its performance
can be reliably assessed.

4. Suggested High-Level IDS-IoV Framework for Car Attack Prediction

The suggested framework for car attack prediction is built based on resampling algo-
rithms and machine learning to generate possible attacks for real-time IoV purposes. The
suggested frame employs a blend of Resampling Techniques (RT) and Machine Learn-
ing (ML) effectively. At this juncture, we offer a high-level IDS-IoV Framework for
attack predictions.

The proposed methodology aims to help vehicle security engineers anticipate automo-
tive assaults in real-world circumstances. This may be accomplished by using the Internet
of Vehicles (IoV), Cloud Computing, and machine learning for real-time monitoring and
safeguarding of vehicle connections; thus, this advice informs the effectiveness of protec-
tion. The proposed framework comprises three crucial stages that work together to achieve
system objectives. Each stage provides a distinct goal and action that works in harmony
with the others. The three phases of the recommended framework are shown in Figure 6
as follows:

• Stage 1: Vehicle systems, such as vehicle hacking systems, transmit data collection and
acquisition to the cloud system for upcoming processing activities on cloud servers
for the analytics process;

• Stage 2: After the data were gathered, they were sent to cloud servers for processing
and storage so that they could be organized for the study of dangerous online activity
data. From there, it was possible to forecast automobile or vehicle attacks, as shown
more simply in Figure 3;

• Stage 3: To check for any threats in the context of a smart city, vehicle security experts
employ a cloud-based dashboard support and monitoring system. The engineers will
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have access to the cloud-based AI prediction system’s information, and they will be
able to make appropriate judgments about real-time vehicle attack scenarios.
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From the above scenario, the designed method merges the power of cloud computing
and AI to monitor and predict vehicle attacks in a smart city. By collecting data from
various sources, processing them in the cloud, and using AI to identify patterns and
potential threats, the system can provide real-time insights to security experts. This allows
for quick and effective responses to potential threats, enhancing the overall security of the
smart city.

5. Results Analysis and Assessment

The obtained results for applying machine learning methods for car hacking data. For
each type of car attack. Determining if machine learning may be used as a discriminator of
malicious car attacks is the aim of this work. It is possible to measure feasibility in terms
of powerful recall and precision. It is capable of precisely categorizing both acceptable
and fraudulent information with a low rate of misclassifications. To make sure that the
comparatively high number of normal cases does not distort our overall performance
findings, we compute precision, recall, and F1_Score for each class.

A training set (70%) and a testing set (30%) were created for the automobile hacking
dataset. Both the training and test datasets underwent pre-processing and standardization.
Several ML models, including LR, LDA, NB, and k-NN, were then trained using a resam-
pled version of the training dataset. The ML models were evaluated using the test dataset.
Different classifications were carried out for each dataset using the following resampling
technique combinations, such as NearMiss, ROS, and TomLinks.

5.1. Experimental Results

The experimental results presented in Table 3 and Figure 7 provide insights into the
performance of machine learning (ML) models when applied to the Car-Hacking Dataset
without utilizing any resampling methods.

Table 3. ML only for the Car-Hacking Dataset without resampling techniques.

Algorithm Accuracy Precision Recall F1_Score

LR 97 97 90 93
LDA 88 81 63 67
NB 87 73 72 73

K-NN 100 100 100 100

Similarly, Table 4 and Figure 8 offer a comparative analysis of the results obtained
without employing resampling techniques for both normal (R) and attack (T) instances.
These initial evaluations serve as a baseline for understanding the effectiveness of the ML
models in their raw form without any pre-processing techniques. In contrast, Tables 5–7
along with Figures 9–11, showcase the outcomes achieved by incorporating various re-
sampling methods such as NearMiss, ROS, and Tom-Links, respectively. By integrating
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these resampling techniques with the ML models, a hybrid approach is formed, aiming to
enhance the classification performance across all tested detection metrics.
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Figure 7. Results without resampling techniques.

Table 4. ML for the Car-Hacking Dataset for Normal (R) and Attack (T) without resampling techniques.

Algorithm Class Precision Recall F1_Score

LR
R 97 100 98
T 97 81 89

LDA
R 89 98 93
T 73 27 40

NB
R 92 93 92
T 55 52 53

K-NN
R 100 100 100
T 100 100 100

Table 5. NearMiss-ML for the Car-Hacking Dataset.

Algorithm Accuracy Precision Recall F1_Score

LR 88 89 88 88
LDA 84 84 84 84
NB 74 74 74 74

K-NN 90 92 90 90

Table 6. ROS-ML for Car-Hacking Dataset.

Algorithm Accuracy Precision Recall F1_Score

LR 83 83 83 83
LDA 83 83 83 83
NB 68 72 68 67

K-NN 100 100 100 100
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Table 7. TomekLinks-ML for the Car-Hacking Dataset.

Algorithm Accuracy Precision Recall F1_Score

LR 97 97 90 93
LDA 88 81 63 67
NB 87 73 72 73

K-NN 100 100 100 100
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Figure 9. Results with the NearMiss technique.

Notably, the results highlight improvements in classification accuracy, precision, re-
call, and F1_Score, indicating the efficacy of leveraging resampling methods to mitigate
imbalanced data challenges. From the comprehensive analysis of the experimental out-
comes, it becomes evident that the hybridization of ML models with resampling techniques
significantly enhances the effectiveness of car-attack detection systems. These findings
underscore the importance of employing resampling methods, especially in scenarios
involving imbalanced data, to ensure robust and efficient detection mechanisms in both
intra-vehicle and external vehicular networks.



World Electr. Veh. J. 2024, 15, 356 13 of 21

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 13 of 21 
 

 
Figure 9. Results with the NearMiss technique. 

Table 6. ROS-ML for Car-Hacking Dataset. 

Algorithm Accuracy Precision Recall F1_Score 
LR 83 83 83 83 

LDA 83 83 83 83 
NB 68 72 68 67 

K-NN  100 100 100 100 

 
Figure 10. Results with the ROS technique. 

Table 7. TomekLinks-ML for the Car-Hacking Dataset. 

Algorithm Accuracy Precision Recall F1_Score 
LR 97 97 90 93 

LDA 88 81 63 67 
NB 87 73 72 73 

K-NN  100 100 100 100 

0
10
20
30
40
50
60
70
80
90

100

Accuracy Precision Recall F1_score

88 89 88 8884 84 84 84
74 74 74 74

90 92 90 90

LR LDA NB KNN

0
10
20
30
40
50
60
70
80
90

100

LR LDA NB KNN

83 83

68

100

83 83
72

100

83 83

68

100

83 83

67

100

Accuracy Precision Recall F1_score
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Figure 11. Results with the TomekLinks technique.

By harnessing the synergies between ML algorithms and resampling techniques, re-
searchers and practitioners can develop more reliable and accurate intrusion detection
systems tailored to address the unique challenges posed by imbalanced datasets. Addi-
tionally, Tables 8–10, alongside Figures 12–14, present the results obtained with employing
various resampling techniques for normal (R) and attack (T) instances, providing further
context for comparing the performance improvements achieved through the integration
of resampling methods. These comparative analyses serve to reinforce the importance
and effectiveness of incorporating resampling techniques in enhancing the classification
performance of ML models in the context of car-attack detection.

Table 8. NearMiss-ML for the Car-Hacking Dataset for Normal (R) and Attack (T).

Algorithm Class Precision Recall F1_Score

LR
R 97 78 86
T 82 97 89

LDA
R 88 78 83
T 80 89 85

NB
R 100 80 89
T 83 100 91

K-NN
R 100 80 89
T 83 100 91
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Table 9. ROS-ML for the Car-Hacking Dataset for Normal (R) and Attack (T).

Algorithm Class Precision Recall F1_Score

LR
R 85 81 83
T 82 86 84

LDA
R 85 80 82
T 81 86 83

NB
R 81 47 60
T 63 89 74

K-NN
R 100 100 100
T 100 100 100

Table 10. TomekLinks-ML for the Car-Hacking Dataset for Normal (R) and Attack (T).

Algorithm Class Precision Recall F1_Score

LR
R 97 100 98
T 97 81 89

LDA
R 89 98 93
T 73 27 40

NB
R 92 93 92
T 55 52 53

K-NN
R 100 100 100
T 100 100 100
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Figure 13. Results with the ROS technique for Normal (R) and Attack (T).
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Tables 11–14 and Figures 15–18 present a comprehensive comparison of the examined
ML models when utilizing all tested resampling techniques, with a focus on accuracy,
precision, recall, and F1_Score. The results unequivocally demonstrate that the strategic
application of resampling techniques in conjunction with ML models significantly enhances
hacking detection efficiency, yielding high accuracy, precision, recall, and F1_Score results.
Notably, both the employed ML models and resampling methods exhibit efficient per-
formance when dealing with the car hacking dataset, which is characterized by highly
imbalanced data. The use of resampling techniques is particularly crucial in addressing
class imbalances, a common challenge in machine learning. By employing techniques such
as NearMiss, ROS, and Tome-Links, it is possible to create a more balanced training set,
which can lead to improved model performance.

Table 11. Accuracy for ML models with different resampling techniques.

Algorithm Without Resampling NearMiss ROS TomekLinks

LR 97 88 83 97
LDA 88 84 83 88
NB 87 74 68 87

K-NN 100 90 100 100

Table 12. Precision for ML models with different resampling techniques.

Algorithm Without Resampling NearMiss ROS TomekLinks

LR 97 89 83 97
LDA 81 84 83 81
NB 73 74 72 73

K-NN 100 92 100 100

Table 13. Recall for ML models with different resampling techniques.

Algorithm Without Resampling NearMiss ROS TomekLinks

LR 90 88 83 90
LDA 63 84 83 63
NB 72 74 68 72

K-NN 100 90 100 100
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Table 14. F1_Score for ML models with different resampling techniques.

Algorithm Without Resampling NearMiss ROS TomekLinks

LR 93 88 83 93
LDA 67 84 83 67
NB 73 74 67 73

K-NN 100 90 100 100
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Table 11 compares the performance of algorithms (LR, LDA, NB, K-NN) with different
resampling techniques. Without resampling, LR performs best at 97, while K-NN maintains
perfect performance across all techniques except NearMiss. Tomek Links generally maintain
or slightly improve performance, especially for LR, LDA, and NB. NearMiss typically
reduces performance across all algorithms, while ROS can significantly enhance K-NN but
tends to lower performance for others.

Table 12 compares the performance of algorithms (LR, LDA, NB, K-NN) with different
resampling techniques. Without resampling, LR performs best at 97, while K-NN maintains
perfect performance across all techniques except NearMiss. Tomek Links generally help
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maintain performance, especially for LR and K-NN. NearMiss typically reduces perfor-
mance for LR and K-NN but improves it for LDA and NB, while ROS significantly enhances
K-NN but tends to lower performance for others.
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Tables 13 and 14 compare the performance of algorithms (LR, LDA, NB, K-NN) under
different resampling techniques. In Table 13, LR scores 90 without resampling, and K-NN
achieves perfect scores except with NearMiss. Tomek Links maintains performance for LR,
NB, and K-NN but not for LDA. NearMiss improves performance for LDA and NB but
reduces it for LR and K-NN. ROS significantly boosts K-NN but lowers performance for
the other algorithms. In Table 14, LR scores 93 without resampling, while K-NN maintains
perfect scores except with NearMiss. Tomek Links maintains performance for LR, NB, and
K-NN but not for LDA. NearMiss improves performance for LDA and NB but reduces it
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for LR and K-NN. ROS significantly enhances K-NN but decreases performance for LR,
LDA, and NB.

5.2. Comparative Results

The quantitative comparison shown in Table 15 clearly shows that the suggested
system performs noticeably better than the current systems. By significantly outperforming
the previous systems in terms of accuracy, precision, recall, and F1_Score, the suggested
method achieves an astounding 100% performance. From the results, the proposed system
achieves an accuracy, precision, recall, and F1_Score of 100%, outperforming the state-of-
the-art methods. In contrast, the system proposed in [8] achieves an accuracy of 98.10%,
which is 1.9% lower than our system. Similarly, the systems proposed in [11,12] achieve
accuracies of 99.96% and 99.93%, respectively, which are still 0.04% and 0.07% lower than
our system, as clarified in Figure 19. These results indicate that our proposed system is
more effective in achieving high accuracy and reliability.

Table 15. A comparative study of the proposed system with existing work.

Work Accuracy Precision Recall F1_Score

[8] 98.10 98.14 98.04 97.83
[11] 99.96 99.94 99.63 99.80
[12] 99.93 99.84 99.84 99.91

Proposed
System 100 100 100 100
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The quantitative comparison also reveals that our system exhibits a notable enhance-
ment in precision, recall, and F1_Score. Specifically, our system achieves a precision and
recall of 100%, which is 1.86% and 1.96% higher than the system proposed in [8], respec-
tively. Compared to the systems proposed in [11,12], our system shows an improvement
of 0.06% and 0.16% in precision and 0.37% and 0.16% in recall, respectively. These results
demonstrate that our proposed system can provide more accurate and reliable results,
making it a superior choice for the detection of car hacking in IoV systems.
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5.3. Limitations

While the current study shows promising results, there are several limitations and
directions for future work to further enhance the security of vehicular networks and the
efficacy of the proposed IDS. These include:

• Investigating the Application of Other Models: Explore the use of other conventional
models, such as Random Forest (RF) and Support Vector Machine (SVM), as well as
more sophisticated machine learning models like deep learning and ensemble learning
techniques, to improve detection accuracy and adaptability to new types of attacks;

• Real-Time Detection Capabilities: Develop and implement real-time detection capabil-
ities to ensure timely identification and mitigation of car hacking attempts, potentially
integrating edge computing to reduce latency;

• Integration with Other Security Measures: Explore the integration of the IDS with other
security measures, such as anomaly detection systems, blockchain for secure data sharing,
and advanced encryption techniques to create a comprehensive security framework.

6. Conclusions and Future Scope

Recently, the realm of vehicle security has increasingly become a major concern due to
the increased reliance on vehicle systems, especially with the advance of the Internet of
Autonomous Vehicles (IoV) in the smart city. To detect car attacks, it is prudent that we
build efficient car attack Detection Systems to efficiently analyze and detect car hacking
data. There is an inherent problem with most car hacking data where the data are highly
imbalanced; that is, there is a disproportionately large amount of good or normal traffic
data and, in most cases, very few attack instances. Consequently, this study resolved the
imbalanced car-hacking data problem using different handling resampling pre-processing
procedures and then decided and predicted the car attack using machine learning models
such as LR, LDA, NB, and k-NN. The experimental results proved that the performance
of the proposed framework is assessed based on different metrics of accuracy, precision,
and recall in comparing prevailing algorithms. Using k-NN with various Resampling Tech-
niques, the suggested IDS has shown 100% detection rates in testing on the Car-Hacking
dataset, which is a popular available benchmark IoV security dataset. It demonstrates
the efficacy of the suggested IDS for cyberattack detection in external and intra-vehicle
vehicular networks with unbalanced data on car hacking. In future work, several directions
can be explored to further enhance the security of vehicular networks and the efficacy of
the proposed IDS. These include the following:

• Investigate the application of other conventional models, such as RF and SVM, besides
more sophisticated machine learning models, such as deep learning and ensemble
learning techniques, to improve detection accuracy and adaptability to new types
of attacks;

• Develop and implement real-time detection capabilities to ensure timely identification
and mitigation of car hacking attempts, potentially integrating edge computing to
reduce latency;

• Explore the integration of the IDS with other security measures, such as anomaly
detection systems, blockchain for secure data sharing, and advanced encryption
techniques to create a comprehensive security framework.
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