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Abstract: Vehicular Ad-Hoc Networks (VANETs) are pivotal to the advancement of intelligent trans-
portation systems (ITS), enhancing safety and efficiency on the road through secure communication
networks. However, the integrity of these systems is severely threatened by Distributed Denial-of-
Service (DDoS) attacks, which can disrupt the transmission of safety-critical messages and put lives
at risk. This research paper focuses on developing robust detection methods and countermeasures
to mitigate the impact of DDoS attacks in VANETs. Utilizing a combination of statistical analysis
and machine learning techniques (i.e., Autoencoder with Long Short-Term Memory (LSTM), and
Clustering with Classification), the study introduces innovative approaches for real-time anomaly
detection and system resilience enhancement. Emulation results confirm the effectiveness of the pro-
posed methods in identifying and countering DDoS threats, significantly improving (i.e., 94 percent
anomaly detection rate) the security posture of a high mobility-aware ad hoc network. This research
not only contributes to the ongoing efforts to secure VANETs against DDoS attacks but also lays the
groundwork for more resilient intelligent transportation systems architectures.

Keywords: Distributed Denial-of-Service (DDoS); network resilience; real-time cooperative
communication; filtering mechanisms; trust management; traffic analysis; cooperative decentralized
intrusion detection system (CD-IDS); permissioned blockchain; Software Defined Vehicular Ad-Hoc
Networks (SD-VANETs)

1. Introduction

VANETs are a transformative advancement in the evolution of intelligent transporta-
tion systems which integrate vehicles equipped with advanced communication technolo-
gies. These networks provide significant improvements in traffic efficiency and transporta-
tion safety by enabling vehicles to exchange information about road conditions accidents
and traffic congestion in real-time. The architecture of VANETs includes both vehicle-to-
vehicle (V2V) [1] and vehicle-to-infrastructure (V2I) [2] communications forming a dynamic
network where data about vehicle speed and location are shared continuously. However,
the open nature of wireless communication in VANETs introduces several security vulnera-
bilities. The wireless medium is inherently susceptible to various security threats such as
eavesdropping, unauthorized access, and data tampering. Given that the information often
pertains to safety-critical functions, the need for robust security measures is paramount.
The implications of security breaches go beyond mere data loss, affecting human lives and
vehicle safety.

Security in VANETs revolves around core requirements including confidentiality, in-
tegrity, availability, and non-repudiation. Confidentiality ensures that sensitive information
such as vehicle location and driver behavior is not accessible to unauthorized entities by
rendering it unreadable and inaccessible to unauthorized entities during transmission
and storage. Integrity protects against unauthorized data modification, ensuring that the
information transmitted in the network remains accurate and reliable. Availability guar-
antees reliable access to network services and information which is vital for safety-critical
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applications. Non-repudiation prevents denial of wrongdoing by ensuring that the actions
or communications by a party are unequivocally traceable to their originator. Table 1
categorizes various DDoS attack vectors to facilitate a comprehensive understanding of
potential security vulnerabilities within VANET environments.

Table 1. Taxonomy of DDoS attacks in VANETs.

Protocol Attacks Attacks on Vehicular
Unit

Communication
Technology OSI Stack Ease of

Attack Ref.

CAN

Masquerading,
Denial of
service,
Bus-off,

Message
spoofing

Availability,
Authenticity

and
identification,
Integrity and

data trust

Infotainment
and

telematics,
OBD-II ports

DSRC/WAVE,
Bluetooth

Network,
Datalink Moderate [3]

LIN

Eavesdropping,
Jamming,
Message
spoofing

Confidentiality,
Authenticity

and
identification

USB ports,
Electric
vehicle

charging

Wi-Fi/WiMAX,
RFID

Physical,
Datalink High [4]

FlexRay

Replay, Syn-
chronization
Disruption,

Header
collision

Integrity and
data trust,

Availability

Infotainment
and telematics Cellular, UWB Transport,

Network Moderate [5]

MOST

Traffic confi-
dentiality,

Traffic
integrity
attacks

Confidentiality,
Integrity and

data trust

Infotainment
and telematics ZigBee, Bluetooth Application,

Session Low [6]

Ethernet
Denial of
service,

Network
access attacks

Availability,
Non-

repudiation/Accountability
OBD-II ports DSRC/WAVE,

UWB
Network,
Transport Moderate [7]

Wi-Fi

Jamming
attack,

Response
collision

Availability,
Integrity and

data trust

USB ports,
Electric
vehicle

charging

Wi-Fi/WiMAX,
Bluetooth

Physical,
Datalink High [8]

Cellular

Eavesdropping,
Traffic confi-

dentiality
attacks

Confidentiality,
Authenticity

and
identification

Infotainment
and telematics Cellular, RFID Network,

Session Moderate [9]

Bluetooth Spoofing,
Bluejacking

Authenticity
and

identification,
Confidential-

ity

Remote
Keyless Entry

Systems
Bluetooth, Wi-Fi Physical,

Application Low [10]

DSRC/WAVE

Spoofing,
Replay attack,

Message
falsification

Authenticity
and

identification,
Integrity

V2V, V2I com-
munication

DSRC/WAVE,
ZigBee

Network,
Transport Moderate [11]

RFID Eavesdropping,
Spoofing

Confidentiality,
Authenticity

and
identification

Vehicle access,
Cargo

tracking
RFID, Cellular Physical,

Network High [12]

ZigBee

Traffic
integrity
attacks,

Message
injection

Integrity and
data trust,

non-
repudiation

Sensor
networks,

Vehicle
diagnostics

ZigBee, Bluetooth Network,
Application Moderate [13]

UWB
Jamming,

Eavesdrop-
ping

Availability,
Confidential-

ity

High-
precision
location
systems

UWB, Wi-Fi Physical,
Datalink High [14]

5G

Man-in-the-
middle,
Identity
spoofing

Authenticity
and

identification,
non-

repudiation

Connected
vehicles,

Smart Road
infrastructure

5G, Cellular Session,
Transport Moderate [15]
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This research paper addresses the critical security vulnerabilities in VANETs, focus-
ing on a selection of technologies that hold the potential to enhance network security.
These technologies include fog nodes, decentralized settings, blockchain technologies, and
Software-Defined Networking (SDN). Each technology is evaluated for its ability to fortify
the network against specific types of attacks such as, but not limited to, the following: GPS
spoofing and gray-hole attacks among others. Thus, the main contributions of this research
are outlined as follows:

(a) Investigation into a cooperative decentralized intrusion detection system (CD-IDS)
that integrates fog computing and consortium permissioned blockchain technology to
address cyber anomalies, including malicious communication traffic analysis, GPS
and node identity spoofing, data forgery, denial-of-authentication and services, and
routing disruption attacks.

(b) Enhancement of scalability and response times through the implementation of real-
time anomaly detection with fog computing, enabling rapid data processing and
reducing latency to effectively mitigate security threats (i.e., DoS and DDoS).

(c) Exploration of SD-VANETs to separate control and data layers, allowing for dynamic
network reconfiguration and improved security management.

(d) Real-time assessment of the application of the Synthetic Minority Over-Sampling Tech-
nique (SMOTE) to address minority class imbalance in intrusion detection, thereby
increasing the detection accuracy of rare malicious events.

(e) Implementation and analysis of novel Attribute-Based Broadcast Encryption (ABBE)
for secure group communications to ensure that only authorized vehicles can access
transmitted messages.

(f) Development and deployment of novel strategies for anonymous V2V communica-
tion to protect user privacy from tracking and profiling while maintaining network
efficiency.

(g) Conducted an in-depth comparative analysis between centralized and decentral-
ized security approaches to evaluate their strengths and weaknesses, including their
implications for scalability, security, and privacy.

(h) Ultimately, a novel hybrid machine learning model, combining Autoencoder with
LSTM and Clustering with Classification, was proposed and rigorously evaluated
for intrusion detection. The results demonstrated that this approach not only sur-
passed traditional techniques in accuracy but also provided a promising solution for
enhancing security in vehicular communications.

The research paper progresses seamlessly from the Literature Review Section, where
an extensive analysis of the existing literature on DDoS attacks in VANETs is presented,
to the Proposed Methodology Section, which outlines novel DDoS detection techniques
and countermeasures tailored specifically for VANETs. This progression reflects a compre-
hensive understanding of the challenges and complexities inherent in securing VANETs
against DDoS threats. Following the proposed methodology, the Experimental Setup and
Assessment Outcome Section provides detailed insights into the experimental design and
evaluation process, demonstrating the effectiveness of the proposed techniques through
rigorous emulation. Subsequently, the Results and Discussion Section offers a thorough
analysis of the experimental findings, highlighting key observations and insights derived
from the evaluation. Finally, the Conclusion Section succinctly summarizes the main find-
ings of the research paper, emphasizing the significance of robust DDoS detection and
countermeasure strategies in ensuring the safety and reliability of VANETs, while also
outlining potential areas for future research and development.

2. Literature Review

An application of VANET [16] defines its utilization scope spanning multiple purposes
and classifications based on the nature of communication between entities such as vehicle-
to-vehicle and vehicle-to-RSU (roadside units) communications. These applications are
broadly categorized into four groups. Safety applications encompass services that enhance
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the safety of vehicles and passengers with features like collision detection systems, real-
time traffic information, and congestion-free route discovery. Comfort applications focus on
the entertainment aspects for drivers and passengers, offering audio and video playback
and gaming alongside functionalities like electronic toll collection and simplified urban
parking solutions through VANET communications. Commercial applications enable the
downloading of personalized vehicle settings and provide security for rented vehicles
alongside leveraging VANETs for targeted advertising aimed at drivers, highlighting
nearby amenities such as restaurants and hotels. Environmental applications are instrumental
in gathering sensor-driven environmental data beneficial for travelers, offering weather-
related travel advisories and suggesting alternative routes in adverse weather conditions
such as snow or storms.

In the context of Figure 1, we initiated the investigation with the primary motivation
to furnish an updated summary of the state of the art in VANETs and to study the security
challenges and potential solutions within this field. To our knowledge, many studies in
the domain of VANET security focus on specific problems (such as the communication
jitter function, delay, packet drop, throughput anomalies, etc.) and take the form of
general surveys [4,5,15]. Yet, some foundational papers have also addressed security issues,
notably the work/research by Saleem et al. [17] who explored the problem of potential
adversary-instigated collusion among smart vehicles. Souissi and colleagues in their
significant contributions discussed the classification of attacks and introduced the attacker
model, highlighting novel attacks like the hidden vehicle tunnel wormhole and Bush
Telegraph [18]. Their research also set forth essential requirements for securing message
exchanges in vehicular networks and tackled the security issues in group communications.
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As a benchmark to this research evaluation, we aligned and applied the Smart Vehicle Sys-
tem Architecture (SVSA) as follows (i.e., partially illustrated in Figure 2) [1,3,6,8,11,13,17,18]:

(a) The core of the SVSA is the On-Board Unit (OBU), a powerful in-vehicle computer.
The OBU typically utilizes a high-performance, low-power consumption automotive-
grade processor like the NXP i.MX 8 series with real-time capabilities. This processor
efficiently handles data collection, processing, and communication.

(b) The Vehicle Sensor Interface Module within the OBU connects to various sensors
using CAN (Controller Area Network) bus for reliable in-vehicle communication.
This module gathers data from GPS units with centimeter-level accuracy (e.g., u-blox
NEO-M8N), high-resolution cameras (e.g., Sony IMX335), and radar sensors (e.g.,
Continental ARS4xx) for comprehensive situational awareness.

(c) For secure and reliable communication with other vehicles and RSUs, the OBU inte-
grates a DSRC radio module compliant with the IEEE 802.11p standard. The DSRC
radio typically operates in the 5.9 GHz band and offers high data rates (up to 6 Mbps)
within a short range (typically 300 m).

(d) The inherent Security Module within the OBU safeguards communication by employ-
ing robust encryption algorithms like AES-128 and secure key management protocols
like the DSRC Signed Message (DSM).

(e) A Trusted Platform Module (TPM) is often integrated to provide hardware-based
security for cryptographic operations.
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Table 2 presents the benchmarked specification of hardware components within the
SVSA that were investigated for anomaly/exploits during DDoS attacks, for instance:

(a) Communication devices such as LTE and Wi-Fi modules are prone to flooding at-
tacks [19] that might undermine the network’s ability to relay crucial safety and
operational data.

(b) Telematics control units essential for V2V and V2I communications could suffer from
an overflow of malicious requests [20], potentially causing delays in vital information
or spreading false data.

(c) Machine interfaces and external communication modules responsible for processing
various sensor inputs and external data could be manipulated to produce false signals
and data, resulting in system confusion and operational failures [21].

(d) Localization systems that rely on accurate GNSS timing signals can be disrupted,
affecting the vehicle’s navigation capabilities and possibly leading to safety risks on
the road [22].
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Table 2. Comprehensive hardware specifications for SVSA in V2V communication [1,3,6,8,11,13,17,18].

Component Hardware Specification

Front Radar Model: Bosch Mid-Range Radar Sensor MRR1PLUS; Frequency: 77 GHz; Detection
Range: 160 m

Machine Interface Model: NVIDIA DRIVE IX; CPU: 8-core ARMv8.2 64-bit CPU cores; GPU: Integrated
320-core Volta GPU; Display: Multi-modal input (touch, voice, gaze)

Communication Equipment Model: Qualcomm Snapdragon X12 LTE; Frequency Bands: LTE FDD, LTE TDD
(including CBRS support); Wireless Standards: 5G, 4G LTE, WCDMA, CDMA

Rare Radar Model: Continental ARS408-21 Premium; Frequency: 77 GHz; Detection Range: 250 m;
Field of View: Up to 120◦ horizontal

Localization System Model: Trimble BX992 Dual Antenna GNSS; Technology: GPS, GLONASS, Galileo,
BeiDou; Accuracy: Sub-meter to centimeter level

Sensors Model: LIDAR-Lite v3HP; Range: 5 cm to 40 m; Accuracy: +/− 2.5 cm; Rate: Up to 1 kHz

Processing Platform Model: Intel Atom x7-Z8750; Cores: Quad-Core; Frequency: 1.6 GHz; RAM: 4 GB
LPDDR3

Telematics Control Unit Model: Autotalks CRATON2; Communication: DSRC/IEEE 802.11p, C-V2X; Security:
Embedded HSM, Secure boot

On-Board Diagnostics (OBD) System Model: ELM327 Bluetooth OBDII; Protocols: ISO15765-4 (CAN), ISO14230-4 (KWP2000),
ISO9141-2, J1850 VPW, J1850 PWM

USB Ports Specification: USB 3.1 Gen 1; Data Transfer Rate: Up to 5 Gbps

External Communication Module Model: Sierra Wireless AirLink MP70; Supports: LTE-Advanced Pro, Wi-Fi, GNSS;
Designed for: Vehicle networking

Infotainment System Processor: Qualcomm Snapdragon 820Am; Display: 10-inch multi-touch screen;
Connectivity: Bluetooth, Wi-Fi, USB

Vehicle Management System Model: Bosch Vehicle Control Unit; Functions: Vehicle data monitoring, energy
management, driver assistance systems

Energy Storage System Type: Lithium-Ion Battery; Capacity: 100 kWh; Features: High voltage, fast charging
capability

In consideration with Table 3, it is convincing to exhibit that DDoS attacks can cripple
essential vehicular functions by targeting specific hardware such as front radars and
communication equipment, leading to compromised safety and operational inefficiencies
in V2V and V2I communications. By exploiting vulnerabilities in protocols like DSRC, GPS,
and CAN, adversaries can also disrupt information flow, manipulate vehicle behaviors,
and degrade the reliability and security of vehicular networks essential for dynamic and
safe driving environments.

Table 4 categorizes security schemes based on attributes such as high mobility, flexibil-
ity, dynamism, link-ability, and traceability. It outlines two primary methods for data access:
one depends on roadside infrastructure where vehicles connect via base stations like 5G, 4G
LTE, WiMAX, or through access points like WiFi/802.11 and DSRC/802.11p, and the other
employs direct vehicle-to-vehicle communications. The latter method enables vehicles
to directly engage with nearby peers to exchange pertinent information independently
of infrastructure, making it particularly advantageous and cost-efficient in rural or less
urbanized regions. Our investigation has shown that reliance on cellular communications
often presents limitations due to bandwidth constraints and the high costs associated
with infrastructure development. In contrast, V2V communication stands out as a more
adaptable and cost-effective option. The process of detecting mobility anomalies typically
involves monitoring the distance between vehicles and flagging an anomaly when the
distance exceeds a pre-established threshold. However, setting this threshold is challenging,
especially when the vehicles being monitored are close to each other, as an excessively
large threshold might not effectively detect anomalies. Various studies such as those by
Su et al. [6], Pulligilla et al. [7], and others highlighted in the table show different levels of
adherence to these attributes, reflecting the varied strategies employed to bolster security.
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Table 3. DDoS attacks’ impact on hardware components and targeted protocols [3–15].

Component DDoS Attack Type Impact Impacted Hardware Targeted Protocol

Vehicles Vehicle-level jamming
Disruption of vehicle
communications;
safety risks

Front Radar,
Communication
Equipment

CAN, DSRC

Vehicles GPS spoofing
Misguiding vehicles,
leading to traffic
inefficiencies

Localization System GPS

Vehicles Sybil attack
Creation of multiple fake
identities to flood
the network

Telematics Control Unit DSRC, Cellular

Information Bogus information
dissemination

Spread of false information
to overload
network resources

Infotainment System DSRC, Wi-Fi

Information Message flooding
Overwhelming the
network with
excessive messages

Machine Interface DSRC, LTE

Infrastructure Infrastructure jamming Disabling communication
infrastructure

RSU Communication
Equipment DSRC, Cellular

Infrastructure Network protocol
attacks

Exploitation of protocol
flaws to cause
network outages

Network Processors TCP/IP, DSRC

All Components Malware propagation
Spreading malware across
the network to
create botnets

Entire Network System All Vehicle Protocols

Table 4. Security systems’ effectiveness and certificate cancellation patterns.

IDS Scheme High Mobility Flexibility Dynamic Link-Ability Traceability
Su et al. [6] ✔ ✖ ✖ ✔ ✔

Pulligilla et al. [7] ✔ ✖ ✔ ✖ ✔

Xie et al. [9] ✔ ✔ ✔ ✖ ✖

Hosseinzadeh et al. [12] ✔ ✖ ✖ ✔ ✔

Saleem et al. [17] ✔ ✖ ✖ ✔ ✖

Shams et al. [20] ✔ ✔ ✔ ✔ ✔

3. Proposed Methodology

Our novel cooperative decentralized intrusion detection system (CD-IDS) integrates a
hybrid detection technique by combining signature-based and anomaly-based methods.
The traditional signature-based detection relies on known patterns of malicious behavior
while anomaly-based detection assesses deviations from normal network operations. The
dynamic nature of V2V and V2I communications can trigger a stealth pattern that has the
capability of manipulating the traffic behavior to evade anomaly-based IDS. This pattern
might involve (i.e., as illustrated in Figure 3), but is not limited to, the following:

(a) Crafting messages with characteristics that fall within the normal operating range but
disrupt communication flow in a way that mimics background noise.

(b) Distributing a DDoS attack over a large number of compromised nodes, keeping
individual attack traffic below anomaly thresholds. Unlike traditional networks with
centralized control, VANETs rely on vehicle-to-vehicle communication, making it
harder to pinpoint the source of an attack. The constant movement of vehicles creates
a highly dynamic network topology, making it challenging to establish a baseline for
normal traffic patterns.

(c) Injecting packets with forged source addresses to appear as legitimate network partic-
ipants.
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(d) Sending packets with random sizes to avoid triggering anomaly detection based on
packet size patterns.

(e) Launching an anomaly in short bursts followed by dormant periods to mimic natural
network traffic patterns.

(f) Disrupting network communication by manipulating routing protocols to create
congestion or redirect traffic.

Herewith, Figure 3 effectively illustrates the sophisticated capabilities required by
the anticipated ‘anomaly detection engine’ to proactively identify potential DDoS initiator
anomalies. This engine necessitates to monitor a range of vehicle data, including speed
for inconsistencies that might suggest spoofed locations or other deceptive practices, and
GPS coordinates for sudden changes or improbable movements that could indicate location
spoofing. It was also crucial to check the sequence and timing of messages with timestamps
to pinpoint delayed or replayed traffic. By observing fluctuations in communication signal
strength, the engine can detect variations that are atypical for standard vehicle movements
or environmental conditions. Also, it aimed to evaluate traffic density data to identify
potential flooding attacks and track erratic changes in vehicle acceleration that deviate
from normal patterns. Monitoring brake status for unnatural patterns and detecting
irregular steering behaviors are also essential for identifying compromised vehicle control
systems. Proximity sensor readings help verify the actual proximity of vehicles, aiding
in the detection of spoofed positions. Moreover, the engine may consider environmental
conditions that could affect communication patterns and be exploited in sophisticated DDoS
attacks. It is also prone to examine discrepancies in vehicle weight and load information,
which could indicate false reporting or manipulation, and analyze diagnostic trouble codes
to uncover signs of tampering or unusual error codes related to cyber-attacks.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 8 of 20 
 

(c) Injecting packets with forged source addresses to appear as legitimate network par-
ticipants. 

(d) Sending packets with random sizes to avoid triggering anomaly detection based on 
packet size patterns.  

(e) Launching an anomaly in short bursts followed by dormant periods to mimic natural 
network traffic patterns.  

(f) Disrupting network communication by manipulating routing protocols to create con-
gestion or redirect traffic. 
Herewith, Figure 3 effectively illustrates the sophisticated capabilities required by 

the anticipated ‘anomaly detection engine’ to proactively identify potential DDoS initiator 
anomalies. This engine necessitates to monitor a range of vehicle data, including speed for 
inconsistencies that might suggest spoofed locations or other deceptive practices, and GPS 
coordinates for sudden changes or improbable movements that could indicate location 
spoofing. It was also crucial to check the sequence and timing of messages with 
timestamps to pinpoint delayed or replayed traffic. By observing fluctuations in commu-
nication signal strength, the engine can detect variations that are atypical for standard 
vehicle movements or environmental conditions. Also, it aimed to evaluate traffic density 
data to identify potential flooding attacks and track erratic changes in vehicle acceleration 
that deviate from normal patterns. Monitoring brake status for unnatural patterns and 
detecting irregular steering behaviors are also essential for identifying compromised ve-
hicle control systems. Proximity sensor readings help verify the actual proximity of vehi-
cles, aiding in the detection of spoofed positions. Moreover, the engine may consider en-
vironmental conditions that could affect communication patterns and be exploited in so-
phisticated DDoS attacks. It is also prone to examine discrepancies in vehicle weight and 
load information, which could indicate false reporting or manipulation, and analyze di-
agnostic trouble codes to uncover signs of tampering or unusual error codes related to 
cyber-attacks.  

 
Figure 3. Detection of DDoS attacks based on anomalies. 

Furthermore, in the proposed scenario, we envisioned that by blending malicious 
activity with legitimate traffic, the attacker aims to confuse the CD-IDS, making it difficult 
to distinguish the attack from regular fluctuations in network activity. Thus, we initiated 
the detection process with data aggregation where data from various sensors (i.e., identi-
fied in Table 2) and vehicles are collected. This was facilitated by the K-means clustering 

Figure 3. Detection of DDoS attacks based on anomalies.

Furthermore, in the proposed scenario, we envisioned that by blending malicious
activity with legitimate traffic, the attacker aims to confuse the CD-IDS, making it difficult
to distinguish the attack from regular fluctuations in network activity. Thus, we initiated
the detection process with data aggregation where data from various sensors (i.e., identified
in Table 2) and vehicles are collected. This was facilitated by the K-means clustering method
(i.e., step-by-step processes are described in Algorithm 1 and Figure 4), which groups data
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from vehicles based on similarity metrics or by appointing certain vehicles as dedicated
data collectors. The clustering is reflected in Equation (1):

J = ∑k
i=1 ∑x∈Si

(x − µi)
2 (1)
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In Equation (1), the J denotes the total within-cluster variance, k is the number of
clusters, x represents data points in cluster S_i, and µi is the mean of points in Si.

Algorithm 1. Applied K-means clustering method

Initialization

Select k initial cluster centers (means) randomly from the data points (i.e., Vehicle speed data, GPS
coordinates, Timestamps, Communication signal strength, Traffic density data, Vehicle acceleration readings,
Brake status, Steering angle data, Proximity sensor readings, Environmental conditions (e.g., weather data),
Vehicle weight and load information, Diagnostic trouble codes).

Assignment Step
Assign each data point to the cluster with the nearest center based on the distance between the point
and each center.

Update Step Recalculate the cluster centers as the mean of all points assigned to each cluster.

Convergence Check
Determine if the cluster assignments have changed from the previous iteration. If changes are
minimal or none, proceed to termination; otherwise, repeat from the Assignment Step.

Termination
Activate Termination process when cluster centers stabilize with minimal or no change in
assignments between successive iterations.

Following the aggregation of data, we implemented a filtering process using Principal
Component Analysis (PCA), as detailed in Algorithm 2. This technique reduces the volume
of data and improves the efficiency of the processing steps by eliminating redundant
information. Redundant or irrelevant data were identified using the feature selection
technique where only relevant attributes of data were kept for analysis:

F = { f1, f2, . . . , fm} (2)

In Equation (2), F denotes the features selected from the total m features available
within the dataset that has been gathered.
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Algorithm 2. Applied Principal Component Analysis

Applied Steps Processes

Data Standardization
Normalized the data points to have a mean of zero and a standard deviation of one for each
feature in the dataset.

Covariance Matrix Computation

Calculated the covariance matrix to identify correlations between different features in the
data. It involved the following steps:

(a) Before calculating the covariance matrix, the proposed framework was mandated to
standardize each feature in the aggregated dataset. This means subtracting the mean
and dividing by the standard deviation for each feature, ensuring that all features
contribute equally to the analysis.

(b) Covariance was measured to determine if changes in one feature tend to be
accompanied by changes in the same direction (positive covariance) or opposite
direction (negative covariance) for the other feature, relative to their respective
averages. The covariance matrix was calculated as follows:

- Let matrix X capture the relationships between observations and features. Each
feature is standardized and occupies a specific position within the matrix,
allowing analysis of individual data points.

- The covariance between two features i and j in the dataset was calculated

as follows : σij =
1

n−1 ∑n
k=1 (xki − µi)

(
xkj − µj

)
where xki and xkj are

the values of features i and j for observation k, and µi and µj are the means
of features i and j, respectively.

(c) A framework was coded to construct the Covariance Matrix as follows:

- The covariance matrix Σ is an n × n symmetric matrix (where n is
the number of features) with elements σij.

- The diagonal elements of the covariance matrix (where i = j ) represent the
variances of each feature, and the off-diagonal elements represent the
covariances between pairs of features.

(d) The matrix was formulated as follows:

- The covariance matrix was implemented with dual functionality which could
also be calculated in matrix form, and it was demonstrated to be more
computationally efficient : Σ = 1

n−1
(
XT X

)
where X is the matrix of

standardized data (with each feature having zero mean), and XT is
the transpose of X.

Eigenvalue Decomposition
Computed the eigenvalues and eigenvectors of the covariance matrix to assess the principal
components.

Principal Components Selection
Selected a subset of principal components that capture the most variance in the data while
reducing dimensionality.

Data Transformation
Transformed the original data into a new subspace using the selected principal components
to form the filtered dataset.

To create a real-time DDoS anomaly detection system powered by fog computing,
we combined several cutting-edge techniques. These include fog computing itself, a
weighted average method for gathering data efficiently, and a protocol for rapid information
transfer within the fog layer (the complete framework architecture is detailed in Figure 5).
Each of these techniques has been rigorously implemented, evaluated, and tested. The
implementation of fog computing thresholds was key to determining significant anomalies.
We defined a threshold function T that was based on the statistical variability in the data
patterns, illustrated in Equation (3):

T(x) = µ + α (3)
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Here, µ represents the mean of the observed data values, x = σ is the standard devia-
tion, and α is a scaling factor that adjusts the sensitivity of the detection process, ensuring
that only significant deviations from the norm are reported. Following data aggregation
(Figure 6), a standardization process was implemented to normalize the collected features.
This ensured all features had equal weight during the analysis. This procedure involved
adjusting each data point to zero mean and unit variance, effectively stabilizing variance
across different types of vehicular data, which was critical for maintaining the integrity
and comparability of subsequent analyses in our tested models.
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For data aggregation, we employed a ‘weighted average approach’, allowing us
to prioritize data based on their relevance and source reliability before aggregation. To
estimate the weighted average, we employed parameters such as data freshness, source
credibility, and contextual relevance to assign weights. These weights helped prioritize
data based on their timeliness, reliability, and importance to the current analysis, ensuring
the aggregated output was both accurate and reflective of the most pertinent information.

Aggregated result = ∑n
i=1 wixi

∑n
i=1 wi

(4)

In Equation (4), xi denotes the data value from vehicle i, wi the weight assigned
to this data point, and n the total number of data points, with weights assigned based
on factors like timeliness, source credibility, or contextual relevance. Our choice of the
real-time CD-IDS algorithm (i.e., exhibited in Figure 5) focused on leveraging machine
learning techniques (i.e., Autoencoder with LSTM, and Clustering with Classification) that
efficiently process and analyze vast data streams, maintaining high detection accuracy.
Herewith (Equation (5)), we implemented the decision algorithm to trigger alerts based on
the calculated probability p(x) exceeding our defined threshold T(x):

D(x) = {1 i f p(x)≥T(x)
0 otherwise (5)

We also employed a novel system for communication protocols, including DSRC/IEEE
802.11p and C-V2X, as illustrated in Figure 7. This system was engineered to facilitate a
swift information transfer, incorporating prioritization capabilities that distinguish between
urgent and standard messages. This design was crucial for upholding network integrity
and ensuring responsive communication across varied V2V and V2X conditions.

Herewith, to ensure data security, we implemented robust ABBE to safeguard commu-
nication between vehicles and fog nodes. The implemented method allowed the definition
of access policies that dictate who can decrypt the transmitted messages based on their
attributes, making it highly suitable for the V2X dynamic environment where vehicles
might frequently join or leave the network. In the projected framework, the implementation
of ABBE involved several key steps. First, the system defined a set of attributes relevant
to the network participants, such as the vehicle type role in the network or geographical
area. These attributes form the basis for policy definitions that control access to encrypted
messages. When a message is sent, it is encrypted with a policy that specifies the suitable
attributes that are required to decrypt it.

EABBE(M, Policy) = Encrypt
(

M, KPolicy
)

(6)

Here, in Equation (6), the M represents the message, Policy denotes the access policy,
and KPolicy is a key derived from the attributes that satisfy the policy. The encryption func-
tion Encrypt takes the message and the policy key to produce the ciphertext. Decryption by
a vehicle is only possible if it possesses a set of attributes that satisfies the policy associated
with the ciphertext. The simplified decryption process is exhibited in Equation (7):

DABBE(C, Attributes) = Decrypt(C, KAttributes) (7)

where C is the ciphertext, Attributes are the attributes held by the vehicle, and KAttributes
is the decryption key derived from the vehicle’s attributes. The function Decrypt uses
the ciphertext and the decryption key to retrieve the original message if the ‘attribute
set’ satisfies the policy. This attribute-based approach offered flexibility and enhanced
security by ensuring that sensitive information is only accessible to vehicles with the correct
credentials based on context-specific attributes rather than fixed identities. This method
effectively prevents unauthorized access and ensures that even if a vehicle’s network status
changes, its ability to access new messages relies strictly on its current attributes aligning
with the enforced policies.
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During the deployment of ABBE, we optimized individual technical parameters to
ensure robust and efficient performance. The encryption process used a 256-bit key size,
conforming to high security standards suitable for protecting against sophisticated at-
tacks (e.g., Sybil attack, spoofing attack, replay attack, Man-in-the-Middle Attack (MitM),
etc.). The system was configured to execute encryption and decryption through a series
of 12 rounds, which provided a comprehensive layer of security while balancing the com-
putational load to avoid significant delays in communication. This configuration resulted
in an average latency of approximately 5 ms per encrypted message, a minimal delay
that is critical for maintaining real-time communication within VANETs. The processing
size for each encryption or decryption operation is tightly controlled to accommodate the
bandwidth constraints which are typical in vehicular networks, ensuring that the system
can handle frequent and high-volume message exchanges without degradation of network
performance.

We envisioned and exhibited that the effectiveness of ABBE in detecting and coun-
tering DDoS attacks lies in its attribute-based access control. This approach is partic-
ularly well-suited to dynamic network environments, where vehicles frequently enter
and exit, ensuring robust security even in rapidly changing conditions. By requiring
that each vehicle’s attributes match specific criteria before decrypting received messages
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DABBE(C, Attributes) = Decrypt(C, KAttributes), ABBE effectively restricts access to network
communications to authorized participants only. This attribute-based control mechanism
significantly reduced the risk of DDoS attacks by limiting the ability of malicious entities to
generate and disseminate high volumes of disruptive traffic. Vehicles without the necessary
credentials were effectively barred from interacting with or disrupting the network, ensur-
ing that potential threats were contained before they could cause widespread harm. This
protection was crucial for maintaining continuous and secure vehicular communications.

To further enhance the network adaptability and security management, we integrated
SD-VANETs. This implementation involved the critical separation of the control plane from
the data plane, which allowed for centralized network management while maintaining
the distributed nature of data forwarding. In our configuration, the SD-VANETs controller
was tasked with managing the network’s overall visibility, which included path configura-
tion and traffic management. This centralized control proved essential for orchestrating
coordinated responses to DDoS attacks, enabling the rapid identification and isolation
of malicious traffic and nodes. The optimal routing decision within these SD-VANETs is
illustrated in Equation (8):

R(s, d) = min
∀p∈Ps,d

Cost(p) (8)

where R(s, d) indicated the optimal route from source s to destination d, Ps,d denoted
all possible paths, and Cost(p) represented the cost function of each path. The dynamic
reconfiguration of network routes was also a pivotal feature, allowing the network to adapt
to varying conditions and threats dynamically. Traffic was rerouted away from congested
or compromised nodes, effectively minimizing the impact of ongoing DDoS attacks. This
dynamic route adaptation is captured by Equation (9):

Rnew(s, d) = min
∀p∈Ps,d

(Cost(p) + ∆Cost(p, t)) (9)

where in Equation (9), the ∆Cost(p, t) reflected changes in the cost function due to factors like
network congestion or security breaches. Moreover, flow-based rules (i.e., block/forward)
were applied to either block or safely redirect suspicious data flows, thereby preventing
further network disruption. These security actions were governed by the following:

F(x) = {block i f x ∈ Xmal
f orward otherwise (10)

As demonstrated in Equation (10), F(x) could determine the treatment of packet x,
with Xmal being the set of data flows identified as malicious. Through the implemented
SD-VANETs framework, the projected system was able to achieve improved traffic man-
agement, reduced communication overhead, and enhanced scalability to support a large
and dynamically changing array of network nodes.

We also integrated permissioned blockchain that allowed only verified entities (i.e.,
V2V, V2X) to participate in the network, significantly reducing the risk of malicious activities
and unauthorized data breaches. Each transaction or data exchange within the network
was securely logged and immutable, providing a trustworthy and tamper-proof system.
This was critical for maintaining a reliable audit trail and enforced the accountability that
is vital in the dynamic environment of VANETs, where network nodes frequently change.
We combined fog computing with permissioned blockchain to enhance the effectiveness
of our CD-IDS. Fog computing enabled the local processing of data at the network’s edge,
which enabled the system to significantly reduce latency and also allowed for near real-time
detection of anomalies. The integration process involved the deployment of fog nodes
capable of executing local data analytics to swiftly detect potential anomaly activities:

Flocal(v) = ∑n
i=1 ai(v) (11)
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Here, as per Equation (11), Flocal denotes the local processing function at fog nodes,
v represents a vehicle, and ai(v) are the analytics operations performed on the data col-
lected from vehicle v. Instantaneously, permissioned blockchain swiftly ensured that all
communications between the fog nodes and vehicles were securely encrypted, which
made the network accessible only to those with proper authorization credentials. The
system employed the Elliptic Curve Digital Signature Algorithm (ECDSA), which is a
well-established protocol for node authentication that aided in verifying vehicles to main-
tain a secure environment. Furthermore, the Practical Byzantine Fault Tolerance (PBFT)
consensus mechanism within the blockchain was crucial in maintaining network integrity
and availability, even amidst challenging scenarios like Sybil attacks, Byzantine failures,
and collusion attempts. To bolster security further, smart contracts were integrated to
enforce policies and swiftly respond to suspicious activities, consequently minimizing the
impact of any attempted attacks on the network’s operational capacity.

We addressed the minority class imbalance by employing the SMOTE [23]. This
method helped in artificially generating new instances of the minority class, thus balancing
the dataset and improving the detection accuracy for rare malicious events:

Ssynthetic = S + λ(Snn − S) (12)

where in Equation (12), the S represents an original sample from the minority class, Snn
is its nearest neighbor in the feature space, and λ is a random number between 0 and 1.
At this stage, we conducted a comparative analysis of a centralized and decentralized
security approach. We evaluated their strengths and weaknesses, with findings indicating
that while centralized systems offered easier management and implementation of security
policies, decentralized systems provided better resilience against DDoS attacks and were
more scalable.

In the final phase of our research, we successfully employed and evaluated a novel
hybrid machine learning model. By integrating an Autoencoder with LSTM and combining
it with the Clustering and Classification technique, we effectively harnessed the capabilities
of both methods to identify complex DDoS patterns.

Mhybrid = AutoencoderLSTM(Cluster(X)) (13)

where Mhybrid represents the hybrid ML model, X is the input data set, and Cluster(X)
denotes the initial data clustering phase feeding into the LSTM-based Autoencoder. The
hybrid model described by Equation (13), which incorporated an Autoencoder with LSTM,
was specifically designed to process temporal sequences which are crucial for recognizing
evolving malicious anomaly patterns. The architecture included two LSTM layers, each
equipped with 128 units capable of capturing time-dependent features from network traffic
data. The dimensionality of the data was significantly reduced through a bottleneck layer,
which helped isolate crucial features by compressing the input into a more condensed
format (i.e., latent space embeddings). This process was essential for focusing on the
most important aspects of the data. Prior to the LSTM setup, K-means clustering, as
depicted in Figure 4, segmented the input data into distinct clusters, thereby facilitating the
classification process by grouping similar data points. The classification phase featured a
dense layer with a softmax activation function tasked with categorizing the LSTM outputs
into specific categories that represent various DDoS attack vectors. The optimization of
this model was achieved using a learning rate of 0.001 and a dropout rate of 0.5 to bolster
model generalization and avert overfitting during the training process. The model was
subjected to extensive training and testing, proving its high accuracy and robustness in the
detection and classification of DDoS threats.

4. Experimental Setup and Assessment Outcome

The OMNeT++ 6.0.3 simulator [24], coupled with a VANET infrastructure, was utilized
to collect empirical data through a series of tests conducted over twenty-four hours and
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ten iterations within a simulated 6 × 6 km area. These evaluations rigorously tested the
framework’s response under a variety of network conditions and sophisticated attack
scenarios, ranging from low to high density networks involving 01 to 1500 nodes, rapid
changes in vehicle speeds, and environments mimicking urban intermittent connectivity
and constant movement on highways.

In-depth simulations of attacks such as Sybil for testing resilience against false identity
creation, GPS spoofing for assessing the system’s capability to detect and correct location
falsifications, and replay attacks to evaluate the effectiveness in handling repeated trans-
missions of old data were integral parts of the testing phase. The Scalable Wireless Ad-Hoc
Network Simulator (SWANS) Ulm Highway model [25], which supports a highway sce-
nario with three lanes where vehicles could achieve speeds of up to 50 m/s, with an average
of 40 m/s, was implemented. This model accurately simulated complex driving behaviors,
including collision avoidance and lane switching, providing a robust basis for assessing
vehicular communication dynamics.

The physical layer was set to accommodate Rayleigh fading and a TwoRay path loss
model with a transmission power of 10.9 dB. The MAC layer was programmed with the
802.11p standard, crucial for enabling Dedicated Short-Range Communications (DSRC)
within the 5.9 GHz band. The network was configured to support a maximum packet size
of 3072 bytes. Beacons were configured to transmit every 0.1 s, each with a size of 300 bytes,
and utilized varied sketch sizes and the hash method (SHA-256), optimizing the handling
of vehicle locations and payload data. These detailed configurations and extensive testing
protocols provided crucial insights into the performance and communication dynamics
(i.e., as exhibited in Figure 8) under different vehicular densities and mobility conditions in
the network.
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Our research also focused on understanding how the length of wireless communica-
tion links impacts message loss rates. As exhibited in Figure 9, we observed that longer
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links were prone to higher loss rates due to increased signal attenuation, multi-path fading,
and interference, which were more evident as the link distances extended. The constant
and rapid changes in vehicle positions led to significant variations in the lengths of com-
munication links, which in turn affected the reliability and stability of data transmissions.

To tackle these challenges, our emulation employed the Low-Density Parity-Check
(LDPC) coding scheme which was designed to enhance signal robustness over diverse
distances. This technique leveraged a sparse parity-check matrix that effectively decoded
incoming messages, drastically lowering the error rate. Correspondingly, our team inte-
grated several network protocols: the Distance-Aware Rate Adjustment Strategy (DARAS),
Density-Aware Transmission Power Control Protocol (DATPCP), and Dynamic Power Ad-
justment for Vehicular Networks (DPA-VN). These protocols were specifically developed
to adapt transmission power and dynamically regulate the dissemination rate of messages,
responding in real-time to the existing network density and the typical distance between
vehicles. This adaptive methodology proved crucial in countering the negative impacts
of variable link lengths on message loss. It facilitated the development of more robust
communication strategies and guaranteed the dependable transfer of essential safety and
operational information among vehicles.
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Figure 9 displayed a distinct pattern: the message loss rate steadily escalated as the
distance between sender and receiver increased from 0.6 km to 2.6 km, ranging from 2.4% to
4.4% and peaking at 4.95% at the shortest link when network density reached its maximum.
This trend underscored the challenges presented by signal attenuation, multi-path fading,
and interference, all of which intensified over longer distances and higher network densities.
We observed that the application of the LDPC coding scheme, along with strategic network
protocols such as DARAS and DPA-VN, successfully addressed these issues. Detailed
analysis, as portrayed in Figure 8, confirmed that these technological adjustments not only
enhanced signal robustness across varying distances but also maintained the stability and
reliability of rapidly evolving vehicle-to-vehicle communications.

The efficacy of the D-CASPBR was heavily reliant on minimizing message loss rates
to sustain the integrity and responsiveness of the network’s threat detection system. Our
studies showed that an increase in message loss corresponded with heightened latency in
anomaly detection, which could compromise the network’s security posture. To counter
this, we enhanced our network protocols by incorporating advanced error-correcting codes
and adaptable transmission power controls which proved to be an essential element for
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boosting network reliability. Key optimization parameters included the strength of error
correction, the coding rate of advanced error-correcting codes, transmission range, signal
strength, and various environmental factors influencing transmission power control. These
upgrades significantly bolstered the dependability of transmitting crucial security alerts,
thereby markedly reducing the likelihood of missed or delayed threat detections and
strengthening the overall security framework of the network.

Figure 10 demonstrated that an increase in the number of nodes significantly enhanced
spatial coverage, which facilitated more comprehensive monitoring and data collection
within the proposed framework. Each node functioned as a sensor which enhanced
the overall detection capabilities of the system. The expansion in node count not only
improved redundancy in data collection and anomaly detection but also mitigated the
risks associated with single points of failure to ensure the network maintained its integrity
without significant blind spots.
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Figure 10. Investigating the impact of nodes on DDoS anomaly detection rates [6,7,9,12,17,20].

The addition of rapidly joining ingress and egress nodes brought diverse observational
perspectives and heuristics which enriched the collective process of detecting anomalies.
This diversity was instrumental in distinguishing normal network activities from genuine
threats to effectively reduce false positives and enhancing the reliability of the anomaly
detection system. Correspondingly, the increased node count bolstered the capacity for
effective peer-to-peer communication and facilitated consensus building, which became a
vital component in the decentralized system where the validation and response to detected
anomalies relied on the concurrence of multiple nodes. Furthermore, the fact that the
nodes were spread out across different locations meant that the network’s structure was
constantly changing and adapting. This made it much better at spotting unauthorized
access attempts across a wider region. This capability was crucial for maintaining effective
monitoring, even with the network’s fast-paced, ever-changing nature. These strategic
enhancements were integral in reinforcing the framework’s ability to manage and mitigate
potential security threats efficiently.
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5. Conclusions

The proposed research has methodically engineered, deployed, and advanced robust
DDoS mitigation strategies and a novel detection framework that was explicitly optimized
for VANET environments. Through comprehensive analysis of the existing literature and
emulation assessments, we demonstrated the efficacy of our methodologies in mitigating
the impact of malicious attacks, highlighting the importance of robust security measures in
safeguarding V2X communications, particularly in safety-critical applications. Leveraging
advanced statistical analysis, fog computing, SD-VANETs, permissioned blockchain, and
the hybrid machine learning technique, our approach offers a proactive defense mechanism
against evolving threats that ensures the uninterrupted flow of vital information within
vehicular networks. Our study contributes novel insights and methodologies addressing
the unique challenges posed by DDoS attacks (e.g., but not limited to the following: GPS
spoofing, gray-hole attacks, etc.), providing a tailored solution that enhances network
resilience. Future research should aim to address limitations, such as further investigation
into scalability and adaptability, exploring integration with existing security frameworks,
and evaluating performance in real-world scenarios. While our proposed methodology
has shown promising results, considerations such as a focus on specific DDoS attack types
and scalability require further exploration to ensure effectiveness in large-scale VANET
deployments.
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