
Citation: Song, S.; Qiu, Y.; Coates,

R.L.; Dobbelaere, C.M.; Seles, P. Depot

Charging Schedule Optimization for

Medium- and Heavy-Duty

Battery-Electric Trucks. World Electr.

Veh. J. 2024, 15, 379. https://doi.org/

10.3390/wevj15080379

Academic Editor: Zonghai Chen

Received: 13 July 2024

Revised: 10 August 2024

Accepted: 14 August 2024

Published: 21 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Depot Charging Schedule Optimization for Medium- and
Heavy-Duty Battery-Electric Trucks
Shuhan Song *, Yin Qiu , Robyn Leigh Coates, Cristina Maria Dobbelaere and Paige Seles

CALSTART, 48 S Chester Ave, Pasadena, CA 91106, USA; yqiu@calstart.org (Y.Q.); rcoates@calstart.org (R.L.C.);
cdobbelaere@calstart.org (C.M.D.); qseles@calstart.org (P.S.)
* Correspondence: ssong@calstart.org

Abstract: Charge management, which lowers charging costs for fleets and prevents straining the
electrical grid, is critical to the successful deployment of medium- and heavy-duty battery-electric
trucks (MHD BETs). This study introduces an energy demand and cost management framework that
optimizes depot charging for MHD BETs by combining an energy consumption machine learning
model and a linear program optimization model. The framework considers key factors impacting
real-world MHD BET operations, including vehicle and charger configurations, duty cycles, use cases,
geographic and climate conditions, operation schedules, and utilities’ time-of-use (TOU) rates and
demand charges. The framework was applied to a hypothetical fleet of 100 MHD BETs in California
under three different utilities for 365 days, with results compared to unmanaged charging. The
optimized charging solution avoided more than 90% of on-peak charging, reduced fleet charging
peak load by 64–75%, and lowered fleet energy variable costs by 54–64%. This study concluded that
the proposed charge management framework significantly reduces energy costs and peak loads for
MHD BET fleets while making recommendations for fleet electrification infrastructure planning and
the design of utility TOU rates and demand charges.

Keywords: medium- and heavy-duty; battery-electric truck; charging optimization; demand-side
management; infrastructure modeling and planning; utility rate design

1. Introduction

Medium- and heavy-duty (MHD) battery electric trucks (BETs) have experienced
accelerated adoption in real-world operations, driven by greenhouse gas (GHG) emissions
reduction plans at state- and nation-level, promoted by electric vehicle (EV) sales and
adoption regulations, demonstration projects, and incentives and tax credits programs
from leading states. Reducing GHG emissions from the transportation sector through fleet
electrification was highlighted in the President’s Long-Term Strategy of the United States to
reach net zero by 2050 [1]. Many states in the U.S. have adopted state-level GHG emission
reduction goals to protect climate resiliency and environmental benefits and emphasized the
big potential of emission reduction from transitioning to zero-emission transportation [2–4].
A total of 1851 federal and state laws, regulations, and funding opportunities for EVs have
been established, with 686 entries applicable to commercial users [5] to promote achieving
the commitment. As part of many efforts [6] to reach its air quality and climate targets of
reducing GHG emissions by 40% by 2030 and 80% by 2050, California sets zero-emission
truck (ZET) sales target for MHD truck or chassis manufacturers in the Advanced Clean
Truck (ACT) Regulation [7]. Specifically, by 2035, zero-emission truck or chassis sales would
reach 55% for Class 2b–3 truck sales, 75% of Class 4–8 straight truck sales, and 40% of
truck tractor sales in California annually [7]. In a similar position that aims to reduce GHG
emissions and improve air quality and climate resiliency, many states in the United States
have adopted ACT to set targets of zero-emission MHD truck sales by 2035, including
Oregon [8], Washington [9], Maryland [10], New York [11], New Jersey [12], Vermont [13],
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Massachusetts [14], Rhode Island [15], Colorado [16], and New Mexico [17]. As a result, the
ZETs population has been growing rapidly. As of December 2023, more than 30,000 ZETs
have been deployed in the US, with approximately 25,378 ZETs deployed in 2023 alone [18].
While EVs only represent a small portion of the nationally registered trucks of 12.95 million
in 2023, more than 10 states had doubled or even increased by five-fold the deployments of
ZETs from 2022 to 2023 [18], indicating a strong year-over-year growth in the ZET market.

MHD BETs fulfill certain fleets’ duty cycle requirements for operations and serve
as a cleaner and more cost-effective solution than alternative fuel trucks. California Air
Resources Board has funded several pilot projects in preparation for transportation electri-
fication to support large-scale fleet adoption of MHD ZEVs and to deploy MHD BETs and
electric vehicle supply equipment (EVSE) at freight facilities near disadvantaged communi-
ties endangered by local air pollution. These pilot projects have revealed that MHD BETs
can meet a fleet’s required duty cycle on shorter regional haul routes while significantly
reducing its greenhouse gas emissions and operational costs [19,20]. Heavy-duty BETs
also generate fewer life cycle emissions, costs, and externalities than other alternative
fuel heavy-duty trucks, including biodiesel B20, compressed natural gas, and hybrid-
electric [21], making them more effective in reducing GHG emissions and reaching net
zero targets.

To reach federal and state net-zero GHG emission goals and remediate climate change,
many fleets currently using diesel vehicles will either be mandated or incentivized to
adopt BETs soon [6], which urges all stakeholders to prepare for the significant transition.
As an influx of MHD BET fleets begins charging their vehicles, utilities responsible for
providing communities with electricity need to prepare for the demand from such large-
scale transportation electrification. Unmanaged charging events—where EV users plug
in their vehicles without regard for grid conditions—present a challenge for utilities to
improve grid resilience or the ability of the grid system to prevent, mitigate, and recover
from wide-area, long-duration outages [22]. There are multiple strategies utilities use
to influence users’ electricity usage and incentivize the management of peak loads. The
time-of-use (TOU) rate plans encourage users to shift their electricity usage to the times of
day when demand is lower by setting up lower electricity rates during those times [23,24].
Utilities also employ demand charges that are based on a customer’s maximum power draw
over a time interval to recover the costs of providing sufficient generation and distribution
capacity [25]. These new utility policies, in turn, add an additional layer of complexity for
diesel fleets transitioning to electric fleets. Under a utility rate structure that incorporates
both TOU rates and demand charges, an electric truck fleet can possibly incur high TOU
costs with high demand charges if the entire fleet of EVs converged to recharge energy
simultaneously at times of high electricity rates to meet operation requirements [26]. This
undesirable situation could be averted and transformed into substantial operational cost
savings by implementing proactive charging management strategies within fleets.

With the constantly evolving utility policy landscape, fleets must understand how to
manage charging effectively to maximize their operational cost savings when electrifying
a diesel fleet. Charging limitations can complicate the deployment of BETs and create a
challenge for fleets to sustain their daily operations [27]. Data on real-world MHD freight
trucks are new and scarce, and the industry is still learning best practices to transition
to BET operations [28]. Without the adequate resources needed to develop a fleet electri-
fication strategy, fleets switching from diesel vehicles—who have never had to consider
electricity TOU rates, electricity demand management, EVSE procurement, or infrastructure
installation as part of their operations—may encounter difficulty scaling and choosing the
proper configuration of chargers for their BETs and may default to unmanaged charging
schedules, which can lead to higher operational costs for fleets.

Past EV deployment projects have demonstrated that fleets may reduce their energy
variable costs while improving the reliability of their electrical infrastructure through the
adoption of charge management strategies. Prohaska et al. (2016) [29] reported that at
Frito–Lay North America’s Federal Way facility, the fleet reduced their peak demand by up
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to 23% with the addition of a tuning parameter in their managed charging system, thus
reducing their opportunity charging power demand from 138 kilowatts (kW) to 106 kW and
their energy bills by 6–12%. Similarly, simulated managed charging scenarios for Stockton
Unified School District’s electric buses flattened power demand to 689 kW, which saved
the bus fleet more than $11,000 each month [30]. As part of the Goodwill Industries Electric
Vehicle project, the fleet developed a staggered charging schedule where a maximum of
three chargers ran at any one time based on their evaluation of utility-rate options for their
facilities to estimate their energy variable costs, demonstrating that fleet understanding
of utility pricing is integral to develop successful charge management strategies [31].
Opportunity charging, a charging pattern where vehicles are plugged in and charged
whenever they are not in use, is a common strategy for fleets—particularly for off-road
EVs such as yard tractors that are in use around the clock during daily operations [29,32].
However, as a strategy, it is not always cost-efficient or accommodating of on-road EV
schedules [33].

The current research focused on EV charge management has yielded several sophis-
ticated optimization models to address the financial and environmental impacts of un-
managed charging schedules. Liu et al. (2021) [34] took on the issue of scheduling EVs
with a limited number of chargers for cost reduction while supplying energy demand for
each vehicle. They used a bilevel programming model where the upper level determines
the available charging time of EVs through a mixed nonlinear integer program, and the
lower level solves the charging power by responding to the charging window and TOU
rates through a linear program. Zhou et al. (2019) [35] used game theory to design a
distribution scheduling scheme for EV charging where charging cost was reduced by 44.2%
compared with a baseline scheduling algorithm. Apart from most research that adopted
algorithm-based models, Shah et al. (2014) [36] combined machine learning models for
load profile prediction on building and EV loads with traditional load control techniques.

Charge management algorithms were developed for electric buses to optimize both
depot and route charging schedules and infrastructure deployment. Jahic et al. (2019) [37]
developed an optimization model for large-scale electric bus depot charging scheduling to
minimize peak load. Their optimization framework proposes a greedy-logic algorithm and
a heuristic algorithm that iteratively minimizes peak demand to choose charging intervals
for each electric bus. The greedy schedule reduced peak load from unmanaged charging
scheduling by 24.4–37.7%, while the heuristic schedule reduced peak load by 27.1–42.6%.
In their model, however, they do not consider utility TOU rates and operational costs for
bus fleets. He et al. (2020) [38] used linear programming to optimize bus scheduling for
multiple bus lines, considering partial charging, demand charges, TOU rate structure, and
smart charge management. They identified the strong potential of linear programming
in real-world applications and concluded that the model could reduce total charging
costs by 33.8–66.2% in comparison to unmanaged charging. He et al. (2023) [39] then
developed a more comprehensive optimization framework modeling electric bus trip
scheduling using both enroute and depot charging, vehicle battery state of charge (SOC),
managed charging scenarios with peak demand control, and chargers equipped with
multiple outlets to minimize a bus fleet’s total cost of ownership. They used a tailored
genetic algorithm-based solution approach with nonlinear constraints in vehicle scheduling
and linear constraints in the charging scheduling modeling. Alternative scenarios were
found to have a higher total amortized daily cost of ownership by 5.5–24.9% than the
optimized scenario. Though comprehensive, their framework is limited to electric buses
and cannot be applied adequately to other MHD EVs.

Most of the current literature on charge management was based on electric light-duty
passenger vehicles or transit vehicles such as buses and vans. Electric light-duty passenger
vehicles or transit vehicles have use cases distinct from drayage and freight movement
applications [37,39], given (1) that buses generally operate on more fixed routes than
trucks and (2) the complexity of real-world vehicle efficiencies and energy consumption.
The distinct use cases of vehicle models, along with geographic and climate factors, can
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result in variations in vehicle energy efficiencies and consumption in operations [40].
Drayage, short-haul, and mid-haul freight operations are leading the electrification in
MHD freight transportation, as vehicles under these use cases regularly return to the
fleet depot and recharge during dwelling hours using onsite chargers [41]. Installing
depot chargers mitigates the risk of operational delay caused by long wait times at public
charging stations, as low-power depot charging is identified as the main charging solution
for MHD BETs [42]. Therefore, effective energy consumption estimation and infrastructure
and charging management at fleet facilities are crucial for appropriately scaling charger
capacities to meet vehicle operational requirements while optimizing fleet operational costs
and controlling the impact of depot high peak load [26] on the national grid.

Given that existing depot charging optimization models for MHD BET fleets in the
current literature tend to oversimply the estimation of vehicle energy consumption on a
daily basis, and considering the importance of depot charging to fleets leading the electrifi-
cation transition, this study establishes a framework to predict the energy consumption
requirements of an MHD BET fleet and optimize its depot charging schedules. Section 2.1
elaborates on the framework, detailing the machine learning model trained on real-world
operational data from MHD BETs in the US, as well as the linear programming model
that minimizes energy costs and fleetwide peak load. To assess its feasibility and impact,
the optimization framework was applied to a hypothetical freight movement fleet under
three different electricity utilities in California, as described in Section 2.2. Section 3.1
provides a detailed examination of the optimized charging schedule on an example day
to illustrate how the algorithm approaches depot charging optimization. Section 3.2 com-
pares the fleetwide charging load profile, while Section 3.3 analyzes the differences in fleet
energy variable costs between managed and unmanaged charging scenarios. Section 3.4
emphasizes the importance of utility demand charges for effective fleet energy demand
management. The paper closes with Section 4, which concludes the scale of cost savings
and peak load reduction by adopting fleet depot charging optimization, the benefits and im-
plications to fleet operators, electricity utilities, and policymakers, along with suggestions
for future studies.

2. Materials and Methods
2.1. Optimizing Truck Fleet Depot Charging to Minimize Fleetwide Charging Cost

The developed modeling framework consists of two models: an energy consumption
machine learning model and a fleet depot charging optimization model (Figure 1). The ma-
chine learning model predicts the daily energy consumption of an MHD BET given data on
vehicle operation [40], which is then used in the optimization model with data on vehicles,
chargers, and electricity utility rates used by the fleet to optimize charging schedules at the
individual vehicle level, with the objective of minimizing fleetwide energy peak demand
and variable costs. Various operational factors are considered in the framework, including
vehicle configurations, use cases, duty cycles, dwell hours, energy and SOC requirements,
charger configurations, fleet locations, utility TOU rate, and demand charges.
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2.1.1. Energy Consumption Machine Learning Model

The machine learning model developed by Qiu et al. (2023) [40] was applied using
supervised machine learning to predict the daily energy efficiency of a selected vehicle
model in a selected city, which the result is then converted to daily energy consumption
through multiplication to daily distance traveled by the vehicle. The energy efficiency
model was built on a gradient boosting algorithm (R2 = 0.77) and trained on 26,724 vehicle
days of real-world MHD EV performance data collected through the U.S. Department of
Energy’s (DOE) Medium- and Heavy-Duty EV Deployment: Data Collection project [43].
It considered over 20 real-world predictors (Table 1) that can influence vehicle efficiency,
such as duty cycle, climate, road grade, congestion, vehicle configurations, use cases, and
geographies. Some features, such as driving speed, congestion, ambient temperature, and
total distance, are found in the machine learning model to be more important than others
in determining vehicle energy efficiency. That indicated the importance of simulating the
more realistic energy consumption using various combinations of duty cycles and climates
in the selected localities throughout a year of 365 days.

Table 1. Input features used in the energy consumption machine learning model.

Feature Groups Features

Duty Cycle Average Driving Speed, Total Distance, Total Run Time, Driving Time, Idling
Time Percentage

Vehicle Configuration Manufacturer, Model Name, Model Year, Weight Class, Vehicle Platform, Body
Style, Rated Energy, Nominal Range, Estimated Payload

Use Case Vocation, Sector
Geography Region, State
City Profile—Climate Average Ambient Temperature, Average Precipitation
City Profile—Road Average Road Grade
City Profile—Congestion Annual Hours of Delay (general roads or highways)

2.1.2. Fleet Depot Charging Optimization Model

This section unfolds the optimization model for fleet depot charging to minimize
fleetwide peak demand and electricity variable cost, including TOU and demand charge.
The objectives and constraints of linear programming are unfolded and explained. An
iterative process used to find the minimal feasible fleetwide peak load is elaborated.
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Let variable xvct denote a non-negative hourly charging duration for vehicle vk ∈ V,
charger type c ∈ C, and dwell hour t ∈ T, where V denotes a set of vehicles that can be
classified into vehicle type k ∈ K. Thus, variable xkct denotes the hourly charging duration for
all vehicles in a vehicle type k. Let d ∈ D denote overnight dwell hours and m ∈ M denote
midday break hours. Let εc denote charger efficiency, and ρc denote the charger’s rated
maximum power of charger type c ∈ C. Charger efficiency εc accounts for the energy loss
between energy drawn from the grid and energy received by a vehicle. Let Ek denote the
predicted daily energy consumption of vehicle type k ∈ K. Let αk denote the maximum
percentage of daily energy to be replenished during midday break for the prior shift for
vehicle type k ∈ K. Let Bk denote the battery capacity of vehicle v with vehicle type k ∈ K. To
return a charging schedule that can prevent using 100% SOC of a vehicle’s batteries during
operation to maintain battery health, the optimization algorithm employed variable βk, k ∈ K,
the minimum SOC before overnight charging, into modeling. Let rt denote the utility TOU
rate at dwell hour t ∈ T and γ denote the monthly facility demand charge rate.

The following linear program (LP1) is used to find the minimal viable TOU cost of the
fleet when absent of controlling demand:

min ∑V
v=1 ∑T

t=1 ∑C
c=1 xvct ρc rt (1)

subject to

∑C
c=1 xvct ≤ 1, ∀ v ∈ V,∀t ∈ T (2)

xkct ≤ |C|, ∀c ∈ C , ∀t ∈ T, ∀k ∈ K (3)

∑T
t=1 ∑C

c=1 xvct εc ρc = Ek, ∀ v ∈ V, ∀k ∈ K (4)

∑C
c=1 ∑D

d=1 xvcd εc ρc ≤ Bk
(

1 − βk
)

, ∀v ∈ V, ∀k ∈ K (5)

∑C
c=1 ∑M

m=1 xvcm εc ρc ≤ Ek αk, ∀v ∈ V, ∀k ∈ K (6)

The objective (1) of LP1 is set to find the hourly charging duration xvct for each vehicle
in each dwell hour that minimizes the total TOU cost of the fleet by summing the product
of charging duration xvct, the charger’s rated maximum power ρc and the utility TOU rate
rt across all vehicles and all dwell hours. Constraint (2) ensures that each vehicle charges
no more than one hour from all possible chargers in a dwell hour. Constraint (3) ensures
that the total charging time of all vehicles in any vehicle type cannot exceed the charger
counts of the corresponding charger types in a dwell hour. Constraint (4) ensures that each
vehicle charges the predicted daily energy consumption from all chargers and through all
dwell hours after accounting for charger efficiency. Constraint (5) sets the maximum energy
to be charged from all chargers during overnight dwell hours for each vehicle. Constraint
(6) regulates the maximum energy to be charged from all chargers during midday break
hours for each vehicle.

The objective value of LP1 (Objval1) is computed and used in a second linear program
(LP2) coupled with iterations to find charging scenarios that minimize the overall maxi-
mum hourly energy demand of the fleet (Figure 2). A list of all possible fleetwide charging
power—created given charger-rated maximum power and number of vehicles—is filtered
to all values equal to or above the fleet flat charging rate f, calculated by dividing the fleet
daily total energy consumption by the total dwell hour. The filtered list, coupled with the
ceiling of rate f, is sorted in ascending order to form a list of all possible fleetwide hourly
energy demands of the fleet, denoted as list P. The iteration starts from the first element in
list P, running LP2, until finding the ith element pi in list P, given which LP2 could have a
valid solution.

LP2 inherits all constraints from LP1 and has the following objective (7) and the new
constraints (8) and (9):

min∑C
c=1 ∑V

v=1 xvct ρc where t= tT (7)
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subject to
Constraints (2)–(6)

∑V
v=1 ∑T

t=1 ∑C
c=1 xvct ρc rt ≤ Objval1 + f · · · γ/30 (8)

∑C
c=1 ∑V

v=1 xvct ρc ≤ pi, ∀t ∈ T (9)

Objective (7) is set to find the charging duration of all vehicles in the last dwell hour tT
that minimizes its hourly energy demand. Constraint (8) sets the new TOU cost to be no
greater than the minimized TOU cost found by LP1 plus the daily demand charge under
the fleet flat charging rate. Constraint (9) regulates hourly energy demand to be no more
than the ith element in the ascending list of all possible fleetwide energy demand for each
dwell hour.
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2.2. Scenario Case Study in Ontario, San Diego, and San Jose

To demonstrate the methodology and solutions of the developed optimization frame-
work, this section first predicts 365-day energy consumption for a hypothetical fleet of
100 trucks in three California cities: Ontario (ON), San Diego (SD), and San Jose (SJ). Each
city is served by a different utility with its own TOU rate and demand charge policy. With
the predicted energy consumption, an optimized charging schedule was created at the
truck level. Finally, this section compares the optimized electricity demand and costs to
unmanaged charging. The scenario case study captures temporal and spatial variations in
fleet operation and different utility rate designs of the three major providers in California.

2.2.1. Unmanaged Charging

Without charge management in place, truck fleets tend to charge on a predetermined
schedule when the dwell time begins. As the baseline scenario in this study, unmanaged
charging is defined as a charging method in which an EV is plugged in and starts to charge
immediately after operation. The vehicle keeps charging as fast as it can until it reaches
100% SOC or until the new operating shift begins [37,44].

2.2.2. Hypothetical Fleet Profile

The hypothetical fleet operates three types of electric trucks: 20 Class-8 day-cab
tractors, 50 Class-7 box trucks, and 30 Class-6 step vans (Table 2). Real-world truck models
and chargers were selected for each vehicle type. The step vans were coupled with both
Level 2 alternate current chargers and direct current fast chargers (DCFCs). Charging
efficiency accounts for the disparity between energy drawn from the grid being recorded
by the utility meter and energy received by the battery. The vehicle-to-charger ratio was
purposely chosen between 1:1 and 2:1, which was a range found to support future charging
needs of MHD ZEVs in California [45]. In addition, assuming chargers have a maximum of
two ports per station, this configuration allows operators to plug all trucks into chargers
at the same time and complete charging by configuring charging management software.
When two vehicles are charging simultaneously, the optimization model assumes that
the maximum charging rate per port will be equal to half of the maximum charging rate.
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A vehicle-to-charger ratio larger than the number of ports per charger would require a
standby worker to disconnect and reconnect trucks, thus increasing labor costs and making
charging plans during overnight hours less efficient.

Each truck type was planned to have slightly different midday dwell hours for op-
portunity charging, while overnight dwell hours were the same across all types: between
6 p.m. and 5 a.m. of the next day (Table 3). Trucks would start operation with 100%
SOC, recharge the predicted energy consumption fully for that day during the midday and
overnight dwell hours, and start operation at 5 a.m. on the next day with a full battery. The
minimum battery SOC at the beginning of overnight charging (Table 2) was set to protect
the battery from over-discharging. If a vehicle were modeled to deplete SOC lower than
the pre-set percentage, opportunity charging during the midday break would replenish
it. Midday opportunity charging was also capped by a percentage of the predicted daily
energy consumption. The cap prevents the framework from proposing charging plans
where predicted energy was fully recharged during the midday break while a certain
portion of it was consumed during the afternoon shift.

Table 2. Composition of trucks and charging infrastructure.

Vehicle Model Number
of Trucks

Battery
Capacity

Manufacturer
Rated
Range

Number of
Chargers and
Maximum
Charging Rate 1

Charging
Efficiency 2

Minimum
SOC at the
Beginning of
Overnight
Charge

Maximum % of
Predicted Energy
Use Charged
during Midday
Breaks

BYD 8TT day-cab
tractor (Class 8) 20 422 kWh 200 miles 20 of 185 kW 92% 20% 40%

Volvo VNR box
truck (Class 7) 50 565 kWh 275 miles 25 of 150 kW 93% 25% 0 (no midday

breaks)
XOS SV step van
(Class 6) 30 280 kWh 200 miles 20 of 19.2 kW

10 of 103 kW
96% of 19.2 kW
94% of 103 kW 15% 60%

1 Maximum charging rate refers to the maximum power the charging system can deliver to a vehicle. 2 Charging
efficiency accounts for the disparity between energy drawn from the grid as recorded by the utility meter and
energy received by the battery.

Table 3. Fleet vehicle operation and dwell schedules.

Vehicle Model Operation Hours Dwell Hours

BYD 8TT day-cab tractor (Class 8) 5 a.m. to 6 p.m.
(12 p.m. to 1 p.m. break)

6 p.m.–5 a.m.
12 p.m.–1 p.m.

Volvo VNR box truck (Class 7) 5 a.m. to 6 p.m. 6 p.m.–5 a.m.

XOS SV step van (Class 6) 5 a.m. to 6 p.m.
(10 a.m. to 11 a.m. break)

19.2 kW: 6 p.m.–5 a.m., 10 a.m.–11 a.m.
103 kW: 6 p.m.–5 a.m., 10 a.m.–11 a.m.

2.2.3. Predicting Daily Energy Consumption

Compared with a simple constant assumption of energy consumption rate from
the previous literature, the energy consumption machine learning model explained in
Section 2.1.1 provides a more realistic and scrutinized estimation of energy demand as a key
input to the optimization model [39]. Given their importance in the energy consumption
machine learning model [40], data on climate [46–48], congestion level [49], and road
grade [50–52] were collected for 365 days in 2023 in each city (Table 4). Duty cycles were
simulated for 365 days in 2023 by vehicle types based on real-world data from DOE’s
Medium- and Heavy-Duty EV Deployment: Data Collection project and reports on MHD
trucks [40,53,54] (Table 5).

Using the city profiles, geography of fleet locations, and truck duty cycles, energy
consumption was estimated by truck type and day throughout 2023 in the three California
cities (Figure 3). A Loess line was fitted to each plot to show the annual trend. Energy
use estimates were zero on some days when the trucks were not operated, such as during
weekends or holidays. Though the predicted energy use for each vehicle type did not vary
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substantially across cities overall, it captured the impacts of climate variations over the
year, as well as congestion and road-grade level differences across cities.

Table 4. City profiles of Ontario, San Diego, and San Jose (for climate data: mean and 95% confidence
interval (CI)).

City, State
Daily Average
Ambient
Temperature (◦F)

Daily
Precipitation
(Inches)

Congestion
Hour Delay
(Hours)

Average Road
Grade (%)

Ontario, CA 65.70 (±1.02) 0.0017 (±0.0004) 952,183,000 0.95
San Diego, CA 64.95 (±0.71) 0.0208 (±0.0088) 145,568,000 3.07
San Jose, CA 62.78 (±1.15) 0.0357 (±0.0158) 118,687,000 1.19

Table 5. Duty cycles for each vehicle model.

Vehicle
Model Metrics Total Distance

(Miles)

Driving
Time
(Hours)

Total Run
Time
(Hours)

Average
Driving
Speed (mph)

Idling Time
Percentage
(%)

BYD 8TT Day
Cab Tractor
(Class 8)

mean and 95%
CI

152.0
(140.3 to 163.7)

5.9
(3.6 to 8.3)

8.5
(5.8 to 11.3)

26.7
(21.4 to 32.0)

29.7
(23.3 to 36.1)

maximum 252.8 9.5 14.1 52.8 44.0

Volvo VNR
Box Truck
(Class 7)

mean and 95%
CI

65.8
(58.6 to 73.0)

2.3
(0.6 to 4.0)

4.3
(1.6 to 7.1)

30.5
(25.6 to 35.4)

43.1
(35.2 to 51.0)

maximum 123.8 5.2 14.7 52.3 89.7

XOS SV step
van (Class 6)

mean and 95%
CI

40.4
(30.7 to 50.1)

1.8
(0.2 to 3.5)

8.6
(4.2 to 13.1)

23.8
(16.7 to 30.9)

64.9
(54.1 to 75.7)

maximum 124.2 4.6 22.9 60.7 96.3
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Figure 3. Predicted energy use of Class-8 day-cab tractor, Class-7 box truck, and Class-6 step van in
Ontario (ON), San Jose (SJ), and San Diego (SD).

2.2.4. Utility Rate Structure in Three Service Territories

The value of demand-side flexibility has been increasingly recognized to support
evolving power system planning and operation. Utilities in Europe and the United States
have developed numerous demand response programs to have energy demand match sup-
ply, which can be more cost-effective as opposed to traditional supply match demand [55].
Energy shifting pricing schemes such as TOU and demand charges can help address
the challenges of balancing energy load over various timescales and improve grid re-
silience when an increasing volume of electrified fleets plug into the grid to power their
day-to-day operations.
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ON, SJ, and SD fall under the service territories of three major utility providers in
California, namely Southern California Edison (SCE), Pacific Gas and Electric (PG&E),
and San Diego Gas & Electric (SDG&E). Each utility has a distinct rate structure. Table 6
summarizes the TOU rate plans that apply for commercial fleet charging with maximum
demand above 500 kW in 2023 [56–58]. All three utilities set peak and on-peak hours
between 4 p.m. and 9 p.m. when energy demand in the system is highest. SCE and SDG&E
differentiate rates in summer and winter and on weekdays and weekends/holidays to
adapt to load demand in the predefined peak hours, while PG&E uses the same across
months and days of the week (Figure 4). SCE has the highest TOU rates among the three,
even doubling that of SDG&E, while it exempts demand charges for customers under its
TOU-EV-9 rate plan until 2026 (Table 7). In contrast, SDG&E has the lowest TOU rates and
the highest demand charge rates. Both PG&E and SDG&E have adopted subscription-based
demand charge policies as of 2023.

Table 6. TOU rates for three main Californian utilities (2023).

City (Utility) Ontario (SCE) San Jose
(PG&E) San Diego (SDG&E)

Utility Rate Plan TOU-EV-9 (commercial, monthly
maximum demand > 500 kW)

Electric
Schedule BEV,
Business
Electric Vehicle

Commercial EV-HP

Seasonality Summer Winter Year-round Summer Winter
Peak/On-Peak
($/kWh) 0.52418 - 0.39971 0.24035 0.25049

Mid-Peak ($/kWh) 0.30030 0.36328 - - -
Off-Peak ($/kWh) 0.17792 0.19151 0.18648 0.12939 0.13183
Super Off-peak
($/kWh) - 0.10934 0.16321 0.12375 0.07790

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 11 of 23 
 

Off-Peak ($/kWh) 0.17792 0.19151 0.18648 0.12939 0.13183 

Super Off-peak ($/kWh) - 0.10934 0.16321 0.12375 0.07790 

 

Figure 4. Hourly time-of-use (TOU) rates by weekday and weekend/holiday for Southern California 

Edison (SCE), Pacific Gas and Electric (PG&E), and San Diego Gas & Electric (SDG&E) in each month 

of 2023. Rates are measured in dollars per kilowatt-hour (kWh). 

Table 7. Demand charge policies for three main Californian utilities (2023). 

Utility PG&E SDG&E SCE 

Demand Charge Policy Subscription-based Subscription-based 

Exempted for 

TOU-EV-9 un-

til 2026 

Rate $1.91/kW 
$3.05/kW for monthly demand charge with an addi-

tional $5.96/kW for summer on peak demand 

Increment of Subscrip-

tion Blocks 

50 kW (subscription 

level > 100 kW) 
25 kW (subscription level > 150 kW) 

Other Rules 

Overage fee of 

$3.82/kW applies 

monthly.  

Automatically adjust customers’ subscription levels 

if exceeding their monthly subscription level for 

three consecutive months. Summer on-peak demand 

charge applies. 

Demand charges were employed to lower customers’ concentrated energy use. Un-

derstanding demand charge rates can be less straightforward than TOU rates. SDG&E has 

a higher tolerance for bumps in energy demand and will allow customers to exceed the 

current level for three consecutive months before they adjust the subscription level. They 

use additional summer on-peak demand charges to encourage customers to control en-

ergy demand between 4 p.m. and 9 p.m. PG&E, however, applies lower price levels than 

SDG&E in demand charges—less than $2/kW—but has relatively larger increments of 

subscription blocks compared with SDG&E. 

3. Results and Discussion 

This section presents the results of the scenario case study for the hypothetical fleet 

regarding charging schedule, fleet energy demand, and costs. With inputs of fleet profile, 

predicted daily energy consumption, and utility rate structure as described in Section 2.2, 

unmanaged and managed vehicle-level charging schedules were computed for 100 trucks 

in 365 days in the three cities. The run time of the optimization model was averaged at 

3.75 h for each city, equivalent to 0.370 s/vehicle-day algorithm processing speed. This 

section first demonstrates how the charging load was spread throughout an example day 

by the optimization model, then compares fleetwide energy demand and cost of 

Figure 4. Hourly time-of-use (TOU) rates by weekday and weekend/holiday for Southern California
Edison (SCE), Pacific Gas and Electric (PG&E), and San Diego Gas & Electric (SDG&E) in each month
of 2023. Rates are measured in dollars per kilowatt-hour (kWh).

Demand charges were employed to lower customers’ concentrated energy use. Un-
derstanding demand charge rates can be less straightforward than TOU rates. SDG&E
has a higher tolerance for bumps in energy demand and will allow customers to exceed
the current level for three consecutive months before they adjust the subscription level.
They use additional summer on-peak demand charges to encourage customers to control
energy demand between 4 p.m. and 9 p.m. PG&E, however, applies lower price levels
than SDG&E in demand charges—less than $2/kW—but has relatively larger increments
of subscription blocks compared with SDG&E.
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Table 7. Demand charge policies for three main Californian utilities (2023).

Utility PG&E SDG&E SCE

Demand Charge
Policy Subscription-based Subscription-based

Exempted for
TOU-EV-9 until 2026Rate $1.91/kW

$3.05/kW for monthly demand
charge with an additional $5.96/kW
for summer on peak demand

Increment of
Subscription Blocks

50 kW (subscription
level > 100 kW) 25 kW (subscription level > 150 kW)

Other Rules
Overage fee of
$3.82/kW applies
monthly.

Automatically adjust customers’
subscription levels if exceeding their
monthly subscription level for three
consecutive months. Summer
on-peak demand charge applies.

3. Results and Discussion

This section presents the results of the scenario case study for the hypothetical fleet
regarding charging schedule, fleet energy demand, and costs. With inputs of fleet profile,
predicted daily energy consumption, and utility rate structure as described in Section 2.2,
unmanaged and managed vehicle-level charging schedules were computed for 100 trucks
in 365 days in the three cities. The run time of the optimization model was averaged at 3.75
h for each city, equivalent to 0.370 s/vehicle-day algorithm processing speed. This section
first demonstrates how the charging load was spread throughout an example day by the
optimization model, then compares fleetwide energy demand and cost of optimized charging
with unmanaged charging, and finally ends the discussion with insights on utility rate design.

3.1. Optimized Charging Schedule in an Example Day

The fleet depot charging optimization model allocates the charging time of each
vehicle to lower TOU costs and meet the requirements of minimum SOC at the start of
overnight charging while balancing fleetwide energy demand. Charging optimization was
achieved by utilizing opportunity charging during midday breaks, staggering charging
among different truck types, and controlling the number of trucks charging simultaneously.

The hypothetical fleet starts operation at 5 a.m. and ends operation at 6 p.m. each day,
leaving trucks to dwell between 6 p.m. and the 5 a.m. next day available for overnight
charging. Taking an example day in SJ, trucks were optimized to charge during different
time periods between 5 a.m. and 4:59 a.m. the next day to replenish energy use during
the day (Figure 5). First, opportunity charging during midday breaks was found to be an
important contribution to the optimized charging plan. In the example day, day-cab tractors
and step vans utilized midday charging to fulfill up to 40% and 60%, respectively, of the
predicted energy use for the day (Table A1). Among all scenarios modeled for 2023, day-cab
tractors spent 67–81% of vehicle days charging 29–38% of total energy use during midday
breaks, while step vans spent 69–95% of total vehicle days charging 32–43% of total energy
use. Midday opportunity charging also ensured that all trucks started charging overnight
with an SOC equal to or greater than 34% and met the minimum SOC requirements to
protect the batteries (Table A2).

Second, charging was staggered by truck type during overnight dwell hours to lower
fleetwide electricity load. During overnight dwell hours between 6 p.m. and 5 a.m. of the
next day, day-cab tractors and step vans were charged between 7 p.m. and 8 p.m. or 1 a.m.
and 5 a.m. Between the time gap, all box trucks were charged from 9 p.m. to 2 a.m. when
no other truck types were drawing energy from the grid (Figure 5, left). The fleetwide peak
load was controlled to 1.33 megawatts (MW), which matched the peak energy demand of
all day-cab tractors or all box trucks.

Last, the number of vehicles charged simultaneously was controlled, especially for
vehicles using DCFCs. No more than 13 box trucks out of 50 and no more than 12 day-cab
tractors out of 20 would charge in the same hour (Figure 5, right). The number of trucks
charging simultaneously was always no more than the number of chargers installed in the
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depot, with charging rates not exceeding the capacities of chargers. On the example day,
all day-cab tractors charged at a maximum rate of 170.2 kW, box trucks at 106.7 kW, and
step vans at 13.7 kW at the maximum, all lower than the chargers’ maximum discharge
rates. Overall, the three types of trucks had charging shifted to different hours to meet
their charging demand, effectively avoiding higher TOU cost, meeting minimum SOC
requirements for battery protection, and balancing fleetwide energy demand over time.
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Figure 5. Optimized vehicle charging plan on an example day in San Jose. (Left): Line plot of hourly
energy demand aggregated by vehicle type. (Right): Vehicle level hourly energy charged. Each block
represents a vehicle with a darker color, indicating higher energy charged. Gray/colored bars in
the background represented all dwell hours available for charging. For colored bars, darker colors
indicate more expensive hourly TOU rates. Energy demand is measured in megawatts (MW), dwell
hour utility rates are measured in dollars per kilowatt-hour (kWh), and energy charged by vehicles is
measured in kWh.

3.2. Fleetwide Charging Load Comparison with Unmanaged Charging Scenario

This section took an example of a week of fleet energy demand under managed and
unmanaged charging scenarios to compare its fleetwide hourly electricity load profiles.
Monthly peak demands were then compared between managed and unmanaged scenarios
in the three cities to demonstrate the scale of peak load reduction. The optimization
model effectively balanced the fleetwide charging load profile and lowered the monthly
peak demand for the hypothetical fleet in comparison with unmanaged charging. Unlike
optimized charging, unmanaged charging was unable to respond to local utility rate
structures, providing the same charging plan across three locations that almost tripled the
optimized peak energy demand.

Compared with the unmanaged charging plan in an example week, optimized charg-
ing was evenly spread across the dwell hours and lowered fleetwide maximum hourly
energy demand (Figure 6). Daily peak demands ranging from 5.11–8.86 MW in the example
week under the unmanaged scenario were lowered to 1.70–3.19 MW in ON, 1.49–2.02 MW
in SJ, and 1.46–3.12 MW in SD. In the absence of charging management, all BETs were
plugged in to charge immediately upon returning to the fleet depot at the end of the op-
erational day. A load spike occurred every night at 6 p.m. when all BETs charged at their
maximum rate. Without regulation of charging rates or the number of vehicles charging
simultaneously, BETs consumed a considerable amount of energy in a short time, leading to
a high fleetwide peak load drawn from the grid each day. The range of daily peak demands
in the example week was also reduced under a managed scenario, making energy use from
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the grid more stabilized and consistent. Moreover, optimized charging reduced energy
use between 6 p.m. and 9 p.m. because of the high on-peak TOU rates in comparison to
off-peak or super off-peak hours.
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Over the course of the year, the proposed charging optimization model lowered
fleetwide monthly peak energy demand. The average and standard deviation of monthly
peak demand of the 12 months were summarized for optimized and unmanaged charging
scenarios (Figure 7). Unmanaged charging returned 8.86 MW of monthly peak demand
across all months and locations, as vehicles were charged whenever chargers were available,
using maximum charging rates regardless of energy consumption patterns or variations
in utility rates among different months and locations. In contrast, in response to these
variations in energy use and utility rates, optimized charging reduced monthly peak
demand to an average of 3.16 MW in ON, 2.18 MW in SJ, and 2.89 MW in SD, removing
64% (ON), 75% (SJ), and 67% (SD) of peak demand from the unmanaged charging scenario.
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Given the significant fleetwide electricity load reduction, fleets switching from diesel
fuel trucks to MHD BETs could benefit from charging management immensely during the
infrastructure evaluation and upgrade process. Infrastructure in-site evaluation, construc-
tion, and installation have been identified as difficulties because of complications with
electrical upgrades during real-world demonstrations of MHD BETs [59]. Fleets commonly
experience significant delays in installing EVSE—particularly when sites require evalua-
tion from electrical contractors and engineers who deem utility upgrades necessary for
operation [60]. Fleets are also advised to plan their infrastructure and prepare for any
necessary upgrades to accommodate future scenarios in which more trucks are electrified.
Unmanaged solutions may lead to ultraconservative planning or approval of new site
interconnections. With consideration of optimized and managed charging as the preferred
scenario, fleets could choose an incremental plan for their infrastructure upgrade in their
transition to electrify the entire fleet fully, saving both permitting time and upgrade costs
from building infrastructure.

3.3. Fleetwide Cost Comparison with Unmanaged Scenario

This section examines the results of the fleet’s energy variable cost in the scenario case
study under optimized and unmanaged scenarios, evaluating the economic benefit of the
developed charging optimization algorithm.

Electric trucks could create significant energy cost savings in comparison to diesel coun-
terparts under the current utility rate policies in the scenario case studies, making electric
trucks a more appealing option. Charging energy costs per mile in all three locations were
lower than the counterpart diesel cost of $1.10 per mile for MHD trucks in California, regard-
less of charge management strategies [61–63]. Switching from diesel to electric trucks could
save a fleet 14.5–29.4% of energy variable costs without charge management or 63.5–74.3%
with optimized charging. Fleets could benefit from savings on energy variable costs by electri-
fying their diesel fleet regardless of whether they implement charging optimization onsite
or not. To accommodate the paradigm shift from diesel vehicle operation, some fleets might
need to adjust a vehicle’s operational schedules or the number of vehicles serving a route [64]
in order to gain huge operating cost savings and environmental benefits. However, whether
the total cost of ownership of electrifying the fleet would be competitive, the diesel scenario
needs to be assessed separately with additional considerations of factors including but not
limited to vehicle and charger upfront cost, infrastructure upgrade cost, vehicle and charger
maintenance cost, incentive opportunities, opportunity costs, and environmental benefits.

To inform energy cost outlook in SCE, ON, where demand charge is waived for fleets
under rate plan TOU-EV-9 until 2026, demand charge was projected under unmanaged
and optimized charging scenarios, respectively, based on the average proportion between
demand charges and TOU costs in the other two utilities. Total energy variable cost in-
creased to $1.11/mile without managed charging and $0.45/mile with optimized charging
scenarios where the cost is less than half of the counterpart diesel cost (Figure 8). To
maintain the energy cost benefits of MHD BETs in SCE’s service territory, the utility might
need to design its demand charge and adjust TOU rates carefully, responding to both diesel
costs and grid demand regulation needs in 2026. Demand cost rate needs to encourage fleet
owners to manage charging for maximizing operation cost savings but also leave room
for cost benefits of any electric fleets that have limited capacities to strictly optimize and
manage charging of large volumes of vehicles with sophisticated operation requirements.
The design of utility TOU rates and demand charges should work together to keep BETs
cost-competitive with diesel vehicles and motivate fleets to manage and charge effectively
for stable grid energy consumption.

Looking at electricity cost in all three locations, the fleet depot charging optimization
model could create significant TOU and demand charge savings compared with unman-
aged charging. In addition to the significantly high fleetwide peak load, unmanaged
charging results in the hypothetical fleet charging BETs predominantly during on-peak
hours, when TOU rates are highest in a day (Figure 6). Under a managed charging sce-
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nario, the hypothetical fleet lowered its fleetwide peak load and charged BETs in dwell
hours with lower TOU rates, saving $1.17–1.26 million in energy variable cost each year
($0.47–0.51/mile), equivalent to 53.8–63.5% of energy variable cost reductions (Table 8).
Specifically, the demand charge was reduced by 75.3–81.1% because of the 64–75% reduc-
tions in monthly peak energy demand, saving the fleet $0.15–0.48 million each year, or
$0.06–0.19/mile (Table 9). On the other hand, managing TOU cost alone could save the
hypothetical fleet $0.75–1.17 million annually ($0.30–0.47/mile). The 51.8–55.8% TOU cost
reduction was achieved when the model shifted more than 98% of total energy consumption
to lower-rate dwell hours.
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Table 8. Fleet annual operation costs and savings between optimized and unmanaged charging.

City (Utility) Ontario (SCE) San Jose (PG&E) San Diego
(SDG&E)

Annual total mileage (mile) 2,486,497 2,486,497 2,486,497
Annual total electricity
consumption (kWh) 5,297,220 5,144,770 5,246,222

Annual total savings ($) 1,171,251 1,258,570 1,227,005
Annual total unit savings ($/mile) 0.4710 0.5062 0.4935
Annual total percentage savings 54.0% 53.8% 63.5%

On-peak charging was not eliminated when the demand charge was implemented
by utilities. In ON, with the demand charge exempted, optimized charging reduced the
proportion of yearly energy consumption occurring during on-peak or mid-peak hours
from 93.7% under unmanaged charging scenario to nearly 0%. In SJ and SD, with demand
charges in place, the proportion reductions were from 94% to 1.6% and 93.9% to 1.9%,
respectively. A tradeoff between raising monthly demand charges or TOU costs was
evaluated during the process of moving on-peak charging to off-peak or super off-peak
charging to achieve the monthly minimal energy use cost of the fleet.

Given the huge cost savings from implementing charge optimization, establishing a
charge management strategy earlier in the EV deployment planning process is important
for fleets to recover their costs. The cost of a DCFC unit can range from $10,000 to $40,000
depending on the features included with the hardware, such as software enabling energy
consumption monitoring and data analysis [65]. The cost of this software is typically included
in the EVSE hardware cost, and though there are several options for a fleet to procure and
integrate a charge management software package with their EVSE, there are few significant
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savings opportunities associated with purchasing the software separately [66]. Fleet owners
with networked EVSE units, or units that can be accessed and controlled remotely via an
Internet connection, will pay a fee ranging from $100 to $900 annually, depending on the type
of EVSE unit, to cover the cost of network communications [65]. The cost savings from charge
management over time, which is more than $1,000,000 annually for the hypothetical fleet of
100 BETs, are much higher than the initial hardware and network service investments.

Table 9. Fleet annual costs and unit costs in the case study by charging management scenarios.

City (Utility) Ontario (SCE) San Jose (PG&E) San Diego (SDG&E)

Scenarios Optimized Unmanaged Optimized Unmanaged Optimized Unmanaged
Annual total TOU cost ($) 997,592 2,168,844 1,030,049 2,135,234 592,433 1,341,734
Annual total demand
charge ($) 0 0 50,226 203,611 111,524 589,228

Annual total cost ($) 997,592 2,168,844 1,080,275 2,338,845 703,957 1,930,962
Unit cost ($/mile) 0.4012 0.8722 0.4345 0.9406 0.2831 0.7766
Unit cost ($/kWh) 0.1883 0.4094 0.2100 0.4546 0.1342 0.3681

Implementing charge management since the early stages of MHD BET deployment
creates millions of energy cost savings within a vehicle’s lifetime, avoids surprisingly high
energy bills, and opens funding opportunities to government funding for freight movement
fleets. Assuming a 10-year lifetime and 4% discount rate, the hypothetical fleet could save
a net present value of $9.88–10.62 million in lifetime energy variable cost by switching from
unmanaged charging to optimized charging. To achieve the management transition, fleets
may need to train fleet managers on using charging management software and educate
drivers on the habit of plugging in vehicles for midday charging, raising staff awareness of the
importance of keeping electric trucks properly charged. While implementing and enforcing
charging optimization needs additional actions, it, in the long-term, benefits fleets under
all kinds of time-variable pricing utility rate plans by programmatically planning charging
schedules in response to utility rates to minimize total energy variable costs [67,68]. Given that
demand charge policies are quickly evolving, it would be wise for fleets to consider charge
management earlier in their planning process to maximize cost savings in the long term. By
stabilizing sitewide peak energy demand, fleets could be prepared and avoid the surprisingly
expensive energy bill when the demand charge policies become enforced, causing changes in
the utility rate landscape. In addition, fleets that are open to charge management also open
their doors to government funding opportunities. The Energy Infrastructure Incentives for
Zero-Emission (EnergIIZE) Commercial Vehicles Project requires EVSE for MHD BET DCFCs
to have a certain level of charge management capability [69]. This requirement indicates that
having charge management in place is necessary to unlock government funding opportunities
in early deployment for faster cost recovery.

3.4. The Importance of Utility Demand Charge for Energy Demand Management

From the utilities’ perspective, to regulate the burden of load surges, they should
carefully design rate structures and demand charge policies as price levers to motivate
customers to manage energy demand actively. Otherwise, as a spill-over effect, fleets and
other large customers who are unwilling to manage charging may choose to build future
depots in areas where pricing does not motivate charge management, making those local
grids more vulnerable.

TOU rate alone as the price lever is not sufficient. It can encourage fleets to switch
charging time to off-peak hours but has little effect on regulating fleetwide peak demand
in the absence of a demand charge policy [23,34]. For example, running only LP1 for the
hypothetical fleet in the ON site in 2023, which minimizes TOU cost but not fleetwide peak
demand, could reduce its TOU cost from $0.87/mile (unmanaged charging) to $0.40/mile
by charging during off-peak or super off-peak hours. However, it would still incur a daily
fleetwide peak energy demand as high as 6.65 MW (standard deviation = 1.36 MW) on
average. The demand charge acts as a balancer that discourages customers from simply
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bumping up their charging load during off-peak hours, which can make off-peak hours
soon become peak hours if adapted EV charging could work out for the business owner’s
operation. Alternatively, adopting a charge management strategy to charge more evenly
during all charging windows could make the energy demand of each operator from the
grid stable and consistent throughout the day. Therefore, utilities should effectively use
demand charges to incentivize customers to manage charging peak load, which would
further reduce the burden of load surges and improve grid stability and resilience.

4. Conclusions

The fleet depot charging optimization framework described in this paper combined a
machine learning model trained on real-world MHD BET data and a linear program opti-
mization algorithm to guide fleets on real-world charging management and infrastructure
planning. The framework demonstration used a mix of real-world vehicle and charger
models with predicted daily energy use by truck type in three different utility territories
for 365 days, accounting for seasonal and regional duty cycle variations and providing
fleets and utilities with insights on energy load management in an extent rarely found in
other literature.

The scenario case study concluded that MHD BETs have cheaper energy variable costs
than their diesel counterparts, regardless of charge management, even with the inclusion of
demand charges in all three fleet locations. Electrification with charging optimization could
save fleets 64–74% of their energy costs in comparison to diesel energy costs. Compared
with the unmanaged charging scenario, the optimized charging solution managed to avoid
more than 90% of on-peak charging, reduce fleet charging peak load by 64–75%, and
lower fleet energy variable costs by 54–64%, supplemented by a fast algorithm runtime of
0.370 s/vehicle-day.

Managed charging presents several benefits for multiple entities, including fleets,
policymakers, and utilities. Fleets are encouraged to manage charging and include op-
timized charging scenarios during the infrastructure planning phase as it benefits them
greatly in terms of reducing demand load and charging costs, creating large lifetime energy
cost savings, and opening doors to government funding opportunities that benefit total
cost of ownership of MHD BETs. Policymakers could invest in assistance programs that
guide fleets on charge management; they could also provide adequate funding for smart
charging infrastructure to accelerate the transition to MHD electrification and increase the
resilience and stability of the national grid. Utilities are crucial for transportation electri-
fication because their rate policies can impact the economic feasibility of MHD BETs and
encourage the management of energy demand surges on the grid. Based on this study, TOU
alone would not necessarily incentivize customers to manage and control the magnitude
of sitewide peak energy demand. Thus, utilities must set demand charges to motivate
customers to balance energy demand overall charging windows. There is a middle ground
where demand charge should land—high enough to encourage fleets to manage demand
and low enough to keep electric trucks cheaper than diesel. It takes a collaborative effort
from all three parties to navigate transportation electrification.

Future studies on charge management could add penalties to inconvenient charging
plans in the optimization algorithm. The penalty would discourage the use of two charger
types for a vehicle during overnight hours to avoid requiring operators to carry out the
switch. It could also allow preferences on using consecutive hours to charge a single
vehicle, making it easier to configure the charging management system. Assessment of the
level of cost savings across different months in the year and days of the week can provide
insights into the specific circumstances under which fleets should focus more on charging
management. In addition, scenario case studies with sites outside of California can assess
the impact and effectiveness of charging management under more diverse utility landscapes
and environmental conditions nationally and globally. An expanded analysis of the total
cost of MHD BET ownership with managed charging can provide a more comprehensive
view of the economic valuation of the new technologies. Future research can explore real-
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world implementation of the output charging schedules from the algorithm-based charge
management framework. Future work may also employ quantitative analysis on the utility
rate design to evaluate the sensitivity of MHD BET economic feasibility and sitewide peak
load reduction to the utility landscape nationally and globally. Improvement in enroute
charging beyond midday depot charging will also be beneficial to long-haul trucks taking
enroute breaks that will use public chargers to recharge and pay at a potentially higher rate.
There may be a need to expand the current model to fit trucks running between different
depots from day to day, assisting infrastructure planning of multiple depots. Furthermore,
modeling a charging management solution alongside onsite renewable energy generation
systems could provide a more holistic vision for the energy independence of zero-emission
MHD fleets, as well as the significant lifetime emission reductions and environmental
benefits the entity could achieve.
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Appendix A

The Appendices include summary tables that can provide more information about the
main text.

Table A1. Summary of vehicle-level midday energy charged on the example day 2 February 2023,
in SJ-PG&E.

Vehicle Models

Predicted
Energy
Consumption
(kWh)

Midday Energy
Charged, Mean and
Range (kWh)

Percentage of Predicted
Energy Charged during
Midday Break, Mean
and Range

BYD 8TT day-cab tractor (Class 8) 280.29 101.97 (37.00–112.12) 36.38% (13.20–40.00%)
XOS SV step van (Class 6) 22.55 13.53 (13.53–13.53) 60.00% (60.00–60.00%)

Table A2. Summary of vehicle-level overnight energy charged on the example day 2 February
2023, in SJ-PG&E.

Vehicle Models
Battery
Capacity
(kWh)

Overnight Energy
Charged, Mean and
Range (kWh)

Start SOC at the
Beginning of Overnight
Charging

BYD 8TT day-cab tractor (Class 8) 422 219.11 (168.17–280.29) 48.08% (33.58–60.15%)
Volvo VNR box truck (Class 7) 565 106.69 (121.77–121.77) 81.11% (81.11–81.11%)
XOS SV step van (Class 6) 280 9.02 (9.02–9.02) 96.78% (96.78–96.78%)

https://livewire.energy.gov/project/calstart
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