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Abstract: The perception system plays a crucial role by integrating LiDAR and various sensors to
perform localization and object detection, which ensures the security of intelligent driving. However,
existing research indicates that LiDAR is vulnerable to sensor attacks, which lead to inappropriate
driving strategies and need effective attack recognition methods. Previous LiDAR attack recognition
methods rely on fixed anomaly thresholds obtained from depth map data distributions in specific
scenarios as static anomaly boundaries, which lead to reduced accuracy, increased false alarm rates,
and a lack of performance stability. To address these problems, we propose an adaptive LiDAR
attack recognition framework capable of adjusting to different driving scenarios. This framework
initially models the perception system by integrating the vehicle dynamics model and object tracking
algorithms to extract data features, subsequently employing Gaussian Processes for the probabilistic
modeling of these features. Finally, the framework employs sparsification computing techniques
and a sliding window strategy to continuously update the Gaussian Process model with window
data, which achieves incremental learning that generates uncertainty estimates as dynamic anomaly
boundaries to recognize attacks. The performance of the proposed framework has been evaluated
extensively using the real-world KITTI dataset covering four driving scenarios. Compared to previous
methods, our framework achieves a 100% accuracy rate and a 0% false positive rate in the localization
system, and an average increase of 3.43% in detection accuracy in the detection system across the
four scenarios, which demonstrates superior adaptive capabilities.

Keywords: intelligent driving; attack recognition; Gaussian process; incremental learning

1. Introduction

The security of perception systems in intelligent driving is crucial, as it directly im-
pacts passenger safety and the integrity of the surrounding environment [1]. These systems
leverage sensors, including GPS, IMU, LiDAR, and cameras, to gather and process environ-
mental data [2]. However, this dependency also makes the perception systems vulnerable
to sensor attacks, which can manipulate data and mislead vehicle operations, potentially
resulting in significant traffic incidents. LiDAR sensor attacks are characterized by their low
technical requirements, significant potential harm, and challenging traceability, making
them a substantial threat to the safety of intelligent driving [1]. The task of defending
against these attacks is particularly arduous due to the stealthy nature of the manipula-
tions and the ineffectiveness of previous detection methods like anomaly detection [2,3].
Vulnerable sensors, including cameras, GPS, and LiDAR, are prone to various attacks such
as deception, interference, and replay. These attacks can cause incorrect assessments of
vehicle positioning or failures in accurately perceiving the environment, thereby escalat-
ing the risk of accidents [4]. Effective countermeasures are imperative to mitigate these
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risks and enhance the resilience of intelligent driving perception systems against potential
sensor attacks.

LiDAR attack recognition methods are pivotal in the realm of intelligent driving
security. These methods typically encompass sensor redundancy, deep learning, and
rule-based algorithms. Sensor redundancy enhances environmental sensing by integrating
multiple sensors such as cameras, GPS, and LiDAR, thereby creating a more robust detection
framework [5]. Deep learning techniques are employed to train on extensive datasets,
enabling sophisticated recognition of attacks [6]. Rule-based algorithms utilize predefined
sets of rules and models to manage specific scenarios or types of attacks [7]. However,
each method has limitations. Sensor redundancy, while increasing robustness, demands
high accuracy and consistency from sensors, which can be compromised by noise and
direct attacks, leading to escalated costs [2]. Deep learning approaches hinge on large-scale
annotated data, which are scarce in the intelligent driving sector. This scarcity can lead to
vulnerabilities under sensor attack scenarios due to potential misdirection [6]. Lastly, rule-
based algorithms can struggle with consistency across the varied and dynamic conditions
of intelligent driving, as they may not encompass all possible scenarios [4]. Addressing
these challenges is essential for advancing sensor attack recognition and enhancing the
security posture of intelligent driving systems.

Previous methods of attack recognition in intelligent driving are executed in distinct
phases, which complicate hardware implementation and exacerbate communication delays.
The Gaussian Process (GP) offers a novel approach to overcome these recognition challenges.
GP is capable of end-to-end attack recognition, allowing for simultaneous processing
without the need for extensive training datasets. This makes it particularly well suited
for scenarios with limited sample sizes, thus enhancing its applicability across diverse
driving conditions [8]. In instances of sensor attacks, GP can adeptly model potential noise
and anomalies, thereby bolstering the system’s resilience against malicious interventions.
Moreover, GP facilitates adaptive recognition of data, enabling the system to adjust more
effectively to complex and dynamic driving environments [9].

In this paper, we propose incremental learning for the LiDAR sensor attack recogni-
tion method that leverages a joint system model and GP. Our approach sets itself apart
from conventional data-driven methodologies by integrating system models of intelligent
driving with data-driven GP. This integration significantly enhances the capabilities for in-
cremental learning and detection within intelligent driving systems. To ensure the adaptive
performance of our proposed framework, we continuously update the GP model using data
from the sliding window to accommodate dynamic changes in intelligent driving scenarios.
Compared with purely data-driven techniques, attackers targeting our method would need
to navigate both the intricacies of the system model and the data-driven components. This
dual requirement makes such attacks particularly challenging to execute, positioning our
recognition mechanisms among the most formidable in contemporary research.

The main contributions of this paper can be summarized as follows.

• We have developed an attack recognition framework for LiDAR attacks within in-
telligent driving perception systems, encompassing both localization and detection
systems. In this framework, we model the localization system using a vehicle dynam-
ics model and the detection system using an object tracking algorithm, from which
we extract data features. Subsequently, we employ Gaussian Processes to perform
probabilistic modeling of these data features, which predict uncertainty estimates to
effectively recognize LiDAR attacks.

• We propose an innovative incremental learning framework for the adaptive recog-
nition of sensor attacks in intelligent driving, capable of adapting to dynamically
changing driving environments. Our approach integrates sliding window techniques,
sparsification computing, and Gaussian Processes, which allow for updates within
the sliding windows to continuously adjust the Gaussian Process possibility model
for incremental learning. Compared to previous methods, our framework maintains
a 100% accuracy rate and a 0% false positive rate in the localization system and im-
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proves the accuracy by an average of 3.43% in the detection system across various
driving scenarios.

The structure of this paper is as follows: Section 2 provides an overview of the LiDAR
sensor attack and Gaussian Process. Section 3 states the problem in this work. Section 4
introduces the proposed framework. Section 5 conducts simulations that demonstrate the
performance of the proposed framework. Finally, Section 6 summarizes the key conclusions
and discusses the significance of the findings.

2. Related Works
2.1. LiDAR Sensor Attack

Intelligent driving heavily relies on sensors to perceive their surroundings and make
decisions. LiDAR is crucial for precise navigation and obstacle avoidance. However,
if LiDAR is compromised, they may input misleading data, leading the vehicle to make
erroneous driving decisions [10]. Common attack types include LiDAR replay and spoofing
attacks, as shown in Figure 1.
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Figure 1. LiDAR replay attack and LiDAR spoofing attack.

• LiDAR replay attack: Attackers record LiDAR data in a specific environment and
replay it under different circumstances. This type of attack can cause the LiDAR
system to misjudge the current environmental state, mistakenly identifying safe areas
as obstructed, or vice versa, recognizing hazardous areas as safe. Such attacks pose a
direct threat to the safe operation of intelligent driving [3].

• LiDAR spoofing attack: Attackers send forged signals to the LiDAR system, inducing
incorrect environmental perception data. These attacks can lead to navigational
errors and may prevent the intelligent driving system from correctly identifying other
vehicles, pedestrians, or obstacles on the road, thereby causing severe traffic accidents.

Attack recognition against LiDAR sensor attacks presents multiple challenges. First,
attackers may use complex methods such as signal simulation or data tampering, which are
difficult to detect through conventional data verification processes [11]. Additionally, the di-
versity and rapid evolution of attack methods mean that previous recognition mechanisms
are often unable to cover all potential attack scenarios. Consequently, developing dynamic
and incremental learning recognition systems continues to be a crucial and challenging
area of research.

2.2. Gaussian Process

GP is a probabilistic, non-parametric statistical model extensively used for regression
and probabilistic classification tasks [8]. These models establish a prior probability distribu-
tion over function spaces, ensuring that any finite set of functions exhibits a multivariate
Gaussian distribution. In the field of sensor attack detection for intelligent driving, GP
is utilized to construct statistical models of sensor data to monitor for anomalies or signs
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of attacks within the data stream. The model demonstrates significant adaptability when
handling complex environmental data and integrating prior knowledge, while the flexible
selection of kernel functions allows it to accommodate various data relationships. However,
GP faces significant challenges including high computational complexity and difficulties
in hyperparameter tuning, which limit its applicability in large-scale data scenarios. Fur-
thermore, the highly dynamic nature of intelligent driving environments necessitates that
models swiftly adapt to new data and scenarios. However, GP methodologies still require
further optimization to facilitate real-time updates and parameter adjustments.

3. Problem Statement

In this section, we state the problem in recognizing attacks on perception systems, as
shown in Figure 2. In intelligent driving applications, perception sensors legitimate input
signal zs of the vehicle, and s ∈ {gps, lidar, imu, . . . , camera} denote various perception
sensors. However, the measurements of sensor zm

s are corrupted with noise, which can be
expressed as follows:

zm
s = zs + ϵ, (1)

where ϵ is the sensor measurement noise, which covers wind noise, road noise and other
noise interference in real road conditions. Given the vulnerability of sensors to various types
of sensor attacks, measurements can sometimes be compromised, resulting in anomalies. To
accurately characterize sensor observations under such conditions, the following adjusted
measurement equation is proposed:

zm
s

{
zm

s + ξ, i f Sensor s is attacked
zm

s , otherwise.
(2)

where ξ represents the signal effect caused by an attacker, rather than the attack itself.
The challenge of attack recognition primarily involves accurately distinguishing whether
measurements are merely disturbed by noise or corrupted by an attack. To address this,
we propose a two-pronged solution. Firstly, a data feature extraction strategy, denoted by
E(·), is essential for isolating the relevant data features em

s from sensor measurements, as
illustrated below.

em
s = E(zm

s ). (3)

Subsequently, it is necessary to devise a recognition strategy, denoted as K(·), which
establishes an anomaly decision boundary. This strategy is intended to further determine
whether the sensor measurement zm

s represents a normal operation or an attacked sensor
measurement za

s and recognizes an attacked sensor Sa. This approach is detailed in the
following section.

Sa = s i f em
s /∈ K(em

s ) (4)
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an attacker 

Legitimate input 
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Target sensor

Misleading 

autonomous 

vehicles to the 

wrong trajectory
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Figure 2. Problem statement.
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4. Proposed Framework

Figure 3 depicts the architecture of our proposed framework. Our approach is struc-
tured into three key components: feature extraction using a system model, prediction using
the Gaussian Process and recognition using uncertainty quantification.

GPS

LiDAR

IMU

Camera

...

Feature extraction 

using system 

model

 Prediction using 

Gaussian processData 

feature

Recognition using 

uncertainty 

quantification

Uncertainty quantification

Attacked 

sensor

Figure 3. Architecture of the proposed framework.

4.1. Feature Extraction Using System Model

In the feature extraction phase, the perception system is modeled to systematically
extract relevant data features. Perception systems are mainly divided into localization
systems and detection systems. On the side of the localization system, the vehicle dynamics
model formulation for the positioning system is as follows:x

y
θ


k+1

=

x + v
ω (sin(θ + ω∆t)− sin(θ))

y + v
ω (cos(θ)− cos(θ + ω∆t))

θ + ω∆t


k

. (5)

In the described system, the input data features for the localization subsystem in a
Gaussian Process (GP) include position coordinates (x, y), velocity v, yaw angle θ, turn
rate ω, and time interval ∆t, with k serving as the time index. The position and angular
information are derived through the fusion of multiple sensors, including LiDAR, GPS,
and IMU.

On the side of the detection system, the model is characterized by the Intersection
over Union (IoU) metric between LiDAR and stereo cameras, which supports object de-
tection and tracking. The GP of the detection system utilizes the previous moment’s IoU,
IoUid

t−1, identifier id, and angle αid
t−1 as inputs. This modeling approach is articulated in the

subsequent formulation.

IoUid
t = [

Arealidar ∩ Areacam1

Arealidar ∪ Areacam1
,

Areacam1 ∩ Areacam2

Areacam1 ∪ Areacam2
] = [IoUid

t,1, IoUid
t,2], (6)

In this formulation, id denotes the object identifier obtained from object tracking, as
referenced in [12]. The right-side stereo camera serves as the reference camera. Arealidar
represents the area where the LiDAR 3D object detection box projects onto the image
plane of the reference stereo camera, denoted as cam1. The areas Areacam1 and Areacam2
correspond to the 2D object detection regions captured by the stereo cameras within the
reference coordinate system. IoUid

t,1 quantifies the overlap between LiDAR and the reference
camera’s object detection results for the object identified by id at time t. Similarly, IoUid

t,2
measures the IoU for the stereo camera detection of the same object at the same time.

4.2. Prediction Using Gaussian Process

GP predicts the uncertainty quantification as the anomaly boundary. The GP charac-
terizes a collection of random variables, wherein any finite subset follows a joint Gaussian
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distribution [8]. In the context of state x̂t ∈ RD, action ut ∈ RU and system noise wa, the
stochastic system dynamics of x are expressed as follows:

x̂t+1 = f (x̂t, ut) + wa, (7)

where x̃t := (x̂t, ut) denotes the training input tuples, and yt := x̂t+1 represents the
corresponding outputs. Define σ2

wa as variance, where a is the dimension index with
a = 1, . . . , D. U represents the dimension of action. The system noise is modeled as
wa ∼ N (0, σ2

wa). The objective is to train a GP to capture the latent function yi
t = fi(x̃t) +wi,

and the associated covariance kernel function is expressed as follows:

ki(x̃, x̃′) = σ2
fi

exp
(
−1

2
(x̃ − x̃′)⊤ Ã−1

i (x̃ − x̃′)
)

, (8)

where σ2
fi

is the variance of fi and Λi is the diagonal matrix of the length scales in the
kernel. Let the input and output sets of samples be denoted as X = [x̃1, . . . , x̃N ] and
Y = [y2, . . . , yN+1], respectively. The hyperparameters of the GP model θa = [σ2

fi
, Λ̃i, σ2

wi
]

are learned by maximizing the log marginal likelihood using evidence maximization [8,13].

log p(Y i|θi)=− N
2

log(2π)−1
2
|Ki+σ2

wi
I2|−1

2
YT

i βi, (9)

where Ki is the matrix with elements calculated in Equation (8), βi = (Ki + σ2
wi

I)−1Yi. For
any new input x̃∗, the learned GP provides the posterior mean and variance as follows:

m fi
(x̃∗) = kT

i∗(K
i + σ2

wi
I)−1Yi = kT

i∗βi, (10)

σ2
fi
(x̃∗) = ki∗∗ − kT

i∗(K
i + σ2

wi
I)−1ki∗, (11)

where ki∗ = ki(X̃, x̃∗), ki∗∗ = ka(x̃∗, x̃∗).
To ensure adaptability, this study integrates sparse computation and sliding windows

with GP. Sparse Gaussian Processes [14] approximate the GP kernel using inducing points,
reducing computational complexity. By partitioning the input space into sub-regions deter-
mined by the sliding window width s, each window selects inducing points to approximate
the covariance matrix. This approach significantly reduces computational requirements
compared to using all data points. Furthermore, integrating sliding windows with GP
facilitates incremental learning, enabling adaptation to dynamic datasets. Upon new data
arrival, the model updates by adjusting inducing points and the covariance matrix within
the current sliding window, avoiding recomputation of the entire dataset’s covariance
matrix, as shown in Figure 4. This local update mechanism effectively supports efficient
model adaptation. To ensure real-time performance, parallel computation is employed.
Tasks are distributed across multiple processors or nodes, allowing concurrent computation
of inducing point selection and covariance matrix updates within each sub-region defined
by the sliding window. GPU acceleration further enhances computation efficiency by
accelerating large-scale matrix operations and optimizations. This integrated approach,
combining sliding windows and sparse GP, enhances efficient incremental learning and
effectively adapts to intelligent driving datasets. Concurrently, the GP in the detection
system outputs the IoU values IoUid

t for each time t and object id. In the localization system,
the GP outputs the position increment ∆xg

t and orientation increment ∆θ
g
t over time.
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Perform inference with model B

Train sparse Gaussian process 
model B by previous sliding 

window data 

time 
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tt-1

Train sparse Gaussian process 
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window data 
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t-s

The sliding window size is denoted as s 

Figure 4. The combination of sliding window and sparse Gaussian Process.

4.3. Recognition Using Uncertainty Quantification

Attack recognition compares the data features with the uncertainty quantification
predicted by the GP to achieve attack recognition. If the measurements fall within the
uncertainty quantification Ct shown in the following, we conclude that there is no attack.

Ct = m fi

(
x̃∗
)
± z ∗

√
σ2

fi

(
x̃∗
)
, (12)

where z is quantile points of the standard normal distribution with a certain confidence
level. Conversely, if the measurements are outside the uncertainty quantification, an attack
is recognized, completing the detection process. Ct of the localization system is specified as
the following.

Ct = [Cx
t , Cy

t , Cθ
t ]. (13)

If the displacement measurements (∆xg
t , ∆yg

t ) or (∆xl
t, ∆yl

t) exceed the corresponding
uncertainty bounds Cx

t and Cy
t , the affected sensor will be identified as compromised.

Similarly, if the orientation measurement of the IMU ∆θt deviates beyond its specified
uncertainty quantification Cθ

t , the IMU will be designated as the attacked sensor. Moreover,
the detection system incorporates multiple objectives, each associated with a specific
uncertainty quantification Cid

t , defined as follows:

Cid
t = [Cid

t,1, Cid
t,2]. (14)

If IoUid
t,1 deviates from Cid

t,1, while IoUid
t,2 remains within Cid

t,2, the system infers a
potential attack on the LiDAR. Conversely, if IoUid

t,1 adheres to Cid
t,1, but IoUid

t,2 diverges
from Cid

t,2, the inference points to a potential attack on the camera. In situations where both
the IoU between the LiDAR and camera detection boxes, and the IoU between detection
boxes of the stereo cameras, fail to align within their respective confidence intervals, the
system hypothesizes that both the camera and the LiDAR might be vulnerable to attacks.

5. Experimental Results
5.1. Experimental Setup

In this section, we demonstrate the proposed framework on the real-world KiTTI
dataset [15] under the LiDAR spoofing attack (LSA) and LiDAR replay attack (LRA). We
use four driving scenarios including city, residential, campus, and road environments, as
shown in Figure 5. We conduct a thousand experiments each for LRA and LSA attack types,
totaling eight thousand experiments. To collaboratively achieve the functionality of the
perception system, it is essential to align the data from sensors with different sampling
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frequencies. Given that the LiDAR has the lowest sampling frequency, set at 10 Hz, the
time index is 0.1 s. We set the attacks to occur randomly once with a time index length of
12,000 and an anomaly sampling rate of 0.025%, because multiple attacks can lead to error
accumulation and real-world attackers do not engage in sustained attacks on a moving
vehicle [2]. We design LRA based on previous experiments [16]. LRA was designed to
happen at a randomly selected time index, while the delay of the recorded video was
chosen randomly from 3 to 5 second. LSA is simulated based on the experimental results
in [11]. We randomly selected two forward beams at an angle of 10◦ from the origin of the
LiDAR coordinate system. We choose a distance between 12 m and generate 120 random
pseudo points at this distance between the two selected beams. The height of all pseudo
dots does not exceed 1.7 m, which is the typical height of a vehicle.

City Residential Campus Road

• Frequent lane changes and 

stops/starts of vehicles;

• Complex road structures 

with dense traffic and 

intricate ground textures

• Vehicles travel at stable 

speeds with infrequent lane 

changes and stops

• average color and contrast

• Vehicles move at slower 

speeds with frequent 

stopping behavior

• need for detection of small 

objects

• Vehicles move at lower 

speeds over short distances

• complex structures and 

varying terrain

Figure 5. Driving scenarios in intelligence driving.

Based on extensive experimental validation, this study determined optimal parameter
settings to enhance model performance. Specifically, a sliding window size of four thousand
time indexes was chosen to capture dynamic changes in time-series data for the proposed
framework in the localization system. Additionally, 450 inducing points were selected
to optimize the computational efficiency and prediction accuracy of the GP model. In
addition, sliding window sizes of 3600 and 350 inducing points were chosen for the pro-
posed framework in the detection system. Moreover, a radial basis function was adopted
as the kernel function due to its broad adaptability and robust expressive power when
handling diverse datasets. We conducted a three-fold cross-validation on a dataset con-
sisting of 12,000 time index data, uniformly dividing them into three subsets for model
training and validation purposes. Subsequently, we selected the optimal number of in-
ducing samples, window size, and kernel function based on the best performance met-
rics. The implementation of these models and computational parameters was accom-
plished using the GPflow and TensorFlow frameworks [17], both of which support efficient
parallel computation.

5.2. Discussion and Analysis

The experimental results, presented in Table 1, demonstrate the effectiveness of our
proposed framework for the localization system under LRA. In this particular test, the
LRA occurs at time index 203, resulting in a ∆X of −0.54 m. These values indicate that
the LiDAR position measurements have been falsified to neighboring positions. Figure 6
presents the experimental results of the proposed framework in the localization system,
showing that ∆xl

203 and ∆yl
203 of LiDAR exceed Cx

t and Cy
t predicted by the GP. LSA spoofs

the LiDAR object detection algorithm into incorrectly detecting the position of the object.
Figure 7 shows the experimental results of the proposed framework in the detection system.
From Figure 7, we observe that IoU39

4,1 exceeds the uncertainty quantification, while IoU2,t
does not report any anomaly. Table 2 shows the statistical results of the consistency data for
the attacked LiDAR and stereo cameras. The table indicates that the consistency between
the LiDAR and the camera changes drastically when the attack occurs, resulting in an
IoU39

4,1 value of −3.80, which is outside the uncertainty quantification range of [−3.56, 2.50].
Notably, the LSA does not affect the consistency between the stereo cameras, so IoU39

4,2
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remains within the GP-predicted uncertainty quantification. From these results, we can
conclude that the LiDAR is under attack.

Table 1. Statistical results of proposed framework in localization system under LiDAR replay attack.
The bold data represents the attack time.

Time Index ∆xg
t ∆yg

t ∆xl
t ∆yl

t ∆θt Cx
t Cy

t Cθ
t

200 0.27 0.63 0.34 0.30 −0.04 [0.32, 2.71] [−0.21, 2.14] [−0.36, 0.45]
201 0.29 0.63 0.34 0.31 −0.03 [0.17, 2.56] [−0.31, 2.02] [−0.35, 0.46]
202 0.33 0.70 0.34 0.36 −0.03 [0.37, 2.70] [−0.18, 2.12] [−0.35, 0.46]
203 0.31 0.64 −0.54 0.34 −0.01 [0.36, 2.70] [−0.17, 2.10] [−0.34, 0.47]
204 0.32 0.63 0.37 0.39 −0.01 [0.20, 2.55] [−0.28, 1.97] [−0.34, 0.48]

Table 2. Statistical results of proposed framework in detection system under LiDAR spoofing attack.
The bold data represents the attack time.

Time Index id IoUid
t,1 IoUid

t,2 Cid
t,1 Cid

t,2 Result

4

39 −3.80 −0.95 [−3.56, 2.50] [−4.34, 4.25]

LiDAR attack

28 0.16 −1.43 [−3.26, 4.28] [−4.36, 4.56]

55 0.72 0.26 [−4.49, 4.77] [−4.22, 3.06]

43 −0.43 0.42 [−2.94, 4.21] [−4.24, 4.16]

40 0.46 0.20 [−4.48, 4.07] [−4.63, 3.83]

Attack moment

Attack moment

Attack moment

Figure 6. Experimental result of proposed framework in localization system under LiDAR replay attack.

Attack moment

Attack moment

Figure 7. Experimental result of proposed framework in detection system under LiDAR spoofing attack.

To highlight the performance of the proposed framework, we select the optimization-
based attack against control systems (OACS) with cumulative sum (CUSUM)-based anomaly
detection [2] for evaluating the localization system and the LiDAR and image data fusion
for perception attack detection (MDLAD) [1] for assessing the detection system. Figure 8
illustrates the accuracy and false alarm rate variation of the proposed framework, OACS
and MDLAD retrained in the KiTTI dataset under sensor attacks. The proposed framework
in the localization system consistently maintains a 100% accuracy and 0% false alarm rate
in four driving scenarios. In contrast, OACS achieves an average accuracy range of 93.15%
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in road environments, with a moderate decline of 1.57% in city scenarios. The proposed
framework achieves an average accuracy of 95.05% across the four driving scenarios, which
represents an improvement of 3.28% compared with MDLAD. It is worth noting that both
OACS and MDLAD rely on fixed thresholds based on data distribution and depth maps
as decision boundaries for attack recognition. Depth map-based MDLAD suffers from
inadequate adaptability primarily due to the complexity and variability of driving scenar-
ios. Different driving scenarios such as city, road, residential areas and campuses exhibit
diverse road structures, traffic densities and types of obstacles, which depth maps often
fail to capture fully. Furthermore, depth maps, generated by LiDAR or stereo cameras,
are susceptible to environmental factors like lighting conditions, weather variations, and
occlusions. In contrast, our approach excels in adaptability by dynamically generating
decision boundaries based on the current data.

Figure 8. Adaptive analysis of proposed framework.

Our proposed framework merges GP with sparse computation and sliding window
techniques, which offer substantial benefits for tasks involving incremental learning at-
tack recognition. This mechanism leverages sparse computation methods enhancing the
efficiency of GP application on large-scale datasets. The integration of sliding window
techniques allows the GP model to be continuously updated, retraining the model with the
most recent subset of data to achieve incremental learning and dynamically adapt to data
changes. Additionally, GP naturally offers uncertainty quantification in predictions, which
enhances the flexibility and robustness of detection by dynamically adjusting recognition
based on data distribution. The proposed framework achieved an average false alarm
rate of 0% in four driving scenarios, with a 4.23% reduction in false alarm rate compared
to OACS. Although the MDLAD based on depth maps effectively handles the nonlinear
relationships associated with complex spatial information, depth maps are prone to noise
and data incompleteness due to occlusion and poor reflection. The proposed framework
achieved an average false alarm rate of 3.03% in the detection system, which is 3.43%
lower than that of MDLAD. Therefore, compared to MDLAD and OACS, the proposed
framework demonstrates better adaptability across various driving scenarios.

6. Conclusions

In this paper, we integrate the intelligent driving system model with GP to propose an
approach for incremental learning-based sensor attack recognition in intelligent driving
systems using GP. We first perform data feature extraction of the localization system and
the detection system by combining the vehicle dynamics model and the object tracking al-
gorithm, respectively. Further GP predicts the uncertainty quantification of the data feature
as the incremental learning detection boundary. Finally, we implement two common sensor
attacks to verify the feasibility of the method and compare the experimental results with
previous state-of-the-art methods to validate the superior incremental learning performance
of the proposed framework. Future research directions include exploring advanced object
tracking algorithms and refining vehicle dynamics models to enhance the adaptability
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of the proposed framework. Additionally, integrating machine learning techniques and
addressing specific sensor attack scenarios are key areas for further investigation and
improvement of intelligent driving security.
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