A Review on State-of-Charge Estimation Methods, Energy Storage Technologies and State-of-the-Art Simulators: Recent Developments and Challenges
Abstract
:1. Introduction
- SoC estimation methods for batteries are discussed, and much focus is given to the different methods applicable. Specific application approaches in the literature are presented based on different SoC methods.
- A battery energy storage system is a major requirement for a reliable and sustainable power supply. From this perspective, commonly used battery technologies for solar PV configurations and their unique characteristics are presented.
- An overview and a quantitative comparison of the technical and economic modelling simulators for energy storage applications are presented in order to assist researchers in decision-making on the choice of potential simulators. Summaries of the potential modelling simulators for designing, testing and analysing battery energy storage are given.
- The intermittent nature of renewable energy sources is highlighted, and recommendations for novel approaches for battery SoC estimations in solar PV applications for sustainable and reliable power supplies in austere and remote communities are given.
2. Energy Storage Technologies
2.1. Electrochemical and Battery Energy Storage
2.1.1. Lead–Acid (PbA) Battery
2.1.2. Nickel–Cadmium Battery (NiCd)
2.1.3. Sodium–Sulfur Battery (NaS)
Pros | Cons |
---|---|
|
|
2.1.4. Lithium–Ion Battery (Li-Ion)
2.2. Parameter Identification for Deep-Cycle Batteries
Battery Current
2.3. Battery Voltage
2.3.1. Rated Battery Capacity
2.3.2. Depth of Discharge
2.3.3. Temperature Charts
2.3.4. Charging Cycle
2.3.5. Battery Cycles
2.3.6. Days of Autonomy
2.3.7. State of Charge
3. Overview of SoC Estimation Methods
3.1. Direct-Measurement-Based Methods
3.1.1. Open-Circuit Voltage Method
3.1.2. Terminal Voltage Estimation Method
3.1.3. Electrochemical-Impedance-Based Method
3.1.4. Electrochemical-Impedance-Spectroscopy-Based Method
3.2. Bookkeeping-Based Methods
3.2.1. Coulomb Counting Method
3.2.2. Modified Coulomb Counting Method
3.3. Adaptive-Based Methods
3.3.1. Machine Learning Modelling/Simulation
3.3.2. Neural Network
Neural Network Structure | Number of Hidden Layers | Type of Machine Learning/AI | Inputs | Training Algorithm | Performance Metrics | Reference |
---|---|---|---|---|---|---|
Feedforward Neural Network (FNN) | 2–4 | Supervised Learning | Voltage, Current, Temperature | Backpropagation | Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Determination | [142,143] |
Recurrent Neural Network (RNN) | 3–5 | Supervised Learning | Voltage, Current, SoC History | Adam Optimizer | Root Mean Square Error (RMSE), Accuracy | [125,144] |
Convolutional Neural Network (CNN) | 4–6 | Deep Learning | Battery Images (Thermal), Voltage | Stochastic Gradient Descent | Accuracy, F1 Score | [145] |
Hybrid Neural Network (CNN-LSTM) | 3–5 | Deep Learning | Voltage, Current, Temperature, SoC History | Adam Optimizer | Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Determination | [146] |
Autoencoder Neural Network | 3–4 | Unsupervised Learning | Voltage, Current, Temperature | Adam Optimizer | Root Mean Square Error (RMSE), Mean Absolute Error (MAE) | [147] |
Radial Basis Function Neural Network (RBFNN) | 1–3 | Supervised Learning | Voltage, Current, State of Charge | K-means Clustering + Gradient Descent | Mean Square Error (MSE), Root Mean Square Error (RMSE) | [148] |
Extreme Learning Machine (ELM) | 2–4 | Supervised Learning | Voltage, Current, Temperature | Analytical Solution | Mean Absolute Error (MAE), Coefficient of Determination | [149] |
3.3.3. Kalman Filter
3.4. Factors Affecting the Battery SoC
3.4.1. Battery Age
3.4.2. Temperature
3.4.3. Charge Current
3.4.4. Internal Resistance
3.4.5. Charge/Discharge Depth
3.4.6. Charge/Discharge Rate
3.5. Comparative Analysis of SoC Estimation Approaches
3.5.1. Kalman Filter (KF) + Artificial Neural Network (ANN) Hybrid Model
3.5.2. Extended Kalman Filter (EKF) + Particle Filter (PF) Hybrid Model
3.5.3. Adaptive Observer + Fuzzy Logic Hybrid Model
3.5.4. Model Predictive Control (MPC) + Machine Learning (ML) Hybrid Model
Hybrid Model | Model Overview | Theoretical Benefits | Preliminary Data | References |
---|---|---|---|---|
Kalman Filter (KF) + Artificial Neural Network (ANN) | Combines KF for real-time SoC estimation with ANN for predicting SoC under varying conditions. | KF handles noise and uncertainties, while ANN predicts SoC during rapid load changes and temperature fluctuations. | Reduces estimation error by approximately 15% under dynamic conditions. | [160,192,201] |
Extended Kalman Filter (EKF) + Particle Filter (PF) | Integrates EKF for linearised state estimation with PF for probabilistic estimates in nonlinear regions. | EKF estimates in near-linear regions; PF improves accuracy in highly nonlinear regions. | Improves SoC estimation accuracy by up to 20% during rapid load and temperature changes. | [193,194] |
Adaptive Observer + Fuzzy Logic | Uses an adaptive observer to estimate SoC and fuzzy logic to handle uncertainties and imprecise data. | Adaptive observer adjusts in real-time, while fuzzy logic adds robustness in uncertain conditions. | Reduces maximum estimation error by 10–15%, especially under fluctuating temperature and load. | [195,196,197] |
Model Predictive Control (MPC) + Machine Learning (ML) | Integrates MPC for dynamic optimisation with ML to predict SoC based on historical data and patterns. | MPC optimises in real-time; ML corrects based on long-term trends, improving accuracy. | Reduces SoC estimation errors by 15–20% in complex, dynamic environments. | [198,199,200] |
3.6. Deeper Technical Analysis of the Most Promising Techniques
4. State-of-the-Art Modelling and Simulation Tools
4.1. MATLAB/Simulink
4.2. StorageVET
4.3. DER-VET
4.4. HOMER
4.5. PerModAC
4.6. GridLAB-D
4.7. BLAST
4.8. SAM
4.9. SimSES
5. Conclusions and Future Research Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Alternating Current |
AGM | Absorbent Glass Mat |
AI | Artificial Intelligence |
Ah | Ampere-Hours |
BESS | Battery Energy Storage System |
BMS | Battery Management System |
BSS | Battery Storage System |
Cd | Cadmium |
CC | Coulomb Counting |
CPCS | Control and Power Conditioning System |
DoD | Depth of Discharge |
DC | Direct Current |
DERVET | Distributed Energy Value Estimation Tool |
EAP | Electrode Ageing Parameter |
EMF | Electromotive Force |
EV | Electric Vehicle |
EKF | Extended Kalman Filter |
HEMS | Home Energy Management System |
HOMER | Hybrid Optimisation Model for Multiple Energy Resources |
KF | Kalman Filter |
KOH | Alkaline Potassium Hydroxide |
LFP | Lithium Iron Phosphate |
Li-ion | Lithium–Ion |
LM | Levenberg–Marquardt |
LSA | Lightning Search Algorithm |
LMO | Lithium Manganese Oxide |
LTO | Lithium Titanate |
ML | Machine Learning |
NN | Neural Network |
NMC | Lithium Nickel Manganese Cobalt Oxide |
NaS | Sodium Sulfur |
NiCd | Nickel–Cadmium |
OCV | Open-Circuit Voltage |
PbA | Lead–Acid |
PV | Photovoltaic |
RMSE | Root Mean Square Error |
RV | Recreational Vehicle |
SCG | Scaled Conjugate Gradient |
SLA | Sealed Lead–Acid |
SoC | State-of-Charge |
SoH | Sate-of-Heath |
SoL | State-of-Life |
SoP | State-of-Power |
VRLA | Valve-Regulated Lead–Acid |
References
- Qays, M.O.; Buswig, Y.; Hossain, M.L.; Abu-Siada, A. Recent progress and future trends on the state of charge estimation methods to improve battery-storage efficiency: A review. CSEE J. Power Energy Syst. 2020, 8, 105–114. [Google Scholar]
- Xiong, R.; Cao, J.; Yu, Q.; He, H.; Sun, F. Critical review on the battery state of charge estimation methods for electric vehicles. IEEE Access 2017, 6, 1832–1843. [Google Scholar] [CrossRef]
- Khalid, A.; Sarwat, A.I. Unified univariate-neural network models for lithium-ion battery state-of-charge forecasting using minimized akaike information criterion algorithm. IEEE Access 2021, 9, 39154–39170. [Google Scholar] [CrossRef]
- Loukil, J.; Masmoudi, F.; Derbel, N. A real-time estimator for model parameters and state of charge of lead acid batteries in photovoltaic applications. J. Energy Storage 2021, 34, 102184. [Google Scholar] [CrossRef]
- Harigopal, A.; Nithin, S. Assessment of State of Charge estimation techniques for Li-Ion battery pack. In Proceedings of the 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 10–12 September 2020; pp. 988–991. [Google Scholar]
- Hannan, M.A.; Lipu, M.; Hussain, A.; Ker, P.J.; Mahlia, T.I.; Mansor, M.; Ayob, A.; Saad, M.H.; Dong, Z. Toward enhanced state of charge estimation of lithium-ion batteries using optimized machine learning techniques. Sci. Rep. 2020, 10, 4687. [Google Scholar] [CrossRef]
- Shah, A.; Shah, K.; Shah, C.; Shah, M. State of charge, remaining useful life and knee point estimation based on artificial intelligence and Machine learning in lithium-ion EV batteries: A comprehensive review. Renew. Energy Focus 2022, 42, 146–164. [Google Scholar] [CrossRef]
- Shen, M.; Gao, Q. A review on battery management system from the modeling efforts to its multiapplication and integration. Int. J. Energy Res. 2019, 43, 5042–5075. [Google Scholar] [CrossRef]
- Ipek, E.; Eren, M.K.; Yilmaz, M. State-of-charge estimation of li-ion battery cell using support vector regression and gradient boosting techniques. In Proceedings of the 2019 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2019 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Istanbul, Turkey, 27–29 August 2019; pp. 604–609. [Google Scholar]
- Girijaprasanna, T.; Dhanamjayulu, C. A Review on Different State of Battery Charge Estimation Techniques and Management Systems for EV Applications. Electronics 2022, 11, 1795. [Google Scholar] [CrossRef]
- Khan, M.A.A.; Khalid, H.A.; Balan, R.; Bakkaloglu, B. A novel State of Charge and State of Health estimation technique for Lithium-ion cells using machine learning based Pseudo-Random Binary Sequence method. J. Energy Storage 2022, 55, 105472. [Google Scholar] [CrossRef]
- Varshney, A.; Singh, A.; Pradeep, A.A.; Joseph, A.; Gopakumar, P. Monitoring State of Health and State of Charge of Lithium-Ion Batteries Using Machine Learning Techniques. In Proceedings of the 2021 IEEE 5th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Kozhikode, India, 3–5 December 2021; pp. 22–27. [Google Scholar]
- Hemavathi, S. Modeling and Estimation of Lithium-ion Battery State of Charge Using Intelligent Techniques. In Advances in Power and Control Engineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 157–172. [Google Scholar]
- Narayanan, S.S.S.; Thangavel, S. Machine learning-based model development for battery state of charge–open circuit voltage relationship using regression techniques. J. Energy Storage 2022, 49, 104098. [Google Scholar] [CrossRef]
- Li, J.; He, S.; Yang, Q.; Wei, Z.; Li, Y.; He, H. A Comprehensive Review of Second Life Batteries Towards Sustainable Mechanisms: Potential, Challenges, and Future Prospects. IEEE Trans. Transp. Electrif. 2022, 9, 4824–4845. [Google Scholar] [CrossRef]
- Shahjalal, M.; Roy, P.K.; Shams, T.; Fly, A.; Chowdhury, J.I.; Ahmed, M.R.; Liu, K. A review on second-life of Li-ion batteries: Prospects, challenges, and issues. Energy 2022, 241, 122881. [Google Scholar] [CrossRef]
- McDougall, N. The Operational Environment for Repurposing Electric Vehicle Lithium-Ion Batteries for Energy Storage Applications in the EU. Master’s Thesis, Aalto University, Espoo, Finland, 2023. [Google Scholar]
- Xu, L.; Lei, S.; Srinivasan, D.; Song, Z. Can retired lithium-ion batteries be a game changer in fast charging stations? eTransportation 2023, 18, 100297. [Google Scholar] [CrossRef]
- Hua, Y.; Liu, X.; Zhou, S.; Huang, Y.; Ling, H.; Yang, S. Toward sustainable reuse of retired lithium-ion batteries from electric vehicles. Resour. Conserv. Recycl. 2021, 168, 105249. [Google Scholar] [CrossRef]
- Chombo, P.V.; Laoonual, Y. A review of safety strategies of a Li-ion battery. J. Power Sources 2020, 478, 228649. [Google Scholar] [CrossRef]
- Ogunfuye, S.A. Lithium-Ion Battery Safety Analysis with Physical Sub-Models. Doctoral Dissertation, West Virginia University, Morgantown, WV, USA, 2023. [Google Scholar]
- Faraji Niri, M.; Aslansefat, K.; Haghi, S.; Hashemian, M.; Daub, R.; Marco, J. A Review of the Applications of Explainable Machine Learning for Lithium–Ion Batteries: From Production to State and Performance Estimation. Energies 2023, 16, 6360. [Google Scholar] [CrossRef]
- Du, B.; Yu, Z.; Yi, S.; He, Y.; Luo, Y. State-of-charge estimation for second-life lithium-ion batteries based on cell difference model and adaptive fading unscented Kalman filter algorithm. Int. J. Low-Carbon Technol. 2021, 16, 927–939. [Google Scholar] [CrossRef]
- Luo, Y.F. A multi-frequency electrical impedance spectroscopy technique of artificial neural network-based for the static state of charge. Energies 2021, 14, 2526. [Google Scholar] [CrossRef]
- Dao, V.Q.; Dinh, M.C.; Kim, C.S.; Park, M.; Doh, C.H.; Bae, J.H.; Lee, M.K.; Liu, J.; Bai, Z. Design of an effective State of Charge estimation method for a lithium-ion battery pack using extended kalman filter and artificial neural network. Energies 2021, 14, 2634. [Google Scholar] [CrossRef]
- Dewalkar, S.; Nangrani, S. Artificial Intelligence-Based State of Charge Estimation of Electric Vehicle Battery. In Smart Technologies for Energy, Environment and Sustainable Development, Vol 2; Springer: Berlin/Heidelberg, Germany, 2022; pp. 699–705. [Google Scholar]
- Abraham, T.R.; Sunil, K.; Shah, M.; Ashok, N.; Thomas, S. Energy storage devices: Batteries and supercapacitors. In Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery; IWA Publishing: London, UK, 2023; pp. 61–84. [Google Scholar]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Alqahtani, H.; Kumar, G. Machine learning for enhancing transportation security: A comprehensive analysis of electric and flying vehicle systems. Eng. Appl. Artif. Intell. 2024, 129, 107667. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, G. Energy management systems in sustainable smart cities based on the Internet of energy: A technical review. Energies 2023, 16, 6903. [Google Scholar] [CrossRef]
- Naraindath, N.R.; Kupolati, H.A.; Bansal, R.C.; Naidoo, R.M. Data security and privacy, cyber-security enhancement, and systems recovery approaches for microgrid networks. In Modelling and Control Dynamics in Microgrid Systems with Renewable Energy Resources; Elsevier: Amsterdam, The Netherlands, 2024; pp. 377–401. [Google Scholar]
- Divya, K.; Østergaard, J. Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 2009, 79, 511–520. [Google Scholar] [CrossRef]
- Palizban, O.; Kauhaniemi, K. Energy storage systems in modern grids—Matrix of technologies and applications. J. Energy Storage 2016, 6, 248–259. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Díaz-González, F.; Sumper, A.; Gomis-Bellmunt, O.; Villafáfila-Robles, R. A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 2012, 16, 2154–2171. [Google Scholar] [CrossRef]
- Bhatia, A. Design and Sizing of Solar Photovoltaic Systems; Continuing Education and Development Inc.: Woodcliff Lake, NJ, USA, 2022; pp. 2–125. Available online: https://www.cedengineering.com/courses/design-and-sizing-of-solar-photovoltaic-systems (accessed on 6 August 2024).
- BU-201: How Does the Lead Acid Battery Work? Available online: https://batteryuniversity.com/article/bu-201-how-does-the-lead-acid-battery-work (accessed on 24 August 2022).
- BU-202: New Lead Acid Systems. Available online: https://batteryuniversity.com/article/bu-202-new-lead-acid-systems (accessed on 24 August 2022).
- Olabi, A.G.; Abbas, Q.; Shinde, P.A.; Abdelkareem, M.A. Rechargeable batteries: Technological advancement, challenges, current and emerging applications. Energy 2023, 266, 126408. [Google Scholar] [CrossRef]
- Bindner, H.; Cronin, T.; Lundsager, P.; Manwell, J.F.; Abdulwahid, U.; Baring-Gould, I. Lifetime Modelling of Lead acid Batteries; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Relion Battery. Lithium Battery Depth of Discharge, State of Charge, and the Affect on Battery Capacity. Available online: https://www.relionbattery.com/ (accessed on 10 August 2024).
- Kiessling, R. Lead Acid Battery Formation Techniques; Digatron Firing Circuits, Digatron: Aachen, Germany, 1992; p. 2. [Google Scholar]
- Mandal, S.; Thangarasu, S.; Thong, P.T.; Kim, S.C.; Shim, J.Y.; Jung, H.Y. Positive electrode active material development opportunities through carbon addition in the lead-acid batteries: A recent progress. J. Power Sources 2021, 485, 229336. [Google Scholar] [CrossRef]
- BU-203: Nickel-Based Batteries. Available online: https://batteryuniversity.com/article/bu-203-nickel-based-batteries (accessed on 24 August 2022).
- Patel, M.; Mishra, K.; Banerjee, R.; Chaudhari, J.; Kanchan, D.; Kumar, D. Fundamentals, recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems. J. Energy Chem. 2023, 81, 221–259. [Google Scholar] [CrossRef]
- Petrovic, S.; Petrovic, S. Nickel—Cadmium batteries. In Battery Technology Crash Course: A Concise Introduction; Springer: Berlin/Heidelberg, Germany, 2021; pp. 73–88. [Google Scholar]
- Wen, Z.; Cao, J.; Gu, Z.; Xu, X.; Zhang, F.; Lin, Z. Research on sodium sulfur battery for energy storage. Solid State Ionics 2008, 179, 1697–1701. [Google Scholar] [CrossRef]
- Handbook on Battery Energy Storage System. 2018. Available online: https://www.adb.org/sites/default/files/publication/479891/handbook-battery-energy-storage-system.pdf (accessed on 24 August 2022).
- Broussely, M.; Pistoia, G. Industrial Applications of Batteries: From Cars to Aerospace and Energy Storage; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Wang, Y.; Zhou, D.; Palomares, V.; Shanmukaraj, D.; Sun, B.; Tang, X.; Wang, C.; Armand, M.; Rojo, T.; Wang, G. Revitalising sodium–sulfur batteries for non-high-temperature operation: A crucial review. Energy Environ. Sci. 2020, 13, 3848–3879. [Google Scholar] [CrossRef]
- Palomares, V.; Hueso, K.B.; Armand, M.; Rojo, T. High-Temperature Battery Technologies: Na-S. Batteries: Present and Future Energy Storage Challenges; Wiley: Hoboken, NJ, USA, 2020; p. 371. [Google Scholar]
- Nikiforidis, G.; Jongerden, G.; Jongerden, E.; Van De Sanden, M.; Tsampas, M. An electrochemical study on the cathode of the intermediate temperature tubular sodium-sulfur (NaS) battery. J. Electrochem. Soc. 2019, 166, A135. [Google Scholar] [CrossRef]
- Habib, A.R.R.; Butler, K. Environmental and economic comparison of hydrogen fuel cell and battery electric vehicles. Future Technol. 2022, 1, 25–33. [Google Scholar] [CrossRef]
- Ding, Y.; Cano, Z.P.; Yu, A.; Lu, J.; Chen, Z. Automotive Li-ion batteries: Current status and future perspectives. Electrochem. Energy Rev. 2019, 2, 1–28. [Google Scholar] [CrossRef]
- Bubulinca, C.; Kazantseva, N.E.; Pechancova, V.; Joseph, N.; Fei, H.; Venher, M.; Ivanichenko, A.; Saha, P. Development of All-Solid-State Li-Ion Batteries: From Key Technical Areas to Commercial Use. Batteries 2023, 9, 157. [Google Scholar] [CrossRef]
- Randau, S.; Weber, D.A.; Kötz, O.; Koerver, R.; Braun, P.; Weber, A.; Ivers-Tiffée, E.; Adermann, T.; Kulisch, J.; Zeier, W.G.; et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 2020, 5, 259–270. [Google Scholar] [CrossRef]
- Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 1–16. [Google Scholar] [CrossRef]
- Rahman, M.A.; Song, G.; Bhatt, A.I.; Wong, Y.C.; Wen, C. Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 647–678. [Google Scholar] [CrossRef]
- Wu, J.; Cao, Y.; Zhao, H.; Mao, J.; Guo, Z. The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries. Carbon Energy 2019, 1, 57–76. [Google Scholar] [CrossRef]
- Xu, Z.L.; Liu, X.; Luo, Y.; Zhou, L.; Kim, J.K. Nanosilicon anodes for high performance rechargeable batteries. Prog. Mater. Sci. 2017, 90, 1–44. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, Y.; Wu, F.; Li, Y.; Li, L.; Chen, R. Anode interface engineering and architecture design for high-performance lithium–sulfur batteries. Adv. Mater. 2019, 31, 1806532. [Google Scholar] [CrossRef]
- Ghalkhani, M.; Habibi, S. Review of the Li-ion battery, thermal management, and AI-based battery management system for EV application. Energies 2022, 16, 185. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, X.; Tran, M.K.; Fowler, M.; Ouyang, M.; Burke, A.F. Battery safety: Fault diagnosis from laboratory to real world. J. Power Sources 2024, 598, 234111. [Google Scholar] [CrossRef]
- Yang, Y. A machine-learning prediction method of lithium-ion battery life based on charge process for different applications. Applied Energy 2021, 292, 116897. [Google Scholar] [CrossRef]
- Liu, K.; Li, K.; Peng, Q.; Zhang, C. A brief review on key technologies in the battery management system of electric vehicles. Front. Mech. Eng. 2019, 14, 47–64. [Google Scholar] [CrossRef]
- Atalay, S.; Sheikh, M.; Mariani, A.; Merla, Y.; Bower, E.; Widanage, W.D. Theory of battery ageing in a lithium-ion battery: Capacity fade, nonlinear ageing and lifetime prediction. J. Power Sources 2020, 478, 229026. [Google Scholar] [CrossRef]
- Shchurov, N.I.; Dedov, S.I.; Malozyomov, B.V.; Shtang, A.A.; Martyushev, N.V.; Klyuev, R.V.; Andriashin, S.N. Degradation of lithium-ion batteries in an electric transport complex. Energies 2021, 14, 8072. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, C.; Jiang, J.; Zhang, W.; Gao, Y.; Zhang, L. A voltage reconstruction model based on partial charging curve for state-of-health estimation of lithium-ion batteries. J. Energy Storage 2021, 35, 102271. [Google Scholar] [CrossRef]
- Zheng, Y.; Ouyang, M.; Han, X.; Lu, L.; Li, J. Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles. J. Power Sources 2018, 377, 161–188. [Google Scholar] [CrossRef]
- Tanim, T.R.; Rahn, C.D.; Wang, C.Y. State of charge estimation of a lithium ion cell based on a temperature dependent and electrolyte enhanced single particle model. Energy 2015, 80, 731–739. [Google Scholar] [CrossRef]
- Carrasco Ortega, P.; Durán Gómez, P.; Mérida Sánchez, J.C.; Echevarría Camarero, F.; Pardiñas, Á.Á. Battery energy storage systems for the new electricity market landscape: Modeling, state diagnostics, management, and viability—A review. Energies 2023, 16, 6334. [Google Scholar] [CrossRef]
- Zhang, D.; Park, S.; Couto, L.D.; Viswanathan, V.; Moura, S.J. Beyond battery state of charge estimation: Observer for electrode-level state and cyclable lithium with electrolyte dynamics. IEEE Trans. Transp. Electrif. 2022, 9, 4846–4861. [Google Scholar] [CrossRef]
- Chang, W.Y. The state of charge estimating methods for battery: A review. Int. Sch. Res. Not. 2013, 2013, 953792. [Google Scholar] [CrossRef]
- Tennyson, E.M.; Garrett, J.L.; Frantz, J.A.; Myers, J.D.; Bekele, R.Y.; Sanghera, J.S.; Munday, J.N.; Leite, M.S. Nanoimaging of open-circuit voltage in photovoltaic devices. Adv. Energy Mater. 2015, 5, 1501142. [Google Scholar] [CrossRef]
- Ali, M.U.; Zafar, A.; Nengroo, S.H.; Hussain, S.; Junaid Alvi, M.; Kim, H.J. Towards a smarter battery management system for electric vehicle applications: A critical review of lithium-ion battery state of charge estimation. Energies 2019, 12, 446. [Google Scholar] [CrossRef]
- Qiao, J.; Wang, S.; Yu, C.; Shi, W.; Fernandez, C. A novel bias compensation recursive least square-multiple weighted dual extended Kalman filtering method for accurate state-of-charge and state-of-health co-estimation of lithium-ion batteries. Int. J. Circuit Theory Appl. 2021, 49, 3879–3893. [Google Scholar] [CrossRef]
- Jeon, S.; Yun, J.J.; Bae, S. Comparative study on the battery state-of-charge estimation method. Indian J. Sci. Technol. 2015, 8, 1–6. [Google Scholar] [CrossRef]
- Xiong, R.; Tian, J.; Shen, W.; Sun, F. A novel fractional order model for state of charge estimation in lithium ion batteries. IEEE Trans. Veh. Technol. 2018, 68, 4130–4139. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, S.; Wu, B.; Fernandez, C.; Xiong, X.; Coffie-Ken, J. A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter. Energy 2021, 219, 119603. [Google Scholar] [CrossRef]
- Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W.; Wang, M. A study on the open circuit voltage and state of charge characterization of high capacity lithium-ion battery under different temperature. Energies 2018, 11, 2408. [Google Scholar] [CrossRef]
- Chen, X.; Lei, H.; Xiong, R.; Shen, W.; Yang, R. A novel approach to reconstruct open circuit voltage for state of charge estimation of lithium ion batteries in electric vehicles. Appl. Energy 2019, 255, 113758. [Google Scholar] [CrossRef]
- Gismero, A.; Schaltz, E.; Stroe, D.I. Recursive state of charge and state of health estimation method for lithium-ion batteries based on coulomb counting and open circuit voltage. Energies 2020, 13, 1811. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, R.; Shen, W.; Sun, F. Electrode ageing estimation and open circuit voltage reconstruction for lithium ion batteries. Energy Storage Mater. 2021, 37, 283–295. [Google Scholar] [CrossRef]
- Dang, X.; Yan, L.; Xu, K.; Wu, X.; Jiang, H.; Sun, H. Open-circuit voltage-based state of charge estimation of lithium-ion battery using dual neural network fusion battery model. Electrochim. Acta 2016, 188, 356–366. [Google Scholar] [CrossRef]
- Sato, S.; Kawamura, A. A new estimation method of state of charge using terminal voltage and internal resistance for lead acid battery. In Proceedings of the Power Conversion Conference-Osaka 2002 (Cat. No. 02TH8579), Osaka, Japan, 2–5 April 2002; Volume 2, pp. 565–570. [Google Scholar]
- Zheng, L.; Zhu, J.; Lu, D.D.C.; Wang, G.; He, T. Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries. Energy 2018, 150, 759–769. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Chen, S.; Wang, T. Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation. Energy 2019, 166, 908–917. [Google Scholar] [CrossRef]
- Kim, J.; Kowal, J. A Method for Monitoring State-of-Charge of Lithium-Ion Cells Using Multi-Sine Signal Excitation. Batteries 2021, 7, 76. [Google Scholar] [CrossRef]
- Liu, C.; Li, Q.; Wang, K. State-of-charge estimation and remaining useful life prediction of supercapacitors. Renew. Sustain. Energy Rev. 2021, 150, 111408. [Google Scholar] [CrossRef]
- Rezaei, O.; Moghaddam, H.A.; Papari, B. A fast sliding-mode-based estimation of state-of-charge for lithium-ion batteries for electric vehicle applications. J. Energy Storage 2022, 45, 103484. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Cao, P.; Zhu, T.; Shu, H.; Chen, J.; Zhang, J.; Zhu, J. Classification, summarization and perspectives on state-of-charge estimation of lithium-ion batteries used in electric vehicles: A critical comprehensive survey. J. Energy Storage 2021, 39, 102572. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Liu, Y.; Cheng, Z. Variable-order equivalent circuit modeling and state of charge estimation of lithium-ion battery based on electrochemical impedance spectroscopy. Energies 2021, 14, 769. [Google Scholar] [CrossRef]
- Vadhva, P.; Hu, J.; Johnson, M.J.; Stocker, R.; Braglia, M.; Brett, D.J.; Rettie, A.J. Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook. ChemElectroChem 2021, 8, 1930–1947. [Google Scholar] [CrossRef]
- Zhu, X.; Hallemans, N.; Wouters, B.; Claessens, R.; Lataire, J.; Hubin, A. Operando odd random phase electrochemical impedance spectroscopy as a promising tool for monitoring lithium-ion batteries during fast charging. J. Power Sources 2022, 544, 231852. [Google Scholar] [CrossRef]
- Ruan, H.; Sun, B.; Jiang, J.; Zhang, W.; He, X.; Su, X.; Bian, J.; Gao, W. A modified-electrochemical impedance spectroscopy-based multi-time-scale fractional-order model for lithium-ion batteries. Electrochim. Acta 2021, 394, 139066. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Sun, X.; An, Y.; Song, S.; Li, C.; Wang, K.; Su, F.; Chen, C.M.; Liu, F.; et al. Electrochemical impedance spectroscopy study of lithium-ion capacitors: Modeling and capacity fading mechanism. J. Power Sources 2021, 488, 229454. [Google Scholar] [CrossRef]
- Xu, J.; Mi, C.C.; Cao, B.; Cao, J. A new method to estimate the state of charge of lithium-ion batteries based on the battery impedance model. J. Power Sources 2013, 233, 277–284. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, C.G.; Li, H.; Feng, G.; Peng, W. Electrochemical impedance spectroscopy based state of health estimation for lithium-ion battery considering temperature and state of charge effect. IEEE Trans. Transp. Electrif. 2022, 8, 4633–4645. [Google Scholar] [CrossRef]
- Mc Carthy, K.; Gullapalli, H.; Ryan, K.M.; Kennedy, T. Electrochemical impedance correlation analysis for the estimation of Li-ion battery state of charge, state of health and internal temperature. J. Energy Storage 2022, 50, 104608. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, Z.; Liu, K.; Zhang, Y.; Feng, W. A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system. Energy 2021, 219, 119529. [Google Scholar] [CrossRef]
- Movassagh, K.; Raihan, A.; Balasingam, B.; Pattipati, K. A critical look at coulomb counting approach for state of charge estimation in batteries. Energies 2021, 14, 4074. [Google Scholar] [CrossRef]
- Ko, Y.; Cho, K.; Kim, M.; Choi, W. A Novel Capacity Estimation Method for the Lithium Batteries Using the Enhanced Coulomb Counting Method With Kalman Filtering. IEEE Access 2022, 10, 38793–38801. [Google Scholar] [CrossRef]
- Li, X.; Xiao, L.; Geng, G.; Jiang, Q. Temperature characterization based state-of-charge estimation for pouch lithium-ion battery. J. Power Sources 2022, 535, 231441. [Google Scholar] [CrossRef]
- Danko, M.; Adamec, J.; Taraba, M.; Drgona, P. Overview of batteries State of Charge estimation methods. Transp. Res. Procedia 2019, 40, 186–192. [Google Scholar] [CrossRef]
- Baccouche, I.; Jemmali, S.; Mlayah, A.; Manai, B.; Amara, N.E.B. Implementation of an improved Coulomb-counting algorithm based on a piecewise SOC-OCV relationship for SOC estimation of li-IonBattery. arXiv 2018, arXiv:1803.10654. [Google Scholar]
- Movassagh, K.; Raihan, S.A.; Balasingam, B. Performance analysis of coulomb counting approach for state of charge estimation. In Proceedings of the 2019 IEEE Electrical Power and Energy Conference (EPEC), Montreal, QC, Canada, 16–18 October 2019; pp. 1–6. [Google Scholar]
- Zhang, S.; Li, J.; Li, R.; Zhang, X. Voltage sensor fault detection, isolation and estimation for lithium-ion battery used in electric vehicles via a simple and practical method. J. Energy Storage 2022, 55, 105555. [Google Scholar] [CrossRef]
- Pop, V.; Bergveld, H.J.; Notten, P.; Regtien, P.P. State-of-the-art of battery state-of-charge determination. Meas. Sci. Technol. 2005, 16, R93. [Google Scholar] [CrossRef]
- Qiao, X.; Wang, Z.; Hou, E.; Liu, G.; Cai, Y. Online estimation of open circuit voltage based on extended kalman filter with self-evaluation criterion. Energies 2022, 15, 4373. [Google Scholar] [CrossRef]
- Rivera-Barrera, J.P.; Muñoz-Galeano, N.; Sarmiento-Maldonado, H.O. SoC estimation for lithium-ion batteries: Review and future challenges. Electronics 2017, 6, 102. [Google Scholar] [CrossRef]
- Rodrigues, L.M.; Montez, C.; Moraes, R.; Portugal, P.; Vasques, F. A temperature-dependent battery model for wireless sensor networks. Sensors 2017, 17, 422. [Google Scholar] [CrossRef]
- Talluri, M.T.; Murugesan, S.; Karthikeyan, V.; Pragaspathy, S. The capacity estimation of Li–Ion battery using ML-based hybrid model. Electr. Eng. 2024, 1–11. [Google Scholar] [CrossRef]
- Sindhuja, S.; Vasanth, K. Modified coulomb counting method of SOC estimation for uninterruptible power supply system’s battery management system. In Proceedings of the 2015 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, India, 18–19 December 2015; pp. 197–203. [Google Scholar]
- Zhang, S.; Guo, X.; Dou, X.; Zhang, X. A data-driven coulomb counting method for state of charge calibration and estimation of lithium-ion battery. Sustain. Energy Technol. Assess. 2020, 40, 100752. [Google Scholar] [CrossRef]
- Lei, Z.; Liu, T.; Sun, X.; Xie, H.; Sun, Q. Extended state observer assisted Coulomb counting method for battery state of charge estimation. Int. J. Energy Res. 2021, 45, 3157–3169. [Google Scholar] [CrossRef]
- Vidal, C.; Malysz, P.; Kollmeyer, P.; Emadi, A. Machine learning applied to electrified vehicle battery state of charge and state of health estimation: State-of-the-art. IEEE Access 2020, 8, 52796–52814. [Google Scholar] [CrossRef]
- Lipu, M.S.H.; Hannan, M.A.; Hussain, A.; Saad, M.H.; Ayob, A.; Uddin, M.N. Extreme learning machine model for state-of-charge estimation of lithium-ion battery using gravitational search algorithm. IEEE Trans. Ind. Appl. 2019, 55, 4225–4234. [Google Scholar] [CrossRef]
- Rauf, H.; Khalid, M.; Arshad, N. Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling. Renew. Sustain. Energy Rev. 2022, 156, 111903. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Bian, H.; Guo, W.; Zhang, X. A review of lithium-ion battery state of charge estimation based on deep learning: Directions for improvement and future trends. J. Energy Storage 2022, 52, 104664. [Google Scholar] [CrossRef]
- Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Emadi, A. State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach. J. Power Sources 2018, 400, 242–255. [Google Scholar] [CrossRef]
- Cunningham, P.; Cord, M.; Delany, S.J. Supervised learning. In Machine Learning Techniques for Multimedia: Case Studies on Organization and Retrieval; Springer: Berlin/Heidelberg, Germany, 2008; pp. 21–49. [Google Scholar]
- Zhang, C.; Zhang, P.; Wang, Y.; Zhang, L.; Hu, J.; Zhang, W. Support vector machine based lithium-ion battery electrolyte leakage fault diagnosis method. In Proceedings of the 2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES), Beijing, China, 9–12 December 2022; pp. 1880–1886. [Google Scholar]
- Li, Y. Deep reinforcement learning: An overview. arXiv 2017, arXiv:1701.07274. [Google Scholar]
- Zhang, K.; Yang, Z.; Başar, T. Multi-agent reinforcement learning: A selective overview of theories and algorithms. In Handbook of Reinforcement Learning and Control; Springer: Berlin/Heidelberg, Germany, 2021; pp. 321–384. [Google Scholar]
- Cui, Z.; Wang, L.; Li, Q.; Wang, K. A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network. Int. J. Energy Res. 2022, 46, 5423–5440. [Google Scholar] [CrossRef]
- Chen, Z.; Mi, C.C.; Fu, Y.; Xu, J.; Gong, X. Online battery state of health estimation based on Genetic Algorithm for electric and hybrid vehicle applications. J. Power Sources 2013, 240, 184–192. [Google Scholar] [CrossRef]
- Miguel, E.; Plett, G.L.; Trimboli, M.S.; Oca, L.; Iraola, U.; Bekaert, E. Review of computational parameter estimation methods for electrochemical models. J. Energy Storage 2021, 44, 103388. [Google Scholar] [CrossRef]
- Dargan, S.; Kumar, M.; Ayyagari, M.R.; Kumar, G. A survey of deep learning and its applications: A new paradigm to machine learning. Arch. Comput. Methods Eng. 2020, 27, 1071–1092. [Google Scholar] [CrossRef]
- Saputri, T.R.D.; Lee, S.W. The application of machine learning in self-adaptive systems: A systematic literature review. IEEE Access 2020, 8, 205948–205967. [Google Scholar] [CrossRef]
- Oh, S.; Kim, J.; Moon, I. Hybrid data-driven deep learning model for state of charge estimation of Li-ion battery in an electric vehicle. J. Energy Storage 2024, 97, 112887. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef]
- Feng, F.; Teng, S.; Liu, K.; Xie, J.; Xie, Y.; Liu, B.; Li, K. Co-estimation of lithium-ion battery state of charge and state of temperature based on a hybrid electrochemical-thermal-neural-network model. J. Power Sources 2020, 455, 227935. [Google Scholar] [CrossRef]
- Vidal, C.; Haußmann, M.; Barroso, D.; Shamsabadi, P.M.; Biswas, A.; Chemali, E.; Ahmed, R.; Emadi, A. Hybrid energy storage system state-of-charge estimation using artificial neural network for micro-hybrid applications. In Proceedings of the 2018 IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, USA, 13–15 June 2018; pp. 1075–1081. [Google Scholar]
- Zahid, T.; Xu, K.; Li, W.; Li, C.; Li, H. State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles. Energy 2018, 162, 871–882. [Google Scholar] [CrossRef]
- Khalid, A.; Sundararajan, A.; Acharya, I.; Sarwat, A.I. Prediction of li-ion battery state of charge using multilayer perceptron and long short-term memory models. In Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19–21 June 2019; pp. 1–6. [Google Scholar]
- Ma, L.; Hu, C.; Cheng, F. State of charge and state of energy estimation for lithium-ion batteries based on a long short-term memory neural network. J. Energy Storage 2021, 37, 102440. [Google Scholar] [CrossRef]
- Lipu, M.H.; Hannan, M.; Hussain, A.; Ayob, A.; Saad, M.H.; Karim, T.F.; How, D.N. Data-driven state of charge estimation of lithium-ion batteries: Algorithms, implementation factors, limitations and future trends. J. Clean. Prod. 2020, 277, 124110. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, Y.; Chen, B. A review of lithium-ion battery state of charge estimation methods based on machine learning. World Electr. Veh. J. 2024, 15, 131. [Google Scholar] [CrossRef]
- Chen, J.; Ouyang, Q.; Xu, C.; Su, H. Neural network-based state of charge observer design for lithium-ion batteries. IEEE Trans. Control. Syst. Technol. 2017, 26, 313–320. [Google Scholar] [CrossRef]
- Yang, F.; Li, W.; Li, C.; Miao, Q. State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network. Energy 2019, 175, 66–75. [Google Scholar] [CrossRef]
- Huang, Z.; Yang, F.; Xu, F.; Song, X.; Tsui, K.L. Convolutional gated recurrent unit–recurrent neural network for state-of-charge estimation of lithium-ion batteries. IEEE Access 2019, 7, 93139–93149. [Google Scholar] [CrossRef]
- Li, A.G. State Estimation in Lithium-Ion Batteries Using Pulse Perturbation and Feedforward Neural Networks. Ph.D. Thesis, Columbia University, New York, NY, USA, 2020. [Google Scholar]
- Vidal, C.; Kollmeyer, P.; Naguib, M.; Malysz, P.; Gross, O.; Emadi, A. Robust xev battery state-of-charge estimator design using a feedforward deep neural network. SAE Int. J. Adv. Curr. Pract. Mobil. 2020, 2, 2872–2880. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Wu, J.; Cheng, W.; Zhu, Q. SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output. Energy 2023, 262, 125375. [Google Scholar] [CrossRef]
- Li, Y.; Li, K.; Liu, X.; Zhang, L. Fast battery capacity estimation using convolutional neural networks. Trans. Inst. Meas. Control. 2020, 0142331220966425. [Google Scholar] [CrossRef]
- Chen, D.; Zheng, X.; Chen, C.; Zhao, W. Remaining useful life prediction of the lithium-ion battery based on CNN-LSTM fusion model and grey relational analysis. Electron. Res. Arch. 2023, 31, 633–655. [Google Scholar] [CrossRef]
- Xu, F.; Yang, F.; Fei, Z.; Huang, Z.; Tsui, K.L. Life prediction of lithium-ion batteries based on stacked denoising autoencoders. Reliab. Eng. Syst. Saf. 2021, 208, 107396. [Google Scholar] [CrossRef]
- Zhang, G.; Xia, B.; Wang, J.; Ye, B.; Chen, Y.; Yu, Z.; Li, Y. Intelligent state of charge estimation of battery pack based on particle swarm optimization algorithm improved radical basis function neural network. J. Energy Storage 2022, 50, 104211. [Google Scholar] [CrossRef]
- Chen, L.; Ding, Y.; Wang, H.; Wang, Y.; Liu, B.; Wu, S.; Li, H.; Pan, H. Online estimating state of health of lithium-ion batteries using hierarchical extreme learning machine. IEEE Trans. Transp. Electrif. 2021, 8, 965–975. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, X.; Zhang, X. An improved adaptive unscented kalman filtering for state of charge online estimation of lithium-ion battery. J. Energy Storage 2020, 32, 101980. [Google Scholar] [CrossRef]
- Shrivastava, P.; Soon, T.K.; Idris, M.Y.I.B.; Mekhilef, S. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries. Renew. Sustain. Energy Rev. 2019, 113, 109233. [Google Scholar] [CrossRef]
- Tian, Y.; Lai, R.; Li, X.; Xiang, L.; Tian, J. A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter. Appl. Energy 2020, 265, 114789. [Google Scholar] [CrossRef]
- Peng, J.; Luo, J.; He, H.; Lu, B. An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries. Appl. Energy 2019, 253, 113520. [Google Scholar] [CrossRef]
- He, Z.; Yang, Z.; Cui, X.; Li, E. A method of state-of-charge estimation for EV power lithium-ion battery using a novel adaptive extended Kalman filter. IEEE Trans. Veh. Technol. 2020, 69, 14618–14630. [Google Scholar] [CrossRef]
- Ling, L.; Wei, Y. State-of-charge and state-of-health estimation for lithium-ion batteries based on dual fractional-order extended Kalman filter and online parameter identification. IEEE Access 2021, 9, 47588–47602. [Google Scholar] [CrossRef]
- Bi, Y.; Choe, S.Y. An adaptive sigma-point Kalman filter with state equality constraints for online state-of-charge estimation of a Li (NiMnCo) O2/Carbon battery using a reduced-order electrochemical model. Appl. Energy 2020, 258, 113925. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Y.; Zhang, G.; Jermsittiparsert, K.; Nasseri, M. An efficient terminal voltage control for PEMFC based on an improved version of whale optimization algorithm. Energy Rep. 2020, 6, 530–542. [Google Scholar] [CrossRef]
- Sankhala, D.; Pali, M.; Lin, K.C.; Jagannath, B.; Muthukumar, S.; Prasad, S. Analysis of bio-electro-chemical signals from passive sweat-based wearable electro-impedance spectroscopy (EIS) towards assessing blood glucose modulations. arXiv 2021, arXiv:2104.01793. [Google Scholar]
- He, L.; Guo, D. An improved coulomb counting approach based on numerical iteration for SOC estimation with real-time error correction ability. IEEE Access 2019, 7, 74274–74282. [Google Scholar] [CrossRef]
- Chen, C.; Xiong, R.; Yang, R.; Shen, W.; Sun, F. State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter. J. Clean. Prod. 2019, 234, 1153–1164. [Google Scholar] [CrossRef]
- Liu, K.; Ashwin, T.; Hu, X.; Lucu, M.; Widanage, W.D. An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries. Renew. Sustain. Energy Rev. 2020, 131, 110017. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, R.; Shen, W.; Lu, J. State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach. Appl. Energy 2021, 291, 116812. [Google Scholar] [CrossRef]
- Ayodele, T.; Ogunjuyigbe, A.; Oyelowo, N. Hybridisation of battery/flywheel energy storage system to improve ageing of lead-acid batteries in PV-powered applications. Int. J. Sustain. Eng. 2020, 13, 337–359. [Google Scholar] [CrossRef]
- Soto, A.; Berrueta, A.; Mateos, M.; Sanchis, P.; Ursúa, A. Impact of micro-cycles on the lifetime of lithium-ion batteries: An experimental study. J. Energy Storage 2022, 55, 105343. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, H.; Yang, F.; Tong, L.; Yan, D.; Yang, Y.; Ren, J.; Ma, L.; Wang, Y. State of charge estimation of supercapacitors based on multi-innovation unscented Kalman filter under a wide temperature range. Int. J. Energy Res. 2022, 46, 16716–16735. [Google Scholar] [CrossRef]
- Cui, Z.; Kang, L.; Li, L.; Wang, L.; Wang, K. A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF. Energy 2022, 259, 124933. [Google Scholar] [CrossRef]
- Kumar, P.S.; Kamath, R.N.; Boyapati, P.; Josephson, P.J.; Natrayan, L.; Shadrach, F.D. IoT battery management system in electric vehicle based on LR parameter estimation and ORMeshNet gateway topology. Sustain. Energy Technol. Assess. 2022, 53, 102696. [Google Scholar]
- Liu, X.; Chen, Z.; Zhang, C.; Wu, J. A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation. Appl. Energy 2014, 123, 263–272. [Google Scholar] [CrossRef]
- Tran, M.K.; Mathew, M.; Janhunen, S.; Panchal, S.; Raahemifar, K.; Fraser, R.; Fowler, M. A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters. J. Energy Storage 2021, 43, 103252. [Google Scholar] [CrossRef]
- Ng, M.F.; Zhao, J.; Yan, Q.; Conduit, G.J.; Seh, Z.W. Predicting the state of charge and health of batteries using data-driven machine learning. Nat. Mach. Intell. 2020, 2, 161–170. [Google Scholar] [CrossRef]
- Lv, H.; Huang, X.; Liu, Y. Analysis on pulse charging–discharging strategies for improving capacity retention rates of lithium-ion batteries. Ionics 2020, 26, 1749–1770. [Google Scholar] [CrossRef]
- Wang, X.; Wei, X.; Dai, H. Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge. J. Energy Storage 2019, 21, 618–631. [Google Scholar] [CrossRef]
- Wu, T.; Wang, C.; Hu, Y.; Liang, Z.; Fan, C. Research on electrochemical characteristics and heat generating properties of power battery based on multi-time scales. Energy 2023, 265, 126416. [Google Scholar] [CrossRef]
- Vishnu, C.; Saleem, A. Adaptive Integral Correction-Based State of Charge Estimation Strategy for Lithium-Ion Cells. IEEE Access 2022, 10, 69499–69510. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Zhang, L. Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles. Energy 2019, 174, 33–44. [Google Scholar] [CrossRef]
- Song, X.; Yang, F.; Wang, D.; Tsui, K.L. Combined CNN-LSTM network for state-of-charge estimation of lithium-ion batteries. IEEE Access 2019, 7, 88894–88902. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z. A framework for state-of-charge and remaining discharge time prediction using unscented particle filter. Appl. Energy 2020, 260, 114324. [Google Scholar] [CrossRef]
- Liu, B.; Tang, X.; Gao, F. Joint estimation of battery state-of-charge and state-of-health based on a simplified pseudo-two-dimensional model. Electrochim. Acta 2020, 344, 136098. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation. J. Power Sources 2004, 134, 277–292. [Google Scholar] [CrossRef]
- Xiong, R.; He, H.; Sun, F.; Zhao, K. Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach. IEEE Trans. Veh. Technol. 2012, 62, 108–117. [Google Scholar] [CrossRef]
- Sun, F.; Hu, X.; Zou, Y.; Li, S. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles. Energy 2011, 36, 3531–3540. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Lee, J.; Cho, B.H. The state and parameter estimation of an Li-ion battery using a new OCV-SOC concept. In Proceedings of the 2007 IEEE Power Electronics Specialists Conference, Orlando, FL, USA, 17–21 June 2007; pp. 2799–2803. [Google Scholar]
- Xing, Y.; He, W.; Pecht, M.; Tsui, K.L. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Appl. Energy 2014, 113, 106–115. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Hansen, T.; Wang, C.J. Support vector based battery state of charge estimator. J. Power Sources 2005, 141, 351–358. [Google Scholar] [CrossRef]
- Hossain, M.; Haque, M.; Arif, M.T. Kalman filtering techniques for the online model parameters and state of charge estimation of the Li-ion batteries: A comparative analysis. J. Energy Storage 2022, 51, 104174. [Google Scholar] [CrossRef]
- Awadallah, M.A.; Venkatesh, B. Accuracy improvement of SOC estimation in lithium-ion batteries. J. Energy Storage 2016, 6, 95–104. [Google Scholar] [CrossRef]
- Andre, D.; Appel, C.; Soczka-Guth, T.; Sauer, D.U. Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries. J. Power Sources 2013, 224, 20–27. [Google Scholar] [CrossRef]
- Huang, S.C.; Tseng, K.H.; Liang, J.W.; Chang, C.L.; Pecht, M.G. An online SOC and SOH estimation model for lithium-ion batteries. Energies 2017, 10, 512. [Google Scholar] [CrossRef]
- Xile, D.; Caiping, Z.; Jiuchun, J. Evaluation of SOC estimation method based on EKF/AEKF under noise interference. Energy Procedia 2018, 152, 520–525. [Google Scholar] [CrossRef]
- Grewal, M.S.; Andrews, A.P. Kalman Filtering: Theory and Practice with MATLAB; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Ahmed, R.; Emadi, A. Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries. IEEE Trans. Ind. Electron. 2017, 65, 6730–6739. [Google Scholar] [CrossRef]
- Zheng, L.; Zhu, J.; Wang, G.; Lu, D.D.C.; He, T. Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter. Energy 2018, 158, 1028–1037. [Google Scholar] [CrossRef]
- Zhang, S.; Xie, C.; Zeng, C.; Quan, S. SOC estimation optimization method based on parameter modified particle Kalman Filter algorithm. Clust. Comput. 2019, 22, 6009–6018. [Google Scholar] [CrossRef]
- Dai, K.; Wang, J.; He, H. An improved SOC estimator using time-varying discrete sliding mode observer. IEEE Access 2019, 7, 115463–115472. [Google Scholar] [CrossRef]
- Sethia, G.; Nayak, S.K.; Majhi, S. An approach to estimate lithium-ion battery state of charge based on adaptive Lyapunov super twisting observer. IEEE Trans. Circuits Syst. Regul. Pap. 2020, 68, 1319–1329. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Huang, S.C. Synthetic adaptive fuzzy disturbance observer and sliding-mode control for chaos-based secure communication systems. IEEE Access 2021, 9, 23907–23928. [Google Scholar]
- Chen, J.; Xu, G.; Zhou, Z. Data-driven learning-based Model Predictive Control for energy-intensive systems. Adv. Eng. Inform. 2023, 58, 102208. [Google Scholar] [CrossRef]
- Chen, E.X. Multi-Objective Building System Control Optimization Using Machine-Learning-Based Techniques. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 2023. [Google Scholar]
- Xie, Y.; Wang, C.; Hu, X.; Lin, X.; Zhang, Y.; Li, W. An MPC-based control strategy for electric vehicle battery cooling considering energy saving and battery lifespan. IEEE Trans. Veh. Technol. 2020, 69, 14657–14673. [Google Scholar] [CrossRef]
- Cui, Z.; Dai, J.; Sun, J.; Li, D.; Wang, L.; Wang, K. Hybrid methods using neural network and Kalman filter for the state of charge estimation of lithium-ion battery. Math. Probl. Eng. 2022, 2022, 9616124. [Google Scholar] [CrossRef]
- Xing, L.; Ling, L.; Gong, B.; Zhang, M. State-of-charge estimation for Lithium-Ion batteries using Kalman filters based on fractional-order models. Connect. Sci. 2022, 34, 162–184. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Li, W.; Cheng, W.; Zhu, Q. State of charge estimation for lithium-ion batteries using gated recurrent unit recurrent neural network and adaptive Kalman filter. J. Energy Storage 2022, 55, 105396. [Google Scholar] [CrossRef]
- Fahmy, H.M.; Swief, R.A.; Hasanien, H.M.; Alharbi, M.; Maldonado, J.L.; Jurado, F. Hybrid State of Charge Estimation of Lithium-Ion Battery Using the Coulomb Counting Method and an Adaptive Unscented Kalman Filter. Energies 2023, 16, 5558. [Google Scholar] [CrossRef]
- Li, Y.; Ye, M.; Wang, Q.; Lian, G.; Xia, B. An Improved Model Combining Machine Learning and Kalman Filtering Architecture for State of Charge Estimation of Lithium-Ion Batteries. Green Energy Intell. Transp. 2024, 3, 100163. [Google Scholar] [CrossRef]
- Das, K.; Kumar, R. Electric vehicle battery capacity degradation and health estimation using machine-learning techniques: A review. Clean Energy 2023, 7, 1268–1281. [Google Scholar] [CrossRef]
- Lee, S.B.; Thiagarajan, R.S.; Subramanian, V.R.; Onori, S. Advanced Battery Management Systems: Modeling and Numerical Simulation for Control. In Proceedings of the 2022 American Control Conference (ACC), Atlanta, GA, USA, 8–10 June 2022; pp. 4403–4414. [Google Scholar]
- El-Dalahmeh, M. Capacity Estimation and Trajectory Prediction of Lithium-ion Batteries Based on Time-Frequency Analysis and Machine Learning Algorithms. Ph.D. Thesis, Teesside University, Middlesbrough, UK, 2023. [Google Scholar]
- Lavin, A.; Krakauer, D.; Zenil, H.; Gottschlich, J.; Mattson, T.; Brehmer, J.; Anandkumar, A.; Choudry, S.; Rocki, K.; Baydin, A.G.; et al. Simulation intelligence: Towards a new generation of scientific methods. arXiv 2021, arXiv:2112.03235. [Google Scholar]
- Hesse, H.C.; Schimpe, M.; Kucevic, D.; Jossen, A. Lithium-ion battery storage for the grid—A review of stationary battery storage system design tailored for applications in modern power grids. Energies 2017, 10, 2107. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Leahy, M. A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl. Energy 2010, 87, 1059–1082. [Google Scholar] [CrossRef]
- Openmod. Open Energy Modelling Initiative. Available online: https://openmod-initiative.org/ (accessed on 26 August 2022).
- Volosencu, C. Introductory Chapter: Matlab and Simulink Applications. In MATLAB Applications in Engineering; IntechOpen: London, UK, 2022; p. 3. [Google Scholar]
- Khan, A.A.; Naeem, M.; Iqbal, M.; Qaisar, S.; Anpalagan, A. A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids. Renew. Sustain. Energy Rev. 2016, 58, 1664–1683. [Google Scholar] [CrossRef]
- Kanchev, H.; Lazarov, V.; Francois, B. Environmental and economical optimization of microgrid long term operational planning including PV-based active generators. In Proceedings of the 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), Novi Sad, Serbia, 4–6 September 2012; pp. LS4b-2.1-1–LS4b-2.1-8. [Google Scholar]
- Khederzadeh, M. Optimal Automation Level in Microgrids. In Proceedings of the 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), Stockholm, Sweden, 10–13 June 2013. [Google Scholar]
- Reddy, Y.J.; Kumar, Y.P.; Kumar, V.S.; Raju, K.P. Distributed ANNs in a layered architecture for energy management and maintenance scheduling of renewable energy HPS microgrids. In Proceedings of the 2012 International Conference on Advances in Power Conversion and Energy Technologies (APCET), Mylavaram, India, 2–4 August 2012; pp. 1–6. [Google Scholar]
- The MathWorks, Inc. MATLAB/Simulink. Available online: https://www.mathworks.com/products/simulink.html (accessed on 19 November 2023).
- Surya, S.; Samanta, A.; Marcis, V.; Williamson, S. Smart core and surface temperature estimation techniques for health-conscious lithium-ion battery management systems: A model-to-model comparison. Energies 2022, 15, 623. [Google Scholar] [CrossRef]
- Fryza, T.; Svobodova, J.; Adamec, F.; Marsalek, R.; Prokopec, J. Overview of parallel platforms for common high performance computing. Radioengineering 2012, 21, 436–444. [Google Scholar]
- Bistline, J.; Cole, W.; Damato, G.; DeCarolis, J.; Frazier, W.; Linga, V.; Marcy, C.; Namovicz, C.; Podkaminer, K.; Sims, R.; et al. Energy storage in long-term system models: A review of considerations, best practices, and research needs. Prog. Energy 2020, 2, 032001. [Google Scholar] [CrossRef]
- kaun, B. Storage Value Estimation Tool (StorageVET®). A Publicly Available, Web-Hosted, Energy Storage Value Simulation Tool. Available online: https://www.storagevet.com/ (accessed on 26 August 2022).
- Energy Toolbase. StorageVET. Available online: https://www.energytoolbase.com (accessed on 8 August 2024).
- Nguyen, T.A.; Byrne, R.H. Software tools for energy storage valuation and design. Curr. Sustain. Energy Rep. 2021, 8, 156–163. [Google Scholar] [CrossRef]
- DER-VET Developer Team | EPRI. Distributed Energy Resource Value Estimation Tool (DER-VET™). Available online: https://www.der-vet.com/ (accessed on 26 August 2022).
- EPRI, U.G. Technical Documentation for the Distributed Energy Resources Value Estimation Tool (DERVET TM) V0. 1.1 Technical Update; EPRI: Palo Alto, CA, USA, 2020. [Google Scholar]
- EPRI. Distributed Energy Resource Value Estimation Tool (DER-VET). Available online: https://www.epri.com (accessed on 8 August 2024).
- Gemmer, R.; Paulsen, K. HOMER. Technical Report; EERE Publication and Product Library: Washington, DC, USA, 2022. [Google Scholar]
- HOMER Energy LLC. Hybrid Optimization of Multiple Energy Resources. Available online: https://www.homerenergy.com/ (accessed on 26 August 2022).
- Lambert, T.; Gilman, P.; Lilienthal, P. Micropower system modeling with HOMER. Integr. Altern. Sources Energy 2006, 1, 379–385. [Google Scholar]
- HOMER Energy. Distributed Energy Resource Value Estimation Tool (DER-VET). Available online: https://www.homerenergy.com (accessed on 8 August 2024).
- Bahramara, S.; Moghaddam, M.P.; Haghifam, M. Optimal planning of hybrid renewable energy systems using HOMER: A review. Renew. Sustain. Energy Rev. 2016, 62, 609–620. [Google Scholar] [CrossRef]
- Weniger, J.; Tjaden, T.; Orth, N.; Maier, S. Performance Simulation Model for PV-Battery Systems (PerMod). 2020. Available online: https://solar.htw-berlin.de/wp-content/uploads/HTW-PerMod-Dokumentation.pdf (accessed on 26 August 2022).
- PerModAC.com. PerModAC. Available online: https://www.permodac.com (accessed on 15 December 2023).
- Weniger, J.; Tjaden, T.; Orth, N.; Maier, S. Performance Simulation Model for PV-Battery Systems (PerMod); University of Applied Sciences Berlin (HTW Berlin): Berlin, Germany, 2023. [Google Scholar]
- Pacific Northwest National Laboratory. GridLAB-D™. Available online: https://www.pnnl.gov/available-technologies/gridlab-dtm (accessed on 19 September 2022).
- Möller, M.; Kucevic, D.; Collath, N.; Parlikar, A.; Dotzauer, P.; Tepe, B.; Englberger, S.; Jossen, A.; Hesse, H. SimSES: A holistic simulation framework for modeling and analyzing stationary energy storage systems. J. Energy Storage 2022, 49, 103743. [Google Scholar] [CrossRef]
- Gao, D.W.; Muljadi, E.; Tian, T.; Miller, M. Software Comparison for Renewable Energy Deployment in a Distribution Network; Technical Report; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2017.
- NREL Transforming Energy. Battery Lifetime Analysis and Simulation Tool (BLAST) Suite. Available online: https://www.nrel.gov/transportation/blast.html (accessed on 26 August 2022).
- NREL Transforming Energy. System Advisor Model (SAM). Available online: https://sam.nrel.gov/ (accessed on 26 August 2023).
- DiOrio, N.; Dobos, A.; Janzou, S.; Nelson, A.; Lundstrom, B. Technoeconomic Modeling of Battery Energy Storage in SAM; Technical Report; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2015.
- DiOrio, N.; Denholm, P.; Hobbs, W.B. A model for evaluating the configuration and dispatch of PV plus battery power plants. Appl. Energy 2020, 262, 114465. [Google Scholar] [CrossRef]
- Smith, K.; Saxon, A.; Keyser, M.; Lundstrom, B.; Cao, Z.; Roc, A. Life prediction model for grid-connected Li-ion battery energy storage system. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 4062–4068. [Google Scholar]
- Spotnitz, R. Simulation of capacity fade in lithium-ion batteries. J. Power Sources 2003, 113, 72–80. [Google Scholar] [CrossRef]
- DiOrio, N.A. An Overview of the Automated Dispatch Controller Algorithms in the System Advisor Model (SAM); National Renewable Energy Lab.(NREL): Golden, CO, USA, 2017.
- DiOrio, N.A.; Freeman, J.M.; Blair, N. DC-connected solar plus storage modeling and analysis for behind-the-meter systems in the system advisor model. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018; pp. 3777–3782. [Google Scholar]
- Blair, N.; DiOrio, N.; Freeman, J.; Gilman, P.; Janzou, S.; Neises, T.; Wagner, M. System Advisor Model (SAM) General Description (Version 2017.9. 5); Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2018.
- Naumann, M.; Truong, C.N.; Schimpe, M.; Kucevic, D.; Jossen, A.; Hesse, H.C. SimSES-Software for Techno-Economic Simulation of Stationary Energy Storage Systems. In Proceedings of the International ETG Congress 2017, Bonn, Germany, 28–29 November 2017; pp. 1–6. [Google Scholar]
- Kucevic, D.; Tepe, B.; Englberger, S.; Parlikar, A.; Mühlbauer, M.; Bohlen, O.; Jossen, A.; Hesse, H. Standard battery energy storage system profiles: Analysis of various applications for stationary energy storage systems using a holistic simulation framework. J. Energy Storage 2020, 28, 101077. [Google Scholar] [CrossRef]
- Technical University of Munich. Simulation of Stationary Energy Storage Systems (SimSES). Available online: https://www.tum.de (accessed on 8 August 2024).
Authors | Year | Remarks |
---|---|---|
Hannan et al. [6] | 2020 | Recurrent nonlinear auto-regressive techniques paired with the lightning search algorithm (LSA) were employed to improve SoC estimation, aiming for higher accuracy and performance and faster convergence. Validation of their approach was conducted through experiments involving lithium–ion batteries, considering factors like temperature variations, ageing effects and noise interference. |
Varshney et al. [12] | 2021 | A monitoring system for batteries was created utilising supervised machine learning to evaluate both the battery’s health and its SoC. This model can forecast the real-time behaviour of the battery. |
Hemavathi et al. [13] | 2010 | Evaluated the estimation of batteries’ SoC by contrasting the performance of feedforward neural networks and layered recurrent neural networks, employing scaled conjugate gradient (SCG) and Levenberg–Marquardt (LM) training methods. |
Narayanan et al. [14] | 2022 | Suggested a machine-learning-driven approach for determining battery static SoC through open-circuit voltage (OCV) analysis. The method’s effectiveness was assessed and compared using real-time lithium–ion battery data collected at various temperatures. |
Loukil et al. [4] | 2021 | Proposed a comprehensive analysis aiming to identify battery parameters, particularly focusing on SoC. The techniques employed encompassed a blend of diverse approaches. |
Dao et al. [25] | 2021 | Introduced a design for estimating the SoC of lithium–ion batteries. Their method integrated a Kalman filter and artificial neural network approach, constructed specifically for SoC estimation and trained using the open-source Google TensorFlow library. |
Dewalkar et al. [26] | 2022 | Showed how artificial intelligence approaches are more effective compared to conventional methods since they are trained to utilise realistic tests of batteries. |
Lead–Acid Battery | Applications |
---|---|
Sealed lead–acid (SLA) | These batteries are suitable for wheelchairs, lighting emergencies and small UPS systems [37]. SLAs are the best option for healthcare usage in hospitals and retirement communities because of their low cost, dependable service and low maintenance requirements. |
Absorbent glass mat (AGM) | These batteries can be used in marine and recreational vehicles (RVs) as well as for starter batteries for motorbikes and micro-hybrid cars. |
Valve-regulated lead–acid (VRLA) | These batteries are used as a backup power source for numerous locations, including banks, hospitals, Internet hubs and cellular booster towers. |
Method | Applicability | Advantages | Disadvantages |
---|---|---|---|
Open-circuit voltage [83] | Lithium–ion battery; lead–acid | Easy to use; accessible online | Long rest time is required; sensitive to temperature. |
Terminal voltage [157] | Most energy storage | Easy to use; accessible online | Error in estimation due to drop in terminal voltage at the end of discharge. |
Electro-impedance spectroscopy [158] | Most energy storage | Easy to use; accessible online; can estimate most of the battery parameters | Sensitive to temperature; high frequency is required. |
Coulomb counting [159] | Most energy storage | Easy to use; low computational cost | Current leakage during charging, thereby affecting the estimation of SoC. |
Modified coulomb counting [114] | Most energy storage | Easy to use; low computational cost | Current leakage during charging, thereby affecting the estimation of SoC. |
Neural network [160] | Most energy storage | Adapts to time-varying characteristics; fast computational cost for online phase | Requires a lot of training data for accuracy; network convergence is slow; difficult to achieve global optimum. |
Modified Kalman filter [153] | Most energy storage | Accessible online; dynamic | Battery model is required; initial parameter issues. |
Method | Description | Complexity | Accuracy | Implementation | Trade-Offs | References |
---|---|---|---|---|---|---|
Coulomb Counting | Measures current over time to estimate SoC. | Low | Medium | Simple | Simple implementation but susceptible to cumulative errors. | [114,182] |
Open-Circuit Voltage (OCV) | Uses battery’s open-circuit voltage to determine SoC. | Low | Medium | Simple | Requires resting periods for accurate measurement. | [184,185] |
Kalman Filter | Models dynamic behaviour and filters noise. | Medium | High | Moderate | Balances accuracy and complexity well. | [187,190] |
Extended Kalman Filter | Extends KF to handle nonlinearities in the battery model. | Medium | High | Moderate | Improves the Kalman Filter but with increased complexity. | [182,188] |
Particle Filter | Uses a set of particles to represent the probability distribution of the SoC. | High | Very high | Complex | Highly accurate but computationally intensive. | [189,191] |
Neural Network | Leverages machine learning to adapt to various conditions. | High | Very high | Complex | High accuracy and adaptability but requires extensive training data. | [108,189] |
Simulator | Open Source | Web Based | Code Availability | GUI Based | User Manual | Economic Market Analysis | Application | Developer | SoC Estimation |
---|---|---|---|---|---|---|---|---|---|
MATLAB | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | MathWorks | ✔ |
StorageVET | ✔ | ✔ | × | × | ✔ | ✔ | ✔ | EPRI | ✔ |
DER-VET | ✔ | × | ✔ | ✔ | ✔ | ✔ | ✔ | EPRI | ✔ |
HOMER Pro | × | ✔ | × | ✔ | ✔ | ✔ | × | Homerenergy | × |
PerModAC | ✔ | × | ✔ | × | ✔ | ✔ | × | htw | × |
BLAST | × | × | × | ✔ | ✔ | ✔ | ✔ | NREL | × |
GridLab-D | ✔ | × | × | × | ✔ | ✔ | × | PNNL | × |
SAM | ✔ | × | × | ✔ | ✔ | ✔ | × | NREL | × |
SimSES | ✔ | × | ✔ | × | ✔ | ✔ | ✔ | TUM | ✔ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunatsa, T.; Myburgh, H.C.; De Freitas, A. A Review on State-of-Charge Estimation Methods, Energy Storage Technologies and State-of-the-Art Simulators: Recent Developments and Challenges. World Electr. Veh. J. 2024, 15, 381. https://doi.org/10.3390/wevj15090381
Kunatsa T, Myburgh HC, De Freitas A. A Review on State-of-Charge Estimation Methods, Energy Storage Technologies and State-of-the-Art Simulators: Recent Developments and Challenges. World Electric Vehicle Journal. 2024; 15(9):381. https://doi.org/10.3390/wevj15090381
Chicago/Turabian StyleKunatsa, Tawanda, Herman C. Myburgh, and Allan De Freitas. 2024. "A Review on State-of-Charge Estimation Methods, Energy Storage Technologies and State-of-the-Art Simulators: Recent Developments and Challenges" World Electric Vehicle Journal 15, no. 9: 381. https://doi.org/10.3390/wevj15090381
APA StyleKunatsa, T., Myburgh, H. C., & De Freitas, A. (2024). A Review on State-of-Charge Estimation Methods, Energy Storage Technologies and State-of-the-Art Simulators: Recent Developments and Challenges. World Electric Vehicle Journal, 15(9), 381. https://doi.org/10.3390/wevj15090381