A Multidisciplinary Approach for the Sustainable Technical Design of a Connected, Automated, Shared and Electric Vehicle Fleet for Inner Cities
Abstract
:1. Introduction
1.1. Motivation
1.2. An Innovative Mobility and Logistics Concept: The EDAG CityBot
1.3. Sustainable Transportation Systems
1.4. Sustainable Design Approaches
1.5. The Approach and Aim of This Paper
1.6. Introduction of System Components to Be Optimized
1.7. The Structure of This Paper
2. Materials and Methods
2.1. Powertrain Design
2.2. Longitudinal Vehicle Control Design
2.3. CTMS Design
2.4. Operation Center Design
2.5. Vehicle HMI Design
3. Results
3.1. Powertrain Design
3.2. Longitudinal Vehicle Control Design
3.3. CTMS Design
3.4. Operation Center Design
3.5. Vehicle HMI Design
4. Discussion
4.1. Overview of Applied Approaches for Sustainable Design
4.2. A Discussion of the Achieved Impact on Sustainability of the Technical Optimization Efforts
4.3. A Discussion of the Methodological Framework
4.4. A Discussion of the Results in the Context of System Innovation Requirements
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- European Environment Agency. Environmental Noise in Europe; EEA Report, Luxembourg. Available online: https://www.eea.europa.eu/publications/environmental-noise-in-europe/at_download/file (accessed on 30 October 2023).
- European Court of Auditors. Air Pollution—Our Health Still Insufficiently protected; Special Report, Luxembourg. Available online: https://www.eca.europa.eu/Lists/ECADocuments/SR18_23/SR_AIR_QUALITY_EN.pdf (accessed on 30 October 2023).
- Intergovernmental Panel on Climate Change. Climate Change 2014—Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf (accessed on 30 October 2023).
- Pérez-Martínez, P.J.; Sorba, I.A. Energy consumption of passenger land transport modes. Energy Environ. 2010, 21, 577–600. [Google Scholar] [CrossRef]
- Helmers, E.; Weiss, M. Advances and critical aspects in the life-cycle assessment of battery electric cars. Energy Emiss. Control. Technol. 2017, 5, 1–18. [Google Scholar] [CrossRef]
- Berger, M.; Warsen, J.; Krinke, S.; Bach, V.; Finkbeiner, M. Water footprint of European cars: Potential impacts of water consumption along automobile life cycles. Environ. Sci. Technol. 2012, 46, 4091–4099. [Google Scholar] [CrossRef] [PubMed]
- Will, M.-E.; Munshi, T.; Cornet, Y. Measuring road space consumption by transport modes: Toward a standard spatial efficiency assessment method and an application to the development scenarios of Rajkot City, India. J. Transp. Land Use 2020, 13, 651–669. [Google Scholar] [CrossRef]
- Yeung, G. Megatrends and new research agendas in the automotive industry. In A Research Agenda for Manufacturing Industries in the Global Economy; Bryson, J.R., Billing, C., Graves, W., Eds.; Edward Elgar Publishing: Cheltenham, UK; Northampton, MA, USA, 2022; pp. 67–90. ISBN 9781789908503. [Google Scholar]
- Beza, A.D.; Zefreh, M.M. Potential effects of automated vehicles on road transportation: A literature review. Transp. Telecommun. J. 2019, 20, 269–278. [Google Scholar] [CrossRef]
- Urry, J. The ‘System’ of Automobility. Theory Cult. Soc. 2004, 21, 25–39. [Google Scholar] [CrossRef]
- Urry, J. Global Complexity; Reprinted; Polity: Cambridge, UK, 2010; ISBN 978-0745628172. [Google Scholar]
- Geels, F.W.; Elzen, B.; Green, K. General introduction: System innovation and transitions to sustainability. In System Innovation and the Transition to Sustainability: Theory, Evidence and Policy; Elzen, B., Geels, F.W., Green, K., Eds.; Edward Elgar: Cheltenham, UK; Northampton, MA, USA, 2004; ISBN 1843766833. [Google Scholar]
- Elzen, B.; Wieczorek, A. Transitions towards sustainability through system innovation. Technol. Forecast. Soc. Change 2005, 72, 651–661. [Google Scholar] [CrossRef]
- Geels, F.W. The dynamics of transitions in socio-technical systems: A multi-level analysis of the transition pathway from horse-drawn carriages to automobiles (1860–1930). Technol. Anal. Strateg. Manag. 2005, 17, 445–476. [Google Scholar] [CrossRef]
- Kemp, R. Technology and the transition to environmental sustainability: The problem of technological regime shifts. Futures 1994, 26, 1023–1046. [Google Scholar] [CrossRef]
- Freeman, C.; Perez, C. Structural crises of adjustment: Business cycles. In Technical Change and Economic Theory; Dosi, G., Freeman, C., Nelson, R., Silverberg, G., Soete, L., Eds.; Pinter: London, UK, 1988; pp. 38–66. [Google Scholar]
- Schot, J.; Hoogma, R.; Boelie, E. Strategies for shifting technological systems: The case of the automobile system. Futures 1994, 26, 1060–1076. [Google Scholar] [CrossRef]
- Aberle, C. Who Benefits from Mobility as a Service? A GIS-Based Investigation of the Population Served by Four Ride-Pooling Schemes in Hamburg, Germany. KN J. Cartogr. Geogr. Inf. 2020, 70, 25–33. [Google Scholar] [CrossRef]
- Groth, S.; Klinger, T.; Otsuka, N. Geographies of new mobility services: The emergence of a premium mobility network space. Geoforum 2023, 144, 103765. [Google Scholar] [CrossRef]
- Burghard, U.; Scherrer, A. Sharing vehicles or sharing rides—Psychological factors influencing the acceptance of carsharing and ridepooling in Germany. Energy Policy 2022, 164, 112874. [Google Scholar] [CrossRef]
- Hunecke, M.; Richter, N.; Heppner, H. Autonomy loss, privacy invasion and data misuse as psychological barriers to peer-to-peer collaborative car use. Transp. Res. Interdiscip. Perspect. 2021, 10, 100403. [Google Scholar] [CrossRef]
- EDAG Group. World Premiere at the IAA 2019 EDAG CityBot—A Game Changer for the City of the Future. Available online: https://www.edag.com/en/edag-group/press/press-release/world-premiere-at-the-iaa-2019-edag-citybot-a-game-changer-for-the-city-of-the-future (accessed on 12 October 2023).
- EDAG Group. The Way to the Mobility Revolution! Available online: https://www.edag-citybot.de/en/ (accessed on 16 October 2023).
- EDAG Group. What Is the EDAG CityBot? Available online: https://www.edag-citybot.de/en/what-is-the-edag-citybot/ (accessed on 19 October 2023).
- EDAG Group. What Can the EDAG CityBot Do? Available online: https://www.edag-citybot.de/en/what-can-the-edag-citybot-do/ (accessed on 16 October 2023).
- Helmers, E.; Marx, P. Electric cars: Technical characteristics and environmental impacts. Environ. Sci. Eur. 2012, 24, 14. [Google Scholar] [CrossRef]
- Brundtland, G.H. Our common future—Call for action. Environ. Conserv. 1987, 14, 291–294. [Google Scholar] [CrossRef]
- Goodland, R. The concept of environmental sustainability. Annu. Rev. Ecol. Syst. 1995, 26, 1–24. [Google Scholar] [CrossRef]
- Abschlussbericht der Enquete-Kommission “Schutz des Menschen und der Umwelt”—Ziele und Rahmenbedingungen Einer Nachhaltig Zukunftsverträglichen Entwicklung; Deutscher Bundestag: Berlin, Germany, 1998.
- Hajian, M.; Jangchi Kashani, S. Evolution of the concept of sustainability. From Brundtland Report to sustainable development goals. In Sustainable Resource Management—Modern Approaches and Contexts; Hussain, C.M., Velasco-Muñoz, J.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–24. [Google Scholar]
- Kropp, A. Grundlagen der nachhaltigen Entwicklung; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2019; ISBN 978-3-658-23071-5. [Google Scholar]
- Batz, M. Nachhaltigkeit in der Sozialwirtschaft; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2021; ISBN 978-3-658-32557-2. [Google Scholar]
- Black, W.R. Sustainable Transportation: Problems and Solutions; Guilford Press: Guilford, UK; New York, NY, USA; London, UK, 2010; ISBN 9781606234853. [Google Scholar]
- Miller, P.; de Barros, A.G.; Kattan, L.; Wirasinghe, S.C. Public transportation and sustainability: A review. KSCE J. Civ. Eng. 2016, 20, 1076–1083. [Google Scholar] [CrossRef]
- May, A.D. Urban Transport and Sustainability: The Key Challenges. Int. J. Sustain. Transp. 2013, 7, 170–185. [Google Scholar] [CrossRef]
- Litman, T. Developing Indicators for Comprehensive and Sustainable Transport Planning. Transp. Res. Rec. 2007, 10–15. [Google Scholar] [CrossRef]
- Vreeker, R.; Nijkamp, P. Multicriteria evaluation of transport policies. In Handbook of Transport Strategy, Policy and Institutions; Button, K.J., Hensher, D.A., Eds.; Emerald Group Publishing: Bingley, UK, 2005; pp. 507–526. ISBN 978-0-0804-4115-3. [Google Scholar]
- Banister, D. The sustainable mobility paradigm. Transp. Policy 2008, 15, 73–80. [Google Scholar] [CrossRef]
- McAloone, T.C.; Pigosse, D.C.A. Ökodesign: Entwicklung von Produkten mit verbesserter Ökobilanz. In Pahl/Beitz Konstruktionslehre; Bender, B., Gericke, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 975–1018. ISBN 978-3-662-57302-0. [Google Scholar]
- Verband Deutscher Ingenieure. Design of Technical Products and Systems—Model of Product Design; 2019-11; Beuth Verlag GmbH: Berlin, Germany, 2019; 03.100.40 (2221). [Google Scholar]
- van der Schoor, M.J.; Göhlich, D. Integrating sustainability in the design process of urban service robots. Front. Robot. AI 2023, 10, 1250697. [Google Scholar] [CrossRef] [PubMed]
- DIN EN ISO 14040:2009-11; DIN Deutsches Institut für Normung e. V. Environmental Management—Life Cycle Assessment—Principles and Framework. Beuth Verlag GmbH: Berlin, Germany, 2009.
- DIN EN ISO 14044:2021-02; DIN Deutsches Institut für Normung e. V. Environmental Management—Life Cycle Assessment—Requirements and Guidelines. Beuth Verlag GmbH: Berlin, Germany, 2021.
- DIN EN ISO 9241-210:2019; DIN Deutsches Institut für Normung e. V. Ergonomics of Human-System Interaction—Part 210: Human-centred Design for Interactive Systems. Beuth Verlag GmbH: Berlin, Germany, 2019.
- Pigosso, D.C.A. Ecodesign Maturity Model: A Framework to Support Companies in the Selection and Implementation of Ecodesign Practices. Ph.D. Dissertation, University of Sao Paulo, Sao Carlos, Brazil, 2012. [Google Scholar]
- Missimer, M.; Robèrt, K.-H.; Broman, G. A strategic approach to social sustainability—Part 1: Exploring the social system. J. Clean. Prod. 2017, 140, 32–41. [Google Scholar] [CrossRef]
- Prause, L.; Dietz, K. Die sozial-ökologischen Folgen der E-Mobilität: Konflikte um den Rohstoffabbau im Globalen Süden. In Baustelle Elektromobilität; Brunnengräber, A., Haas, T., Eds.; Transcript Verlag: Bielefeld, Germany, 2020; pp. 329–351. ISBN 978-3-8376-5165-2. [Google Scholar]
- Winner, H.; Hakuli, S.; Lotz, F.; Singer, C. Handbuch Fahrerassistenzsysteme—Grundlagen, Komponenten und Systeme für Aktive Sicherheit und Komfort; Springer Vieweg: Wiesbaden, Germany, 2015; ISBN 978-3-658-05734-3. [Google Scholar]
- Litman, T. Autonomous Vehicle Implementation Predictions—Implications for Transport Planning. 2021. Available online: https://www.vtpi.org/avip.pdf (accessed on 30 October 2023).
- Gesetz zur Änderung des Straßenverkehrsgesetzes und des Pflichtversicherungsgesetzes—Gesetz zum Autonomen Fahren. 2021. Available online: https://dip.bundestag.de/vorgang/gesetz-zur-%C3%A4nderung-des-stra%C3%9Fenverkehrsgesetzes-und-des-pflichtversicherungsgesetzes-gesetz/273887?f.deskriptor=Autonomes%20Fahrzeug&rows=25&pos=17 (accessed on 1 August 2024).
- Carmona, J.; Guindel, C.; Garcia, F.; de la Escalera, A. eHMI: Review and guidelines for deployment on autonomous vehicles. Sensors 2021, 21, 2912. [Google Scholar] [CrossRef]
- Dey, D.; Habibovic, A.; Löcken, A.; Wintersberger, P.; Pfleging, B.; Riener, A.; Martens, M.; Terken, J. Taming the eHMI jungle: A classification taxonomy to guide, compare, and assess the design principles of automated vehicles’ external human-machine interfaces. Transp. Res. Interdiscip. Perspect. 2020, 7, 100174. [Google Scholar] [CrossRef]
- Eßer, A. Realfahrtbasierte Bewertung des Ökologischen Potentials von Fahrzeugantriebskonzepten. Ph. D. Dissertation, Technical University of Darmstadt, Darmstadt, Germany, 2021.
- Eßer, A.; Zeller, M.; Foulard, S.; Rinderknecht, S. Stochastic synthesis of representative and multidimensional driving cycles. SAE Int. J. Altern. Powertrains 2018, 7, 263–272. [Google Scholar] [CrossRef]
- Eßer, A.; Eichenlaub, T.; Schleiffer, J.-E.; Jardin, P.; Rinderknecht, S. Comparative evaluation of powertrain concepts through an eco-impact optimization framework with real driving data. Optim. Eng. 2021, 22, 1001–1029. [Google Scholar] [CrossRef]
- Eßer, A.; Schleiffer, J.-E.; Eichenlaub, T.; Rinderknecht, S. Development of an optimization framework for the comparative evaluation of the ecoimpact of powertrain concepts. In Proceedings of the Tagungsband des 19. Internationalen VDI-Kongress “Dritev—Getriebe in Fahrzeugen”, Bonn, Germany, 10–11 July 2019. [Google Scholar]
- Yeon, K.; Min, K.; Shin, J.; Sunwoo, M.; Han, M. Ego-vehicle speed prediction using a long short-term memory based recurrent neural network. Int. J. Automot. Technol. 2019, 20, 713–722. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, B.; Kang, C.M.; Chung, C.C.; Choi, J.W. Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Eichenlaub, T.; Heckelmann, P.; Rinderknecht, S. Efficient anticipatory longitudinal control of electric vehicles through machine learning-based prediction of vehicle speeds. Vehicles 2023, 5, 1–23. [Google Scholar] [CrossRef]
- Alvarez Lopez, P.; Behrisch, M.; Bieker-Walz, L.; Erdmann, J.; Flotterod, Y.-P.; Hilbrich, R.; Lucken, L.; Rummel, J.; Wagner, P.; Wießner, E. Microscopic traffic simulation using SUMO. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Mazzarello, M.; Ottaviani, E. A traffic management system for real-time traffic optimisation in railways. Transp. Res. Part B 2007, 41, 246–274. [Google Scholar] [CrossRef]
- Rosti, M.; Blateau, V. Traffic management systems—The pioneers in the digitalisation process. Signal. Datacommun. 2021, 113, 35–43. [Google Scholar]
- Haapala, K. Implementing modern IT requirements in traffic management system products. Signal. Datacommun. 2021, 113, 20–27. [Google Scholar]
- Bucher, A.; Dietrich, J.R. Unterstützung der Disposition durch ein Traffic Management System. Der Eisenbahningenieur 2022, 74, 16–18. [Google Scholar]
- Völcker, M. Der Weg zu automatisierten Kapazitätsplanung und Steuerung. Der Eisenbahningenieur 2019, 68, 22–25. [Google Scholar]
- Wickmann, A.; Meurer, D.; Blöcher, H.; Büker, T. Effizienzsteigerung durch Traffic Management Systeme und Lösungsschritte für die TMS-Implementierung im Bahnsektor. Eisenbahntechnische Rundsch. 2021, 70, 28–34. [Google Scholar]
- Brändli, H. Outsourcing im öffentlichen Verkehr; Deutsche Verkehrswissenschaftliche Gesellschaft: Bergisch Gladbach, Germany, 1997. [Google Scholar]
- Winzer, P. Generic Systems Engineering—Ein methodischer Ansatz zur Komplexitätsbewältigung; Springer Vieweg: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-30364-7. [Google Scholar]
- Frison, A.-K.; Forster, Y.; Wintersberger, P.; Geisel, V.; Riener, A. Where we come from and where we are going: A systematic review of human factors research in driving automation. Appl. Sci. 2020, 10, 8914. [Google Scholar] [CrossRef]
- Liu, W.; Placke, T.; Chau, K.T. Overview of batteries and battery management for electric vehicles. Energy Rep. 2022, 8, 4058–4084. [Google Scholar] [CrossRef]
- Eßer, A.; Mölleney, J.; Rinderknecht, S. Potentials to reduce the energy consumption of electric vehicles in urban traffic. In Proceedings of the 22nd International VDI Congress, Baden-Baden, Germany, 6–7 July 2022. [Google Scholar]
- Eichenlaub, T.; Rinderknecht, S. Anticipatory Longitudinal Vehicle Control using a LSTM Prediction Model. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 447–452, ISBN 978-1-7281-9142-3. [Google Scholar]
- Pawlik, V. Erneuerbare Energien—Monatlicher Anteil an der Stromerzeugung in Deutschland 2023. Available online: https://de.statista.com/statistik/daten/studie/779784/umfrage/monatlicher-anteil-erneuerbarer-energien-an-der-stromerzeugung-in-deutschland/ (accessed on 14 October 2023).
- Pawlik, V. Haushalte—Index zum Strompreis in Deutschland bis 2023. Available online: https://de.statista.com/statistik/daten/studie/234370/umfrage/entwicklung-der-haushaltsstrompreise-in-deutschland/ (accessed on 14 October 2023).
- Zhou, Z.; Roncoli, C. A scalable vehicle assignment and routing strategy for real-time on-demand ridesharing considering endogenous congestion. Transp. Res. Part C Emerg. Technol. 2022, 139, 103658. [Google Scholar] [CrossRef]
- Schwindt, S.; Heller, A.; Theobald, N.; Abendroth, B. Who will drive automated Vehicles?—Usability context analysis and design guidelines for future control centers for automated vehicle traffic. In Human Factors in Transportation, Proceedings of the 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023), San Francisco, CA, USA, 20–24 July 2023; Praetorius, G., Sellberg, C., Patriarca, R., Eds.; AHFE International: Honolulu, HI, USA, 2023. [Google Scholar]
- Bogdoll, D.; Orf, S.; Töttel, L.; Zöllner, J.M. Taxonomy and survey on remote human input systems for driving automation systems. In Advances in Information and Communication, Proceedings of the 2022 Future of Information and Communication Conference (FICC), San Francisco, CA, USA, 3–4 March 2022; Arai, K., Ed.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Kettwich, C.; Dreßler, A. Requirements of future control centers in public transport. In Proceedings of the AutomotiveUI’20: 12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Virtual, 21–22 September 2020; Association for Computing Machinery: New York, NY, USA, 2020. [Google Scholar]
- Biletska, O.; Beckmann, S.; Glimm, T.; Zadek, H. Key requirements and concept for the future operations control center of automated shuttle buses. In Proceedings of the 2021 International Scientific Symposium on Logistics, Virtual, 12–13 July 2021; Bundesvereinigung Logistik, Fraunhofer Institute for Material Flow and Logistics, Eds.; BVL: Bremen, Germany, 2021. [Google Scholar]
- SAE International. J3016-2021—Taxonomy and Definitions for Terms Related to Driving Automation Systems for on-Road Motor Vehicles. Available online: https://saemobilus.sae.org/content/12-03-01-0003/ (accessed on 30 October 2023).
- Feiler, J.; Hoffmann, S.; Diermeyer, F. Concept of a control center for an automated vehicle fleet. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), virtual, 20–23 September 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Kang, L.; Zhao, W.; Qi, B.; Banerjee, S. Augmenting self-driving with remote control: Challenges and directions. In Proceedings of the HotMobile’18: Proceedings of the 19th International Workshop on Mobile Computing Systems & Applications, Tempe, AZ, USA, 12–13 February 2018; Association for Computing Machinery: New York, NY, USA, 2018. [Google Scholar]
- Inbar, O.; Tractinsky, N. The Incidental User. Interactions 2009, 16, 56–59. [Google Scholar] [CrossRef]
- Kim, M.; Lee, J. In-vehicle information design to enhance the experience of passengers in autonomous public buses. In Proceedings of the HCI in Mobility, Transport, and Automotive Systems, Proceedings of the 23rd International Conference on Human-Computer Interaction, Washington, DC, USA, 24–29 July 2021; Krömker, H., Ed.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Rasouli, A.; Kotseruba, I.; Tsotsos, J.K. Understanding pedestrian behavior in complex traffic scenes. IEEE Trans. Intell. Veh. 2018, 3, 61–70. [Google Scholar] [CrossRef]
- Mirnig, A.G.; Gärtner, M.; Wallner, V.; Trösterer, S.; Meschtscherjakov, A.; Tscheligi, M. Where does it go? A study on visual on-screen designs for exit management in an automated shuttle bus. In Proceedings of the AutomotiveUI’19: 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Utrecht, The Netherlands, 21–25 September 2019; ACM: New York, NY, USA, 2019. [Google Scholar]
- Theobald, N.; Joisten, P.; Abendroth, B. Anthropomorphismus in der Interaktion zwischen Fußgänger:innen und automatisierten Fahrzeugen—Ein Überblick zum aktuellen Forschungsstand. In Technologie und Bildung in Hybriden Arbeitswelten; Gesellschaft für Arbeitswissenschaft, Ed.; GfA-Press: Magdeburg, Germany, 2022; 2170/B.8.8, 1–6. [Google Scholar]
- Barckmann, J.; Herchet, H.; Körbel, G. Mobilitätskonzept eines Straßenroboters. ATZ-Automob. Z. 2020, 122, 16–21. [Google Scholar] [CrossRef]
- Bazilinskyy, P.; Dodou, D.; de Winter, J. Survey on eHMI concepts: The effect of text, color, and perspective. Transp. Res. Part F Traffic Psychol. Behav. 2019, 67, 175–194. [Google Scholar] [CrossRef]
- Faas, S.M.; Mathis, L.-A.; Baumann, M. External HMI for self-driving vehicles: Which information shall be displayed? Transp. Res. Part F Traffic Psychol. Behav. 2020, 68, 171–186. [Google Scholar] [CrossRef]
- Frison, A.-K.; Wintersberger, P.; Riener, A. Resurrecting the ghost in the shell: A need-centered development approach for optimizing user experience in highly automated vehicles. Transp. Res. Part F Traffic Psychol. Behav. 2019, 65, 439–456. [Google Scholar] [CrossRef]
- Oliveira, L.; Luton, I.; Iyer, S.; Burns, C.; Mouzakitis, A.; Jennings, P.; Birrell, S. Evaluating how interfaces influence the user interaction with fully autonomous vehicles. In Proceedings of the AutomotiveUI’18: 10th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Toronto, ON, Canada, 23–25 September 2018; Association for Computing Machinery: New York, NY, USA, 2018. [Google Scholar]
- Nordhoff, S.; Stapel, J.; van Arem, B.; Happee, R. Passenger opinions of the perceived safety and interaction with automated shuttles: A test ride study with ‘hidden’ safety steward. Transp. Res. Part A Policy Pract. 2020, 138, 508–524. [Google Scholar] [CrossRef]
- Heinrichs, H.; Grunenberg, H. Sharing Economy—Auf dem Weg in Eine Neue Konsumkultur? Centre for Sustainability Management: Lüneburg, Germany, 2012; ISBN 9783942638296. [Google Scholar]
- Cohen, B.; Kietzmann, J. Ride On! Mobility Business Models for the Sharing Economy. Organ. Environ. 2014, 27, 279–296. [Google Scholar] [CrossRef]
System Components | Development Phase | Design Approach |
---|---|---|
Powertrain Design | Detailed Design | LCA according to DIN EN ISO 14040 [42] and DIN EN ISO 14044 [43] |
Longitudinal Control Design | ||
CTMS Design | Early Concept Design | Adjusted VDI guideline 2221 [41] considering ecodesign strategies |
Operation Center Design | Detailed Design | Human-centered design process of DIN EN ISO 9241-210 [44] |
Vehicle HMI Design |
System Components | Sustainability Dimensions | ||
---|---|---|---|
Economic | Ecological | Social | |
Powertrain Design | ✓ | ✓ | |
Longitudinal Control Design | ✓ | ✓ | |
CTMS Design | ✓ | ✓ | ✓ |
Operation Center Design | ✓ | ✓ | |
Vehicle HMI Design | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rieger, P.; Heckelmann, P.; Peichl, T.; Schwindt-Drews, S.; Theobald, N.; Crespo, A.; Oetting, A.; Rinderknecht, S.; Abendroth, B. A Multidisciplinary Approach for the Sustainable Technical Design of a Connected, Automated, Shared and Electric Vehicle Fleet for Inner Cities. World Electr. Veh. J. 2024, 15, 360. https://doi.org/10.3390/wevj15080360
Rieger P, Heckelmann P, Peichl T, Schwindt-Drews S, Theobald N, Crespo A, Oetting A, Rinderknecht S, Abendroth B. A Multidisciplinary Approach for the Sustainable Technical Design of a Connected, Automated, Shared and Electric Vehicle Fleet for Inner Cities. World Electric Vehicle Journal. 2024; 15(8):360. https://doi.org/10.3390/wevj15080360
Chicago/Turabian StyleRieger, Paul, Paul Heckelmann, Tobias Peichl, Sarah Schwindt-Drews, Nina Theobald, Arturo Crespo, Andreas Oetting, Stephan Rinderknecht, and Bettina Abendroth. 2024. "A Multidisciplinary Approach for the Sustainable Technical Design of a Connected, Automated, Shared and Electric Vehicle Fleet for Inner Cities" World Electric Vehicle Journal 15, no. 8: 360. https://doi.org/10.3390/wevj15080360
APA StyleRieger, P., Heckelmann, P., Peichl, T., Schwindt-Drews, S., Theobald, N., Crespo, A., Oetting, A., Rinderknecht, S., & Abendroth, B. (2024). A Multidisciplinary Approach for the Sustainable Technical Design of a Connected, Automated, Shared and Electric Vehicle Fleet for Inner Cities. World Electric Vehicle Journal, 15(8), 360. https://doi.org/10.3390/wevj15080360