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Abstract: The advancement of artificial intelligence (AI) has become a crucial element in autonomous
cars. A well-designed Al architecture will be necessary to attain the full potential of autonomous
vehicles and will significantly accelerate the development and deployment of autonomous cars in the
transportation sector. Promising autonomous cars for innovating modern transportation systems
are anticipated to address many long-standing transporting challenges related to congestion, safety,
parking, and energy conservation. Choosing the optimal Al architecture for autonomous vehicles is a
multi-attribute decision-making (MADM) dilemma, as it requires making a complicated decision
while considering a number of attributes, and these attributes can have two-dimensional uncertainty
as well as indiscernibility. Thus, in this framework, we developed a novel mathematical framework
“complex intuitionistic fuzzy rough set” for tackling both two-dimensional uncertainties and indis-
cernibility. We also developed the elementary operations of the deduced complex intuitionistic fuzzy
rough set. Moreover, we developed complex intuitionistic fuzzy rough (weighted averaging, ordered
weighted averaging, weighted geometric, and ordered weighted geometric) aggregation operators.
Afterward, we developed a method of MADM by employing the devised operators and investigated
the case study “Selection of optimal Al architecture for autonomous vehicles” to reveal the practi-
cability of the devised method of MADM. Finally, to reveal the dominance and supremacy of our
proposed work, a benchmark dilemma was used for comparison with various prevailing techniques.

Keywords: artificial intelligence (AI) architecture; autonomous vehicles; complex intuitionistic fuzzy
rough set; MADM method

1. Introduction

For a multitude of reasons, the design of artificial intelligence (Al) systems for au-
tonomous vehicles is critical. With the potential to transform transportation and make
it safer, more effective, and environmentally friendly, autonomous vehicles represent a
revolutionary technical development. These vehicles’ ability to sense their surroundings,
make judgments, and maneuver through the intricate and dynamic real-world environment
is largely dependent on the design of the Al system. To reduce the chance of accidents, the
Al architecture in autonomous vehicles has to be built with redundancy and fail-safes. An
autonomous vehicle’s Al system needs to be reliable and capable of handling unexpected
situations because a mistake might have serious repercussions. To guarantee the safety of
both passengers and other road users, safety-critical capabilities such as object identification,
collision avoidance, and emergency braking must be incorporated into the Al architecture.
Scalability and flexibility are also crucial factors to take into account. To enable the ongoing
development of the Al system as it learns from fresh data and experiences, the architecture
should provide over-the-air upgrades. Since autonomous technology is anticipated to be
incorporated into a wide range of vehicles, including personal automobiles, commercial
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trucks, and even drones, this flexibility also extends to diverse vehicle platforms. Al may
be deployed more easily in a variety of applications with the help of a flexible architecture.

The multi-attribute decision-making (MADM) technique is one of the most valuable
and dominant techniques for evaluating awkward and unreliable information in genuine
life dilemmas. MADM plays an important role in real-life decision-making (DM) situations;
it gives the best options and results for different alternatives under certain attributes that
need to be evaluated when making a decision. When evaluating alternatives, sometimes
it can be challenging to express the evaluation value of an attribute as a real number. To
address this difficulty, Zadeh [1] initiated the mathematical framework known as fuzzy
set (FS) theory as an extension of crisp set theory. Pawlak [2] developed the mathematical
framework known as the rough set (RS) theory as a means of addressing ambiguity and
uncertainty in knowledge representation and data processing. It offers a method for dealing
with uncertain or insufficient data without depending on conventional probability theory
or fuzzy logic. RS structures consist of upper and lower approximations. It separates a
universe of items into sets with varying degrees of indiscernibility, where indiscernibility
is the inability to tell one object from another based on the available information. This
theory was first put out in 1982. Later, as a fuzzy expansion of RSs, Dubois and Prade [3]
suggested the idea of fuzzy RSs (FRSs) by substituting fuzzy relations for binary relations.
Using the idea of truth grade from fuzzy logic in the RS framework, an FRS offers a more
potent framework. Later on, Cornelis et al. [4] introduced the notion of intuitionistic FRSs
(IFRSs) by combining the concepts of intuitionistic fuzzy sets (IFSs) and RSs.

1.1. Motivation and Contribution

An autonomous car relies heavily on Al architecture to perceive the environment,
make decisions, and control the car. Selecting an Al structure for autonomous vehicles is
a complex system that involves integrating various techniques, algorithms, and systems.
Over the years, we have seen companies debating over which Al architecture should be
used. There are a lot of high-level overviews of the key components in an autonomous ve-
hicle Al architecture, such as types of sensors, perception and object detection, localization
and high-definition mapping, DM and motion-planning frameworks, control systems and
machine learning approaches, safety and ethical considerations, scalability, and flexibility.
A detailed discussion of these key components is provided as follows:

e  Data fusion, perception, and object detection: These refer to combining the data from
multiple sensors (vision system, lidar system (light detection and ranging), radar
system (detection of objects and their speed, even in poor visibility), and ultrasonic
sensor for short-range object detection) to produce a more accurate and reliable repre-
sentation of the vehicle’s surrounding. The Al architecture should be able to use these
sensors’ data efficiently and develop a fusion algorithm to improve perception and
DM. By combining the information from these multiple sensors, autonomous vehicles
can create an exceptionally flexible and redundant cognitive framework, thereby re-
ducing the potential risk associated with wrong decisions in critical DM scenarios. In
real-time, the Al structures need to be able to detect and accurately identify different
objects, such as pedestrians, road hurdles, speed breakers, other cars, lane markings
and traffic signs, and other static elements in the environment. For this, sophisticated
computer vision and deep learning algorithms are needed.

e  Localization and mapping: The localization system in the vehicles uses a combination
of a global positioning system (GPS) and inertial measurement units (IMUs) for
precise positioning. Autonomous vehicles often use high-definition (HD) maps that
provide detailed information about the road network, pedestrians, road hurdles,
speed breakers, lane markings, and traffic signs in the environment. These maps are
combined with real-time sensor data to build a comprehensive understanding of the
vehicle’s surroundings. The Al architecture should be able to accurately localize the
car within its environment and maintain a detailed map of the environment, including
static and dynamic elements, to support efficient navigation and DM.
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The below figure, Figure 1, represents the data fusion algorithm of autonomous
vehicles.
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Figure 1. Data fusion algorithm.

e  Decision-making and motion-planning framework: The DM system is the brain of
autonomous vehicles. It uses the information from the perception, localization, and
mapping systems to plan the vehicle’s trajectory and make decisions about when
to accelerate, brake, or change lanes. This system relies on advanced algorithms to
navigate the vehicle safely and efficiently.

e  Control system and machine learning approach: The AI DM system interconnects
with the vehicle control system, which translates the high-level decisions into precise
commands that control the vehicle’s steering, acceleration, and brakes. Machine
learning is the backbone of autonomous vehicles; the perception and DM modules,
including deep neural networks, rely on advanced machine learning techniques to
improve their performance and adapt to new situations.

The below figure, Figure 2, represents the Al architecture of an autonomous vehicle.
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Figure 2. Basic 4 pillars of Al architecture for autonomous vehicle.
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e  Safety, reliability, and scalability: The Al architecture must be designed with safety and
ethical principles in mind, ensuring that autonomous vehicle actions and decisions
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prioritize the safety of pedestrians and other road users. Al systems develop rigorous
testing and validation processes, including simulation and real-world trials, and they
ensure that robust fail-safe mechanisms are in place to handle unexpected situations.

The selection of the best Al architecture for autonomous vehicles involves a holistic
approach that prioritizes safety, performance, and adaptability. By focusing on these
key components, developers can create more dynamic and efficient autonomous systems.
Despite a considerable amount of research efforts, there are still challenging issues in Al
structures for autonomous car perception, object detection, localization and high-definition
mapping, DM, and motion-planning frameworks. Many Al methods have been applied to
improve the Al structures of autonomous cars and help them make human-like decisions
in different situations, such as following other cars, steering, and path planning. However,
such applications are inherently limited by the data’s availability, quality, complexity, and
uncertainty. If the data collected from different sensors of autonomous vehicles contain
extra fuzzy information along with roughness, then there is no tool that can handle that
type of information. Then, the information collected from these sensors can be noisy,
incomplete, and affected by different environmental factors. Moreover, from the literature
review, we observed that the FS, FRS, and IFRS theories are restricted by their limitations
and conditions. For decision makers, an IFRS is the best tool for handling truth-grade (TG)
and false-grade (FG) information in the form of lower and upper approximations, but IFRSs
cannot handle the additional fuzzy information (second dimension) in the form of lower
and upper approximations. Similarly, other existing theories cannot model the information
that contains additional fuzzy information. Therefore, this era requires the development
of a new mathematical framework that can handle second-dimension (additional fuzzy
information or complex fuzzy information) TG and FG information in the form of lower
and upper information. Motivated by this research gap, in this article, we developed the
concept of complex IFRSs (CIFRSs), and then, based on this newly defined relation, we
devised a new novel mathematical framework called a CIFRS that can not only handle
the TG and FG in its structure, but can also tackle two-dimensional uncertainties and
indiscernibility. Moreover, we developed elementary operations such as the complement,
union, intersection, and algebraic operations (sum, product) of the deduced CIFRSs. For
comparing the two complex intuitionistic fuzzy rough numbers (CIFRNs), we developed
the accuracy and score function. As aggregation is a fundamental mathematical tool to
convert the overall information into a single value, based on this observation, we developed
complex intuitionistic fuzzy rough (CIFR) weighted averaging (CIFRWA), CIFR ordered
weighted averaging (CIFROWA), CIFR weighted geometric (CIFRWG), and CIFR ordered
weighted geometric aggregation operators (AOs), and investigated their properties in detail.
According to the application point of view, we used the MADM technique based on CIFR
information for the selection of optimal Al architecture for autonomous vehicles.

1.2. Aims and Objectives

This study aimed to develop a new framework, “CIFRSs”, to overcome the existing
problems in the theory of IFRS for the selection of the finest Al architecture for autonomous
cars by using CIFR AOs to effectively combine and evaluate various performance metrics
and criteria. The specific objectives were as follows:

To define and develop the theory of CIFRSs.
To define and develop different operators, such as the average AOs and geometric
AQs, in the framework of CIFRSs.

o To apply a newly defined framework to assess multiple Al architectures based on
a wide range of performance indicators, and utilize the AOs to combine diverse
evaluation criteria into a single, meaningful value.

o To select a suitable MADM method based on the problem characteristics and data
availability.

e To develop an MADM algorithm for aggregation and evaluation to handle large
datasets and complex Al architectures.
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e  To examine the comparative study of the proposed methods with the present notions
to show the supremacy and efficiency of the established work.

By achieving these objectives, this research will contribute to the development of a
systematic and reliable approach for the selection of optimal Al architectures, leading to
the improved performance and safety of autonomous vehicles.

1.3. Study Framework

The remaining article is designed as follows. In Section 2, we review the background
study and notion of IFSs, complex FSs (CFSs), FRSs, and IFRSs and discuss their related
operations. In Section 3, we demonstrate the definition of a complex intuitionistic fuzzy
relation, which will help us further demonstrate the definition of a CIFRS. Section 3 is
focused on the basic operating rules for CIFRNSs. In Section 4, we develop several new AOs
based on CIFRSs and discuss their properties using basic operations. Section 5 is based on
an MADM algorithm and an application for delivered work to show the reliability and
functioning of the developed notions. Section 6 is about the comparative study, and some
conclusions for further research are given in Section 7.

2. Background of the Study

Security and data privacy are two very important issues. Large volumes of data are
gathered by autonomous vehicles concerning their environment, occupants, and internal
processes. Strong security features are required in the architecture to guard against cyber-
attacks and unwanted access to these data. To increase public confidence in autonomous
vehicles, privacy protection for its users is crucial. Another important component is inter-
operability. Autonomous vehicles need to connect with infrastructure, other vehicles, and
traffic control systems to function. By providing standardized protocols and interfaces for
communication, the Al architecture should be created to support a more organized and
effective transportation environment. Ma et al. [5] devised various applications of Al in
the creation of autonomous vehicles. For autonomous vehicles, Khayyam et al. [6] used Al
and the IoT. Pereira et al. [7] originated architecture for autonomous vehicles. Kurzidem
et al. [8] discussed a methodology to examine architectures in autonomous vehicles. The
challenges, opportunities, and applications of intelligent automation and autonomous
vehicles were examined by Bathla et al. [9]. Zong et al. [10] devised an architecture design
for an autonomous vehicle. By employing blockchain and Al, Bendiab et al. [11] discussed
the challenges and solutions to the security of autonomous vehicles.

In crisp set theory, there are only two possibilities in the form of yes or no, or (0) or
(1), for each element from the universe of discourse, but FSs include the TG and have
more possibilities from a unit closed interval. With time, many researchers have given
their ideas in different fields of life using the FS theory framework. Esogbue et al. [12]
demonstrated the application of the FS theory to the optimal flood control problem arising
in water resource systems. Guiffrida and Nagi [13] developed FS theory applications in
production management research. Driankoy and Saffiotti [14] created various techniques
based on fuzzy logic for autonomous vehicles. Wang et al. [15] investigated the lateral
control of autonomous vehicles by employing fuzzy logic. Awad et al. [16] developed
a model by employing fuzzy logic for the path tracking of autonomous vehicles. FSs
ignore FG characteristics and instead address uncertainty through TGs. This restriction
falls short of capturing all the uncertainty that exists in real-world situations. To overcome
this limitation, an IFS was developed by Atanassov [17] that includes FGs in addition to
TGs, and their sum should be in the unit closed interval. This allows for a more thorough
depiction of uncertainty in DM and the modeling of uncertain information. Later on,
different valuable applications in IFSs have been explored by researchers in different fields.
Dengfeng et al. [18] proposed new similarity measures of IFSs and their application to
pattern recognition. De et al. [19] developed an application of IFSs in medical diagnoses.
Garg and Rani [20] introduced novel distance measures for IFSs based on various triangle
centers of isosceles triangular fuzzy numbers and their applications. Xu [21] introduced IF
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AOs and Xu and Yager [22] proposed some geometric AOs based on IFSs. Jia and Wang [23]
introduced Choquet integral-based IF arithmetic AOs in multi-criteria DM. An extended
MAIRCA method for coronavirus vaccine selection in the age of COVID-19 based on IFSs
was proposed by Ecer [24]. Even though FSs and IFSs are very useful and dominant, they
do have some limitations because they do not cover the two-dimensional information in a
single set. Later on, Ramot et al. [25] derived the major idea of CFSs, which contain the TGs
in the form of complex numbers and cover the two-dimensional information in a single
set. The complex fuzzy (CF) function contains two main terms, the phase term and the
amplitude term, whose range is in the complex plane’s unit circle. Tamir et al. [26] also
invented the notion of CFSs in the cartesian structure, where TGs have real and unreal
parts that are placed in the complex plane’s unit square. A few operations for CFSs were
developed by Zhang et al. [27]. Hu et al. [28] devised distances of CFSs and the continuity
of their operations. Rehman [29] investigated probability AOs under the setting of CFSs.
Cornelis et al. [4] introduced the notion of intuitionistic FRSs (IFRSs) by combining the
concepts of IFSs and RSs. To examine intuitionistic fuzzy rough (IFR) approximation
operators, Zhou and Wu [30] constructed a generic framework that used both constructive
and axiomatic techniques. Also, Zhou and Wu [31] developed the idea of rough IFSs and
IFRSs, and demonstrated their logical study in detail. The idea of an IF relation was defined
by Bustince and Burillo [32]. By using the IF relation and the idea of two universes, Zhang
et al. [33] examined the general framework of IFRSs. By using topology, Yun and Lee [34]
defined and examined some properties of the IFR approximation operator and IF relations.
Zhang [35] proposed the generalized IFR approximation operators based on IF coverings
by combining the theories of RSs and IFSs. Yahya et al. [36] developed a novel approach to
the IFR frank AO-based and evolution-based distance from the average solution (EDAS)
method for MADM. Chinram et al. [37] examined the EDAS method for MADM based
on IFR AOs. Ahmmad et al. [38] utilized the IFR Aczel-Alsina average AOs and their
applications in medical diagnoses. Mahmood et al. [39] examined confidence level AOs
based on IFRSs with an application in medical diagnoses. Mahmood et al. [40] derived the
analysis and prioritization of the factors of the robotic industry with the assistance of the
EDAS technique based on IFR Yager AOs.

Preliminaries

In this sequel, we recalled some basic notions linked to IFSs, CFSs, FRSs, and IFRSs.
Also, their related operations and properties are discussed.

Definition 1 [17]. Let U be a universal set; IFS € on set U is given as

€= {(sM€ (é*),N€ (s)) ’s € u}, )

in which Mg : U — [0, 1] represents the TG and N¢ : U — [0, 1] represents the FG of §* € U to
the set € such that 0 < Meg(8*) + Ne(8%) < 1. For easiness, the IF number (IFN) is symbolized
by € = (Mg, Ne).

Definition 2 [17]. For two IFNs, €; = (Mg, Ng,) and €, = (Me,, N, ), the following are true:

€ U6 = (max(Me, (57),Me, (57) ), min(Ng, (5),Ne, (3) ) )
€€ = (min(Me, (5),Me, (57) ), max(Ne, (5),Ne, (5) ) )

€] = (Ng,, Mg, ), where €] represents the complement of €;;
€ @€ = (Mg, + N¢, — M¢,Ng,, Mg, Ng, );
€06 = <M€1N€2,M€1 +Ng, — MelNez) ;

26 = (1 (1-Mg )" N )
€ = (N, 1- (1-Me,)").

N S Gk w =
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Definition 3 [26]. Let U be a universal set; CFS € on set U is given as

e (M) )= {(En) @) ) @

in which Mg (8*) represents the complex TG and ¢¢, be € [0,1], 1 = +/—1. For easiness, the CFN
is symbolized by € = (¢ + tbe).

Definition 4 [26,29]. For two CENs, €; = (g¢, + tbe,) and €, = (ge, + tbe, ), the following
are true:
€ UE = (max((P€1/ (p€z) + lmax(b&’ b€z));
€1 N€ = (min(@e,, Pe,) + tmin(be,, be, ));
€ = ((1— @¢,) + (1 — bg,)), where €] represents the complement of €3;
€, ®€ = ((pe, + Pe, — Pe, Pe,) + 1(be, + be, — be, b, ) );
€ ©€ = ((pe,0¢,) +1(be,be,));

A
e = (1= (1= 0e)") +1(1- (1-1e)"));

A

€ = ((0e)" +1(be,)").

N S Ol e

Definition 5 [3]. Let (U, R}) be a fuzzy approximation space and let set A be the FS in U. Then,
the upper and lower approximation of A w.r.t. (U, R}) is denoted and defined by

Ry(A) =1 (8 Mg(5)) s U
Ry(A) = (8 Mp:(87)) 5" U

(s ) Vreule(5F) peal)
Mg () = a1 e(é*&*))V@AJf)]

Then, the pair R} (A) = (R (A), R*(A)) is called the FRS.

where

=
m< N‘

Definition 6 [37]. Let U be a nonempty and finite universe of discourse and R} be an IF re-
lation on U; then, we can say that (U, R}) defines the IF approximation space. Then, for a
set A = {(t", pa(¥"), LA(¥"))|¥" € U} € IFS(U), we can denote and define the upper and
lower approximation of A w.r.t. (U, R}) as

§eu

seu

where

where 0 < M-+ et Ng <1 and 0 < Mp+ + Np < 1. RI(A ) and Ry(A) are IFSs. Then, the
pair R;(4) = (Ri(4), Ri(4)) = { (¥ <M—( ) Nee(8) > < Mg (5) Nge () >) ’s e u}
is called an IFRS with respect to (U, R,). For simplicity, we will say that R,(A) = (R72(A),R72 (A)) =
(< MR—(S)NR—(S) >, < Mg, (s)Nli (s> >) represents the IFRN.
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Ri(A) = (F

Definition 7 [37]. For two IFRNs, R} (A)
the following are true:

Il
/N
7
o %
—
hS
Y
)
< %
—
hS
N~—
—
i)
=~
U
=
o ¥
—~
os]
S~—
|
/~
Z
o %
—
&
?/
o)
< %
—~
os]
N~—
—

1. Ri(A)UR(B) = (Ri(A) UR;(B)

=
=

2. Ri(A)NRi(B) = (Ri(A) NR;(B), Ry(A
3. Ri(A)f = (RZ(A)C,R;Z(A)C),Where R (A

the IF rough approximation operators R;
4 Ri(A)®R(B) = (Ri(A) & Ry(B), Re(A)
5. Ri(A) @ Ri(B) = (Ri(A) @ Ri(B), Ri(A)
6. ARS(A) = (AEZ(A),A&Z(A));

7 (R = ((Rw)' (Ra)'),

3. Complex Intuitionistic Fuzzy Rough Set

In this section, we demonstrate the definition of complex intuitionistic fuzzy (CIF)
relations that will help us further demonstrate the definition of a CIFRS. In the overall
discussion throughout the article, U represents the universal set and R} represents the
CIF relation.

Definition 8. Assume that U is the universal set; then, any CIF subset R} of U x U is

called a CIF relation and is given by R} = {(3, 1), (20(8, 1),N(&, 1))|20(8, 1) = e(3 1) +

tf(3, 1), N(8, ) = g(8, %) +h(3, 1) }. Here, 20(8, ¥) and N(8, 1) are respectively called the TG
)

and FG, and 25(3, ) : U x U — [0, 1] +¢[0, 1] and N(3, ) : U x U — [0, 1] + [0, 1] sat-
isfy0<e(s 4)+g(8 1) <1and0 < f(8, 1) +h( 1) <1

Definition 9. Let U be a nonempty and finite universe of discourse and R} be a CIF relation
on U; then, we can say that (U, R}) defines the CIF approximation space. Then, for a set
A={{¥, pa(¥*) + @A), La(¥*) +1pa(¥"))|¥* € U} € CIFS(U), we can define the upper
and lower approximation of A w.r.t. (U, R}), denoted by

seu

el

Ry(A) = { (8 M (8" ), N (8
Ry(A) = (8 Mp: (87), Ng: (8

where
Mg (8) = Vyrey |e(878 ) Voa (¥ ) [ +1Vyey |f(8F) Va(Y )| = o +ibie
Mp: (8) = Apey |e(8 8 ) A@alt )| +tArey |f(8F) Aba(t )| = og; +ibp:
Nz §) = Apey |88V )ALA(Y )| + 1 Ayey [H(E8) Apa (¥ = Loz + 105
Ng: (8) = Ve |88 ) VLA(Y )| + Ve [B(8F ) Voalt )| = Lr: +10g

where < (,OR—ZA—,CR—Z <10< @E+£&2 <10< bR—z+pR—z <1land 0 < b§+@&; < 1.
As Ry(A) and R,(A) are CIFRSs, then the pair

(A),;(A)) = {(s< MR—(S)NR—(S) >, < Mi(s)Ng(s) >) ‘s € u} 3)

is called the CIFRS with respect to (U, R}) .For simplicity, we will say that

Ri(A) = (Ri(A), Ri(A)) = (<Mg(8)Ng(¥) > <Mp () Ng:(3)>) =

(((pR—er LbR—z, ER—ZJF tpR—Z), ((p&Z+ Lb&;, £&;+ lp&)) represents the CIFRN.
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Remark 1. A CIFRS is signified by a TG Mg:= ¢ (1) +b(¥") and FG Ng: = La(¥") +
1o (¥"). If we remove the imaginary parts from both the TG and FG, then the CIFRS will convert
into an IFRS. Also, if we remove the FG, then the IFRS will convert into an FRS. This shows that
the CIFRS is a modification of the FRS.

Example 1. Let U = {87, 83, 83, 83 } be a universal set; CIFR is defined in Table 1 as follows:

Table 1. CIFR.

R,

. (0.3 +10.4), (0.6 4 10.4), (0.3 +10.4), (0.2 4 10.6),
51 (0.5 +10.2) o3+105 02+lo3 05-1-[03
. (0.4 410.2), (024 10.3), (0.5+10.6), (0.7 +10.8),
52 05+106 07+102 05+104 02+101
. (0.6 +10.3), (0.3 +10.4), (0.4 4 10.3), (0.3 +10.4),
53 03+zo7 05+104 03+106 06+103
. (0.7 4 10.4), (05 +10.7), (0.5+10.6), (0.5 +10.6),
54 (0.2 4 10.6) 04+102 04+lo3 (0.5+10.3)

Now, we assume that A = {(é;,O.Z—f—LO.5,0.4—|—10.3),(é;,0.3+t0.4,0.4+10.3),

(83,04 +10.7,0.3 +10.2), (8,05 4 10.6,0.3 + 10.2) } is a CIFS over U.

Ri(A) =1 (8, M (8 ) N (87) )| eU
Ry(A) = 1 (8 Mg (3"), N (87) )5 e U

Now, to find R}(A) and EZ(A), we have

Me(51) =Veew [e(s71) Voa(¥)] + Ve [F(01) voa(¥)]
= (0.3 0.2) V(0.6 0.3) V(0.3 0.4) \V(0.2\ 0.5)
—1—1(04V05) (0.4V0.4)V(0.4V0.7) V(0.6 \V 0.6)
0.6 +:0.7
N (81) = Aveu (( ))AEA(**)]%eu[(h( f*)) oa (V)]
= ((0.5) A 0.4) A((0.3) A0.4) A((0.2) A0.3) A((0.5) A0O.3)
+t(()(§2)é\§-3>/\((0-5)/\0-3) (( 3)A02) A((0.3) A0.2)
= 0.2 +.0.

In the same way, we can obtain the other values:

My (8) = 0.7+ 10.8, My (53) = 0.6 +10.7, M (8 ) = 0.7 +107,
N (8) = 024101, N (83) = 03 +10.2, N (8} ) = 0.2 +102

Similarly,

Mi(sl) =024 104, M&(SZ) = 024102, Mg (8) = 02+103, M&;(gz) 024104,
Ng: (1) = 05+ 10.5,Ng: (83) = 074 10.6,Ng. (8 ) = 0.6 +107,Ng: (53 ) = 05+ 106
Then, the upper complex intuitionistic fuzzy approximation is

- (s1 0.6 +10.7,02 + 10.2), (sz 0.7 +10.8,02 + 10.1), (53 0.6 +10.7,03 + 10.2),
) (54 0.7 +10.7,0.3 + 10.2)
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And the lower complex intuitionistic fuzzy approximation is

. (sl 0.2+ 10.4,0.5 + 10.5), (g*z,o.z 102,07 + 10.6), (g*;.;,o.z 110.3,0.6 + 10.7),
e(4) = (54 02+ 10.4,0.5 + 10.6)

Hence, it is seen that (E(A), R} (A)) is a CIFRS.

Basic Operations and Properties of Complex Intuitionistic Fuzzy Rough Set

Definition 10. Let R;(A) = (Ri(A), Ri(A)) and R;(B) = (Ri(B), Ri(B)) be two
CIFRNs; then,

1. Complement

2. Union
+-imin[pps
(

3. Intersection:

_ R(ANRB) = (R
RE(4) NRE(B) = {8", (minlpg; (A), gz (B)] + min[br (A

p&(A)/ p&(B)]

R:(A) NR;(B) = {", (min[pg; (A), gg; (B)] + min[bg; (A), b; (B)] ), (max|L; (), Lg; (B)]
+imax| )

Definition 11. Let Ri(A) = (?;(A), ;;(A)) and R¥(B) = (F(B), R*(B)) be two
CIFRNS; then,

1.  Algebraic sum:

Ri(4) @ RE(B) = {(x, (9 (4) + 0 (B) — 9 (). g (B), bre(4) + b (B)—
bre(A).bgz(B)), (Lzz(A).Liz(B), prs(A)-prx(B))) } 7)
R:(A) @ RE(B) = {(x, (¢r: (A) + ¢r: (B) = ¢r: (A)-9r; (B), br; (A) + br: (B)
— by (A)-br; (B)), (Lr; (A)-Lr: (B), or: (A)-pr: (B)))}
2. Algebraic product:
- o R:(A) @ R;(B) = (R: (A) ® Ry (B), Ri(A) @ Ri(B))
R (4) @ RE(B) = {(x, (9gs(A) 0rs (B), bie(A) bie(B)), (L) + Lo (B) — Le(A)-Lg (B), e (A)
+re (B) — e (A)-oge (B)))} )
Ri(A) @ Ri(B) = {(x, (¢r: (A)-¢r: (B), br; (A).br: (B)), (Lr; (A) + L; (B) — Lr; (A)-Lr; (B), por; (A)+
©r: (B) — pr; (A)-or: (B)))}

Next, we defined some other operations on CIFRNs.
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Definition 12. Let R} (A) = (E(A), &(A)) for a CIFRS and A > 0; then,

, (@RT:(ADA )

(Re(a) = (R, (rea))
®ea)' ={ (v (o) (b)) ), (1= (1= £e) "1 (1 o)

)’ = {0 ) (- - 0)' - (o))

Definition 13. The score function for the CIFRN R}(A) = (RT?(A), &*(A)) =

((ore + tbre L+ 197), (me + 10re Lo +10m: ) ) s given as

>
N——
N——
N
—~~
—_
(=]
N

* 1 *
SF(Re (A)) = §(4+§0§+b@+ (PR72‘+ b&—ﬁﬁ— goRf;— ﬁ&— p&), SF(RE (A)) c [0,1]. (11)

The accuracy function for the CIFRN is given as

* 1 *
Ap(R;(A)) = g(%T;JF brs + @r; + bry + Lz + opz + Ly + @@)/ Ap(R;(A)) € [0,1]. (12)

4. Aggregation Operators Based on CIFRSs

In this section, we develop several new AOs based on CIFRSs and discuss their
properties using basic operations.

Definition 14. Let R} (A¢) = (E(At), Rf;‘(AQ) (t=1,2,3...,s) be a collection of CIFRNs
T

and €O = (C31, C2,, 633...,635) be the weight vector (WV) with € € [0, 1] such that

Yioq CO¢ = 1; then, a CIFRWA operator is defined as

CIFRWA (R; (A1), Ri (A2), -, R (As)) = (84 € (RE (Ar), 83, O Ri (A1) )
= ((1RE (A1) © O2RF(A42) ©.... . OLRF(As) ), (1R (A1) © 2R (A2) B..... . © OaRY(As) ))
Based on the above definition, the results for the CIFRWA operator are as follows.

Theorem 1. By employing the above equation, we obtain the CIFRNs and

CIERWA(R} (A1), R:(A2),... R: (As)) = (93, OO RE(Ar), ©5, O R (Ar)

(00 m) ™) o(n- 0 vea) 7).
. AN ©, '
- <E<£R?(At)> >+1<}_71<W(Af)) ) (14)
N s o, ' 5 o,
o)) )
11 (£x:(4) mt) +i<f[1(@z(“‘t)> Qt)
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Proof. We proved the above equation by using a well-known method of mathematical

induction (MI), assuming that, for s = 2, we have

Ri (A1) = (C1RE(Ar), ©; Ri(Ay))

R;(A2) (QzRié‘(Az)r €, Rj(Az))

CIFRWA(R: (A1), R} (Az))

= (C)ﬂTZ‘(Al) @ CO4R}(Ay),

1

R; (A1) ® O, R?(Az))
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K+1 C:)t K-‘rl t
B A e
K.+1 (I)t K+l C:)t ’
(n (LR;(At)) ) +1< pg(At)) )
t=1 t=1
K+1 C':)t KJrl C':)t
1— tl;ll (1—(PR;(At)) ) +1<1— tl;[1 (1—bR*(At)) /
:(40)

This shows that it holds true for s = K + 1. Hence, it will hold true for alls > 0. O

From the above theorem, R;(A;) and R (A;) are CIFRNs. So, by Definitions 4 and

5, ®{_1 COR;(A;) and ©7_; CO¢ Rf(Ay) are also CIFRNS. Therefore, the CIFRWA is also
a CIFRN.

Theorem 2 (idempotency property). Let R (A;) = (Rigk(At), &Z(At)) (t=1,2,3...,5) bea
T

collection of CIFRNs with WV €O = (C31, C,,..., Cf)s) ,C¢e0,1], and Y7, Q¢ =1

If RE(Ay) = RE(A)Y (t=1,2,3...,5), where R (A) = (F;(A), &j(A)), then

*

CIFRWA(RZ(Al),RZ(AZ),...,Re(As)) = Ri(A) (15)

CIFRWA (R}(A1), Ri(Aa), -, Ri(As)) = (@, O Re(Ar), &5, O Ri(Ar) )
. DN [ s ©,
1- gl(l —0(A) ) +1<1 -1 (1-be(An) )
U (e ™) s )
(om0}
[ffestan)™ ) (At )
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For all t, R;(A;) = R,(A). Therefore,

]

Ry(Ar) = (Ri(A), Ri(An) =

R,(Br) = (Rz(Bt),gz(Bt)) - (((

T
be a collection of two CIFRSs, and CO = <C31, €y, ..., CC)S) be the WV with CO¢ € [0,1] and
Y5, C¢=1.If Ry(Ar) < Ry(Br), Ry(Ar) < Ry(By), then

Proof. Assume @p=(Ar) < @p=(Br), bpe(Ar) < bpe(Br), Lia(Ar) = Ly (Br), ppe(Ar)
%(At) and (PRZ(At) < og b

(Bt), br:(Ar) < bpe

*
e

pR;(At) forall (t=1,2,...,s); then,

Then,

Similarly,

>
>
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Next,

Similarly,

Hence,
CIFRWA<R§(A1),R;(A2),...,R;(As)) < CIFRWA(RZ(Bl),RZ(Bz),. . .,RZ(Bg)).
O
Theorem 4 (boundedness property). Let R} (A;) = ( J(RE(Ar))™ )(t =1,23...,5)
be a collection of CIFRNs where (R} (A¢)) ( t1 maxR (At)) and (R} (A4))” =

(mng:(At)’ mtinRZ(At)>; then,

*

Ri(A) < CIFRWA(R:(A1), Ri(As), ..., Ri(As)) < (Ri(An) (17)
(Re(an) (Re(A1), Re(A2),..., Re(Aq) ) < (Ri(A)))

((maxq)R( +Lrnaxb (At ),(mtgnﬁ (Ar) +lmm@1z (At)))

_ {((mm(pR (At)—i—tmmb (At)> (m{’iXER*(A —i—tmaxgh t))
A0))

Proof. As (E(At))+ _ [((mf"‘%( f) + maxbi(Ar) ), (minLe(Ar) + minp(41)) ),

and (At) = e
( ) ((mtln(p&(A )+ tmmb (At)>, (maxﬁR (A) + lmapr
Since, forallt =1,2,3...5, we have

t De
min{@g: (Ar)} < @g: (Ar) < m:
(1 —min{@g: (A)}) 21— @p:(Ar) > (1 - max{eg: (Ar)})
)

tIill(l —min{eg (A} Pt = ﬁl(l — g (A1) P > t1i11(1 —max{eg (A)}) @
(1 —=min{eg: (Ar)}) = (1 - {@&;(At)})mt > (1 - max{eg (A1)}

1 (1= min{og(40}) < 1- 110 - 0 (4)) Dt < 1- (1-max{og (4)))

ax{gg:(At)}

Hence,

(1-ox(4n) " <max{og (4} (18)



World Electr. Veh. ]. 2024, 15, 402 18 of 28
Similarly,
min{bﬁ(At)} <1- tﬁl (1 — b, (At)) O max{bﬁ(At)} (19)
Next, forevery t =1,2,3...s, we have
min{cK(At) < L (A) < m?x{ﬁiz(At)}
1 in{2ga0}) ™ < i (entan) 7 < i mex{ega0})
This implies that
min{LR*(At)} < :1 (LR; (At)) ©g max{ﬁliz (At)} (20)
Similarly,
minfox40) = [1(s(49) " <mo{oxca0) e
=
Similarly, we can show that
mtin{<PRj(At>} <1- tli(l - @E(At)) 2 < m?x{@E(At)} (22)
min{by(Ar)} <1 :1(1 () Pig max{ b<(Ar) } (23)
mtm{Lsz(At)} < ﬁ(ﬁRe(At)) o < mflx{ﬁfz(At)} (24)
min{ oe(A0} < TT(e(40) e max{ pr=(Ar) } (25)

t=1

From Equations (18)-(25), we have
* - * * * +
(Re(Ar)) < CIFRWA (R (A1), Re(A2), .., Re(Aq) ) < (Re(Ar))
O

Definition 15. Let R} (A;) = (E(At), Rfj(AQ) (t=1,2,3...,s) be a collection of CIFRNS,

T
and QO = (C,C)l, C,,..., C35) be the WV with CO¢ € [0, 1] and Y3, CO¢ = 1. Then, a
CIFROWA operator is determined as



World Electr. Veh. ]. 2024, 15, 402 19 of 28

CIFROWA (R%(A1), Ri(Ay), ..., Ri(As)) = (@lewt?;(A ) &, Ag )))

O i1 1
>+1< —Ill( ~ (A

)
), s
) )H(g(%(w) -

where (o(1),0(2),0(3),...,0(s)) isa permutation of (1,2,...,s) such thatR Ag— 1)> >R, (Ac(t)>Vt.

Similar to Theorems 1-4, CIFROWA also satisfies the properties of 1dempotency, monotonicity,
and boundedness.

Definition 16. Let R} (A¢) = (E(At), Rf;‘(AQ) (t=1,2,3...,s) be a collection of CIFRNs

T
and CO = <C31, C,,C05.. ., CC)S) be the weight vector (WV) with CO¢ € [0, 1] such that
Yiuq Q¢ = 1; then, a CIFRWG operator is defined as

o o, o,
CIFRWG (R.(A1), Ri(Az), ..., Ri(As)) = ( s CC)t(RZ(At)> L ®, CDt<R (At)) )
— ((©1RI(A1) @ D2Ri(A2) ® .. ® CRi(As) ), (D1R: (A1) ® CR;(42) ® .. @ DsRi(As)) )

Based on the above definition, the results for the CIFRWG operator are as follows:

Theorem 5. By employing the above equation, we obtain the CIFRNs and
* * * uy C:)f * C:)f
CIFRWG (R;(A1), Ry(A2),..., Re(Aq)) = [ @11 ©O((Ri(4r) " @1 ©(Ri(Ar))

11 (o) Q) H(ﬁl("m(“‘fﬁ w)
)

+i<1 ~ 11 (1~ pre(An) ) (27)

Proof. Similar to Theorem 1. (J

Theorem 6 (idempotency property). Let R} (A;) = (RT‘(AQ, Rf;‘(AQ) (t=1,2,3...,5) bea
T

collection of CIFRNs with WV €O = (C31, Co,,..., Cf)s) ,C¢e0,1], and Y7, Q¢ =1

If RE(Ay) = RE(A)Y (t=1,2,3...,5), where R (A) = (F;(A), @(A)), then

CIFRWG (R;(Al),RZ(A2),. ..,RZ(Ag)) = Ri(A) (28)

Theorem 7 (monotonicity property). Let
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Ry(Ay) = (E(At), Z(At)> _ ((( :

7 (piz(At 1bi(At)/£R7:(At 1@1{7:(140
sy (oF . [ \@gz(Be) +ibpe(Br), L= (Br) + i (Br) B
Re(Bt) - (Re(Bt)'&(Bt)) - (E(PRe(Bt) +1bR7;(Bt),£7z(Bt) —l—ipRi;(Bt) (t =12, /5)
T

be a collection of two CIFRSs, and CO =
Y2, Oy =1 If Ri(Ar) < Ry(Br), Ro(Ar)

<C31, Co,,..., 0 be the WV with €Oy € [0,1] and

7 5
< Rf:,(Bt), then

SN—

CIFRWG(RZ(Al),R:(AZ),...,RZ(Aﬁ)) < CIFRWG(R:(Bl),RZ(Bz),...,RZ(BE)> (29)

Theorem 8 (boundedness property). Let R} (A;) = ((RZ,‘ (AT, (R;‘(At))_) (t=1,2,3...,8)
be a collection of CIFRNs where (R} (A;))" = (mtinR;‘(At),mfo;‘(At)) and (R} (A¢))” =

(mfszg(At), mtinR;‘(At)>; then,

(RZ(At))_ < CIFRWG(RZ(Al),RZ(AZ),...,RZ(As)) < (RZ(At))+ (30)

Definition 17. Let R} (A;) = (W(At) R*(At)) (t=1,2,3...,s) bea collection of CIFRNS,

and CO = ((Dl, CO,,. ..,Qs) be the WV with CO¢ € [0, 1] and Z CO¢ = 1. Then, a complex
intuitionistic fuzzy rough ordered weighted geometric (CIFROWG) opemtor is determined as

CIFROWG (R} (A1), R(A2),...,Ri(As)) = (®t 1 ©OR; ( a(t))f®f:1 CDtE(Ao(t)))
s o, s o,
Ao (400)) ™) 1 (o (00)) ™)
11T (1 e CD) +i{ 1= 111 -0 (A0)) - (1)

s) such that R} (Ag(t,1)> >

R! (Ag(t)> V.
Similar to Theorems 1-4, CIFROWA also satisfies the properties of idempotency, monotonicity,
and boundedness.

5. A Method of MADM in the Setting of CIFR Information

In the following section, we demonstrate an MADM technique using the AOs in the
structure of CIFRNs.
Assume that there are Y alternatives and b attributes. Let A ((Q =12,.. .,Y),
T
(L)b) be the WV of attributes with

Bn]<n]:1,2,...,b), and @ = (@1, (1)2/...,

W, € [0, 1]V p and Zl’?]:l

values of the considered Y alternatives based on the interpreted attributes. These values will be

® m = 1. The decision maker or expert will identify the evaluated
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((Fen

Q(Qm - (

(

in the structure of CIFRN, i.e.,, M = (Q(Qm> Txb ((M@m'N®m> , (Mfﬁm'M(um> ) b=

((a(ﬁm + iZ@m,B@m + i@@m) , (f(ﬂm + 1L, bom + 1@0,1]) ) Txb’ which will be used to con-

struct a CIFR decision matrix. To tackle this MADM dilemma, we interpreted the underly-
ing algorithm.

5.1. Algorithm

We demonstrated the algorithm to solve MADM problems in the structure of CIFRSs
by employing CIFRWA and CIFRWG operators.

Step 1: The attributes may come in two types in each MADM process, a benefit type
and a cost type. Thus, there is a requirement for normalization, and for that, the formula
below is given.

+ iZ@m,E@m + i@om> , ( Pam + ié(omfhcon] +iPen )for benefit type of attribute

(1

+i(1 = Zay )1 = Bom +i(1— Fam) ).
~ Pem T ( E(om) — b, "‘i(l _Q(Qm>)

Step 2: By employing the

— % .
" for cost type of attribute

CIFRWA (R: (A1), R (As), ...,

(1_ﬁ1

t=1

(R ()

(32)

S

(1011

5
<H Lg; (At)
t=

1

H
<
N
< ~ _ ~—— N—

and
CIFRWG(R,(A1), Ry (A2), ...,

- (@f_l o (Fian) ' @1 O (Ri(4)

R;(As)) 5

—
S
i)

;(At))cjj +i<

S

[T

t=1

(g
R;

(A

%)
Il

)

t
1

;(At)) Qt) +i<1 - t;(

— pe(An) Q)

@,

+i

S

[T

t=1

(1—%(&))@‘) +i<1_

(bR;(At)> >r

[T

t

) (1 - @&(At)) C:)t>

t=1

(33)

operators to the supposed decision information provided in matrix M, all the aggregated

values of alternatives Am, <(Q =12...,

Y) can be derived.

Step 3: The score values of the aggregated outcomes were investigated by

SE(RE(A)) = §(4+ pre + Pre + 9r; + br; — Lz —
Sr(R;(A)) €

@E)'

oRe ~ Lre =

[0,1]

(34)
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Step 4: In this step, the alternatives were ranked by employing the score values and
achieving the optimal alternative.
Step 5: End.

5.2. Case Study

Choosing the optimal Al architecture for autonomous vehicles is essential for a vehicle
manufacturing company that specializes in these vehicles. The company’s main goal is
to develop cutting-edge autonomous vehicles that put superior performance, safety, and
efficiency first. Four potential Al architectures and four crucial attributes were determined
to help achieve these goals and direct the DM process.

Alternatives (Al architectures)

A1 : Recurrent neural networks (RNNs): The potential for processing sequential data
is provided by RNNSs, which is necessary for making accurate trajectory predictions and
motion planning in autonomous vehicles.

A, : Convolutional neural networks (CNNs): CNNs are well known for their ability
to analyze images and identify objects, which is in line with the need for the visual input
from cameras and other sensors in autonomous vehicles to be accurately interpreted.

A3 : Graph neural networks (GNNSs): In order to simulate complicated road networks
and comprehend the spatial interactions between items on the road—a crucial aspect of
autonomous systems—GNNs are made to operate with graph-structured data.

A4 : Hybrid neural networks (HNNs): By combining many neural network designs,
HNNs might possibly offer a comprehensive solution for a range of autonomous driving
issues. However, the implementation’s complexity needs to be weighed against the goals
of the business.

Attributes

By: Accuracy: This is a critical component. Accurate and dependable decision-making
abilities of the chosen Al architecture are necessary to guarantee the enhanced performance
and safety of autonomous vehicles in a variety of driving conditions.

B,: Computational efficiency: The demands of production revolve around compu-
tational efficiency. In order to facilitate prompt answers on the road and improve the
overall efficiency of autonomous car manufacturing, the Al architecture must handle
data effectively.

B3: Robustness: This is a crucial need. To ensure the safety of passengers and other
road users, autonomous vehicles must exhibit a dependable performance in inclement
weather, limited visibility, and the presence of unforeseen road obstructions.

By: Scalability: Being scalable is essential to production. To ensure the scalability of
autonomous vehicle manufacturing, the Al architecture must be able to adapt to and handle
increasing complexity, facilitate future upgrades, and accommodate a variety of vehicle
kinds and configurations.

Further, for each attribute, the considered weights were (0.3, 0.1, 0.2, 0.4). Based on
these attributes, the company assessed each Al architecture and gave each alternative an
assessment score in the framework of a CIFRS to create a CIFR decision matrix, which is
revealed in Table 2.
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Table 2. Complex intuitionistic fuzzy rough numbers.
. (0.341:0.7), 04+105, O7+102, (0.741:0.3),
A1 (0.5+1:0.2) )’ (0.3+:04) (0.14:0.6) )’ (02+:0.7) )’
O4—|—LO3, 07+LO3, 03+tO3, 08+102,
(0.4 +:0.2) (0.1+1:0.5) (0.5+:0.6) (0.1+:0.8)
. (0.4+1:0.1), (0.2+410.3), (0.6 +:0.4), (0.7 +10.6),
Az 05+LO3 ’ 03+104 03+104 ' 02+102
08+104, 04+103, 02+108, 09+105,
(0.1+:0.3) (0.5+:04) (0.7410.2) (0.1+4:0.2)
. (0.6 +:0.3), (0.2+:04), (0.6 +:0.4), (0.8+1:0.7),
Az 02+107 ’ 03+105 04+102 ’ (0241:0.1) )’
03—|—105, 04+104, 01+LO7, 03+108,
(0.4 +1:0.3) (0.541:0.6) (0.3+:0.2) (0.6 +:0.2)
N (0.8+41:0.3), (0.2+1:0.5), (0.3+1:0.1), (0.7 +1:0.1),
Aq 01+106 ’ 06+103 05+lO4 ' (02+10.1) )’
O4—|—L07, 02+LO6, 06+102, 08—|—102,
(06+LO3) (05+103) (0.4+1:0.5) (0.14:0.6)

Through the steps below, this MADM was tackled.

Step 1: The data given in Table 2 are of the benefit type, so there was no need to
normalize it.

Step 2: Using the CIFRWA operators, the determined aggregated outcome of each
alternative was

Aq = (((0.585 +10.460), (0.238 +10.441)), ((0.628 + i0.262), (0.209 + i0.475)))
52 = (((0568 +10.415), (0.297 +i0.278)), ((0.777 +10545), (0173 +10.242)))
As = (((0.675 +10.524), (0.239 +10.242)), ((0.275 + i0.681), (0.454 +i0.252)))
Ay = (((0.653 +10.213), (0.218 4 10.252) ), ((0.633 + i0.444), (0.265 +10.438)))

Step 3: The obtained score values of Sr (A(Q> ((Q =1, 2,3, 4) of the CIFRNs

(A@) ((Q -1,23, 4) were
Sr(A1) = 0571, Sp(Az) = 0.664, Sp(A3) = 0.621, Sp(A4) = 0.5%
Step 4: The values Aq ((Q =1,2, 3, 4) were ranked with the following score values

Sr (A@) ((Q =123, 4) of the overall CIFRNs:
Ay > A3 > Ay > Ay

From the ranking, it was observed that A5, or the “convolutional neural network”,
was the optimal Al architecture for autonomous vehicles.

Step 5: End.

If we used the CIFRWG operator, then the results of the above problem were as follows:

Step 1: The data given in Table 2 are of the benefit type, so there was no need to
normalize it.

Step 2: Using the CIFRWA operators, the determined aggregated outcome of each
alternative was

Ay = (((0.513 +1i0.375), (0.298 +10.543)), ((0.527 + i0.255), (0.291 + i0.618)))
Ay = (((0.506 +i0.302), (0.332 +i0.295)), ((0.593 + i0.488), (0.319 +0.253) ) 36)
As = (((0.603 +i0.459), (0.255 +10.404)), ((0.247 +i0.631), (0.483 +i0.283)))
A4 = (((0.543 +10.163), (0.296 +0.365)), ((0.534 + i0.325), (0.386 +i0.477)))
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Step 3: The obtained score values of Sr (A(Q> ((Q =1,2, 3, 4) of the CIFRNs
(A(Q> ((Q =1,2,3, 4) were
Sr(A1) = 0490, Sp(Az) = 0.586, Sp(A3) = 0.565, Sp(A4) = 0.505

Step 4: The values Aq ((Q =123, 4) were ranked with the following score values

Sr (A@) ((Q =123, 4) of the overall CIFRNs:
A2>A3>A4>A1.

From the ranking, it was observed that A5, or the “convolutional neural network”,
was the optimal Al architecture for autonomous vehicles.
Step 5: End.

6. Comparison Analysis

This part presents a comparative study to show the validity, superiority, and effec-
tiveness of our suggested methodologies and proposed work. This is because making
comparisons is essential for comprehending the importance and effectiveness of any newly
created work. We were unable to differentiate between the good and the terrible without a
comparison. As a result, the goal of this study was to compare and investigate the decision-
making mechanisms of existing models with our proposed work. In this approach, we used
some previously published ideas from the theories of FRSs, IFSs, and IFRSs. Following a
discussion of a few established theories, we compared them to our new proposed work.

% IF AOs by Xu. [21] and geometric AOs based on IFSs by Xu and Yager [22].
% IFR AOs for MCDM by Chinram et al. [37].

%  IFR Frank AOs for MCDM by Yahya et al. [36].

% Aczel-Alsina average AOs based on IFRSs by Ahmmad et al. [38].

%  Confidence level AOs based on IFRSs by Mahmood et al. [39].

% Yager AOs based on IFRSs by Mahmood et al. [40].

Next, we employed the already published work that was considered and the inter-
preted theory to aggregate and solve the information revealed in Table 2, which is in
the framework of the CIFRS. The score values and the ranking order after tackling that
information are provided in Table 3.

Table 3. Comparative study between proposed and existing work.

Score Values of Alternatives

Methods Ay A, A Ay Rankings

Xu [18] X=X =X X = X = X
Xu and Yager [19] X2 X=X XzZX= X
Chinram et al. [37] X2 XX X2 X2 X
Yahya et al. [36] X=X =X Xz X=X
Ahmmad et al. [38] X=X =X Xz X=X
Mahmood et al. [39] X=X =X X2 X2 X
Mahmood et al. [40] X=X X X2 X2 X
Interpreted theory 0.571, 0.664, 0.621, 0.596 Ay > A3 > A > A
Interpreted theory 0.491, 0.586, 0.565, 0.505 Ay > Az > AL > A

Table 3 reveals that only our anticipated theory solved the information presented in
Table 2 (i.e., CIFR information), and none of the current work was able to aggregate and
cope with this information because of the certain limitations that every existing theory
contains. For instance, Xu [21] and Xu and Yager [22] devised AOs within IFSs, which
merely aggregated the information containing TGs and FGs, but were not able to aggregate
information containing roughness or additional fuzzy information. Chinram et al. [37],
Yahya et al. [36], Ahmmad et al. [38], Mahmood et al. [39], and Mahmood et al. [40]
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developed various AOs in the framework of IFRSs that could aggregate information
containing the roughness and TGs and FGs, and could also aggregate information in the
structure of FSs, IFSs, and RSs, but could not aggregate information that contains additional
fuzzy information (second dimension). Further, there is no such AO or MADM technique
that can aggregate and solve information that contains additional fuzzy information in
TGs and FGs along with roughness. This implies that our work is more dominant and
valuable than the existing theories. Furthermore, the anticipated theory can reduce the
structure of FSs, RSs, IFSs, and IFRSs. In Figure 3, we present a graphical representation
of the data given in Table 3, which contained different alternatives in the shape of distinct
colors, showing the ranking results.

0.8
0.6
0.4
0 &7 Seriesl
) Q o N N Vv > > A A
F & & PP S S S
N v Vv v % % v VX &
A\ o X X X X X, & &
XY Q 2NN N &
S & L & o o & &
RS P S SO
P SRCHRCIER NS
M Seriesl Series2 Series3 Series4 M Series5 M Series6

Figure 3. Comparison between proposed work and work established by Xu [21], Xu and Yager [22],
Chinram et al. [37], Yahya et al. [36], Ahmmad et al. [38] and Mehmood et al. [39,40].

Theoretical and Practical Implications

Selecting the finest Al architecture for autonomous cars is necessary for a vehicle
manufacturing company that specializes in these vehicles. Autonomous cars operate in
highly dynamic and uncertain environments. The data collected by sensors are often
noisy, incomplete, and subject to varying environmental conditions. CIFRSs provide a
valuable framework for addressing these challenges. CIFRSs can be a valuable tool in this
context for several reasons. They can help to integrate the data from multiple sensors,
with each sensor having its own uncertainties, into a unified representation. This can
enhance the car’s perception of its surroundings. CIFRSs can improve the accuracy of
object classification, whether they are cars, obstacles, or pedestrians, by considering the
inherent ambiguity in sensor data. CIFRSs can support DM modules in autonomous
cars, such as sensor data fusion, object classification, path planning, fault detection and
diagnoses, obstacles, avoidance, risk assessments, and emergency braking. The application
of CIFRSs in selecting the finest architecture for autonomous vehicles has significant
practical implications. CIFRSs use both complex TGs and FGs in the form of LA and UA
and enhances vehicle safety by improving the accuracy of perception and DM. In case
of accidents, a strong understanding of uncertainty through CIFRSs can help to reduce
or mitigate liability. Therefore, CIFRSs are a valuable tool for researchers to use in the
development of new Al technologies and algorithms for the finest Al architecture.

7. Conclusions

Selecting the best Al architecture for autonomous cars is an MADM problem, as
it involves making a complex choice while considering several factors, some of which
may have two-dimensional ambiguity and/or indiscernibility. CIFRSs have the ability to
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References

consider both complex TGs and FGs in the form of LA and UA. Therefore, in this article,
we first provided a unique mathematical framework for dealing with two-dimensional
uncertainties and indiscernibility: the “CIFRS”. The elementary operations, such as a
union, intersection, complement addition, multiplication, etc., of the anticipated CIFRS are
also provided. After that, we developed certain AOs in the environment of CIFRSs, such
as CIFRWA, CIFROWA, CIFRWG, and CIFOWG operators. Then, using the developed
operators, we anticipated a technique of MADM in the context of CIFRSs and examined
the case study “Selection of optimal Al architecture for autonomous vehicles” to determine
whether the developed method of MADM was workable. We juxtaposed our original
hypothesis with a few contemporary hypotheses in order to illustrate the superiority
and domination.

7.1. Limitations

We noticed that the theory of CIFR information is very dominant and valuable. CIFRSs
combine the concepts of CIFSs and RSs to handle the uncertainty, vagueness, and indis-
cernibility in data. Despite their utility, there are several limitations associated with CIFRSs.
This is because, in various situations, they do not work effectively, for example, if a person
gives information in the form of complex Pythagorean fuzzy sets, complex picture fuzzy
sets, or bipolar complex fuzzy sets.

7.2. Advantages

The proposed Al architecture for autonomous vehicles, using an MADM technique
with CIFR aggregation operators, offers numerous advantages over the existing architec-
tures, including an enhanced decision-making exactness, optimal architecture selection,
flexibility, the enhanced handling of complex decision variables, robustness in real-life
situations, and the complete integration of multiple attributes. These benefits make the
anticipated architecture better suited to the vibrant and uncertain atmospheres in which
autonomous vehicles operate, potentially leading to much safer and efficient autonomous
driving systems across the world.

7.3. Future Work

Our objective for the future is to expand this theory into the framework of bipolar
complex fuzzy sets [41-43], graph theory [44—46], and picture fuzzy sets [47,48].

Author Contributions: Conceptualization, TM. and U.u.R.; Methodology, TM., AL, K.H.,, M.A. and
U.uw.R;; Validation, TM., AL, KH., M.A. and U.u.R,; Investigation, TM., AL, KH., M.A. and U.u.R,;
Resources, TM., K.H. and M.A.; Writing—original draft, A.I; Visualization, U.u.R.; Supervision, T.M.;
Project administration, M.A.; Funding acquisition, K.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This paper is supported by the NRPU-HEC Pakistan Project Number 14662 and the joint
project PSF(PSF-NSFC/JSEP/ENG/AJKUKAJK/01)-NSFC(12211540710).

Data Availability Statement: The data will be available from the corresponding author upon reason-
able request.

Conflicts of Interest: With regards to the publication of this manuscript, the authors declare that they
have no conflicts of interest.

1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338-353. [CrossRef]

2. Pawlak, Z. Rough sets. Int. |. Comput. Inf. Sci. 1982, 11, 341-356. [CrossRef]

3. Dubois, D.; Prade, H. Rough fuzzy sets and fuzzy rough sets. Int. |. Gen. Syst. 1990, 17, 191-209. [CrossRef]

4 Cornelis, C.; De Cock, M.; Kerre, E.E. Intuitionistic fuzzy rough sets: At the crossroads of imperfect knowledge. Expert Syst. 2003,

20, 260-270. [CrossRef]

5. Ma, Y,; Wang, Z,; Yang, H.; Yang, L. Artificial intelligence applications in the development of autonomous vehicles: A survey.
IEEE/CAA ]. Autom. Sin. 2020, 7, 315-329. [CrossRef]


https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1007/BF01001956
https://doi.org/10.1080/03081079008935107
https://doi.org/10.1111/1468-0394.00250
https://doi.org/10.1109/JAS.2020.1003021

World Electr. Veh. ]. 2024, 15, 402 27 of 28

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.
33.
34.
35.
36.

37.

Khayyam, H.; Javadi, B.; Jalili, M.; Jazar, R.N. Artificial intelligence and internet of things for autonomous vehicles. In Nonlinear
Approaches in Engineering Applications: Automotive Applications of Engineering Problems; Springer: Berlin/Heidelberg, Germany,
2020; pp. 39-68.

Pereira, J.L.; Rossetti, R.J. An integrated architecture for autonomous vehicles simulation. In Proceedings of the 27th Annual
ACM Symposium on Applied Computing, Trento, Italy, 26-30 March 2012; pp. 286-292.

Kurzidem, I.; Saad, A.; Schleiss, P. A systematic approach to analyzing perception architectures in autonomous vehicles. In
Proceedings of the Model-Based Safety and Assessment: 7th International Symposium 2020, IMBSA 2020, Lisbon, Portugal, 14-16
September 2020; Proceedings 7; pp. 149-162.

Bathla, G.; Bhadane, K.; Singh, R.K.; Kumar, R.; Aluvalu, R.; Krishnamurthi, R.; Kumar, A.; Thakur, R.N.; Basheer, S. Autonomous
vehicles and intelligent automation: Applications, challenges, and opportunities. Mob. Inf. Syst. 2022, 2022, 7632892. [CrossRef]
Zong, W.; Zhang, C.; Wang, Z.; Zhu, ].; Chen, Q. Architecture design and implementation of an autonomous vehicle. IEEE Access
2018, 6, 21956-21970. [CrossRef]

Bendiab, G.; Hameurlaine, A.; Germanos, G.; Kolokotronis, N.; Shiaeles, S. Autonomous vehicles security: Challenges and
solutions using blockchain and artificial intelligence. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3614-3617. [CrossRef]

Esogbue, A.O.; Theologidu, M.; Guo, K. On the application of fuzzy sets theory to the optimal flood control problem arising in
water resources systems. Fuzzy Sets Syst. 1992, 48, 155-172. [CrossRef]

Guiffrida, A.L.; Nagi, R. Fuzzy set theory applications in production management research: A literature survey. J. Intell. Manuf.
1998, 9, 39-56. [CrossRef]

Driankov, D.; Saffiotti, A. (Eds.) Fuzzy Logic Techniques for Autonomous Vehicle Navigation; Physica: Berlin/Heidelberg, Germany,
2013; Volume 61.

Wang, X.; Fu, M.; Ma, H.; Yang, Y. Lateral control of autonomous vehicles based on fuzzy logic. Control Eng. Pract. 2015, 34, 1-17.
[CrossRef]

Awad, N.; Lasheen, A.; Elnaggar, M.; Kamel, A. Model predictive control with fuzzy logic switching for path tracking of
autonomous vehicles. ISA Trans. 2022, 129, 193-205. [CrossRef]

Atanassov, K.T.; Stoeva, S. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87-96. [CrossRef]

Dengfeng, L.; Chuntian, C. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern
Recognit. Lett. 2002, 23, 221-225. [CrossRef]

De, S.K; Biswas, R.; Roy, A.R. An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst. 2001, 117, 209-213.
[CrossRef]

Garg, H.; Rani, D. Novel distance measures for intuitionistic fuzzy sets based on various triangle centers of isosceles triangular
fuzzy numbers and their applications. Expert Syst. Appl. 2022, 191, 116228. [CrossRef]

Xu, Z. Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179-1187.

Xu, Z.; Yager, R.R. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 2006, 35, 417-433.
[CrossRef]

Jia, X;; Wang, Y. Choquet integral-based intuitionistic fuzzy arithmetic aggregation operators in multi-criteria decision-making.
Expert Syst. Appl. 2022, 191, 116242. [CrossRef]

Ecer, F. An extended MAIRCA method using intuitionistic fuzzy sets for coronavirus vaccine selection in the age of COVID-19.
Neural Comput. Appl. 2022, 34, 5603-5623. [CrossRef]

Ramot, D.; Milo, R.; Friedman, M.; Kandel, A. Complex fuzzy sets. IEEE Trans. Fuzzy Syst. 2002, 10, 171-186. [CrossRef]

Tamir, D.E; Jin, L.; Kandel, A. A new interpretation of complex membership grade. Int. J. Intell. Syst. 2011, 26, 285-312. [CrossRef]
Zhang, G.; Dillon, T.S.; Cai, K.Y.; Ma, J.; Lu, J. Operation properties and b-equalities of complex fuzzy sets. Int. ]. Approx. Reason.
2009, 50, 1227-1249. [CrossRef]

Hu, B.; Bi, L.; Dai, S.; Li, S. Distances of complex fuzzy sets and continuity of complex fuzzy operations. . Intell. Fuzzy Syst. 2018,
35, 2247-2255. [CrossRef]

ur Rehman, U. Selection of Database Management System by Using Multi-Attribute Decision-Making Approach Based on
Probability Complex Fuzzy Aggregation Operators. J. Innov. Res. Math. Comput. Sci. 2023, 2, 1-16.

Zhou, L.; Wu, W.Z. On generalized intuitionistic fuzzy rough approximation operators. Inf. Sci. 2008, 178, 2448-2465. [CrossRef]
Zhou, L.; Wu, W.Z. Characterization of rough set approximations in Atanassov intuitionistic fuzzy set theory. Comput. Math. Appl.
2011, 62, 282-296. [CrossRef]

Bustince, H.; Burillo, P. Structures on intuitionistic fuzzy relations. Fuzzy Sets Syst. 1996, 78, 293-303. [CrossRef]

Zhang, X.; Zhou, B.; Li, P. A general frame for intuitionistic fuzzy rough sets. Inf. Sci. 2012, 216, 34-49. [CrossRef]

Yun, S.M,; Lee, S.J. Intuitionistic fuzzy rough approximation operators. Int. J. Fuzzy Log. Intell. Syst. 2015, 15, 208-215. [CrossRef]
Zhang, Z. Generalized intuitionistic fuzzy rough sets based on intuitionistic fuzzy coverings. Inf. Sci. 2012, 198, 186-206.
[CrossRef]

Yahya, M.; Naeem, M.; Abdullah, S.; Qiyas, M.; Aamir, M. A novel approach on the intuitionistic fuzzy rough frank aggregation
operator-based EDAS method for multicriteria group decision-making. Complexity 2021, 2021, 5534381. [CrossRef]

Chinram, R.; Hussain, A.; Mahmood, T.; Ali, M.I. EDAS method for multi-criteria group decision making based on intuitionistic
fuzzy rough aggregation operators. IEEE Access 2021, 9, 10199-10216. [CrossRef]


https://doi.org/10.1155/2022/7632892
https://doi.org/10.1109/ACCESS.2018.2828260
https://doi.org/10.1109/TITS.2023.3236274
https://doi.org/10.1016/0165-0114(92)90330-7
https://doi.org/10.1023/A:1008847308326
https://doi.org/10.1016/j.conengprac.2014.09.015
https://doi.org/10.1016/j.isatra.2021.12.022
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/S0167-8655(01)00110-6
https://doi.org/10.1016/S0165-0114(98)00235-8
https://doi.org/10.1016/j.eswa.2021.116228
https://doi.org/10.1080/03081070600574353
https://doi.org/10.1016/j.eswa.2021.116242
https://doi.org/10.1007/s00521-021-06728-7
https://doi.org/10.1109/91.995119
https://doi.org/10.1002/int.20454
https://doi.org/10.1016/j.ijar.2009.05.010
https://doi.org/10.3233/JIFS-172264
https://doi.org/10.1016/j.ins.2008.01.012
https://doi.org/10.1016/j.camwa.2011.05.009
https://doi.org/10.1016/0165-0114(96)84610-0
https://doi.org/10.1016/j.ins.2012.04.018
https://doi.org/10.5391/IJFIS.2015.15.3.208
https://doi.org/10.1016/j.ins.2012.02.054
https://doi.org/10.1155/2021/5534381
https://doi.org/10.1109/ACCESS.2021.3049605

World Electr. Veh. ]. 2024, 15, 402 28 of 28

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

Ahmmad, J.; Mahmood, T.; Mehmood, N.; Urawong, K.; Chinram, R. Intuitionistic Fuzzy Rough Aczel-Alsina Average Aggrega-
tion Operators and Their Applications in Medical Diagnoses. Symmetry 2022, 14, 2537. [CrossRef]

Mahmood, T.; Ahmmad, J.; Ali, Z.; Yang, M.S. Confidence Level Aggregation Operators Based on Intuitionistic Fuzzy Rough Sets
With Application in Medical Diagnosis. IEEE Access 2023, 11, 8674-8688. [CrossRef]

Mahmood, T.; Ahmmad, J.; ur Rehman, U.; Khan, M.B. Analysis and Prioritization of the Factors of the Robotic Industry with
the Assistance of EDAS Technique Based on Intuitionistic Fuzzy Rough Yager Aggregation Operators. IEEE Access 2023, 11,
50462-50479. [CrossRef]

Mahmood, T.; Ur Rehman, U. A novel approach towards bipolar complex fuzzy sets and their applications in generalized
similarity measures. Int. J. Intell. Syst. 2022, 37, 535-567. [CrossRef]

Gwak, J.; Garg, H.; Jan, N. Hybrid integrated decision-making algorithm for clustering analysis based on a bipolar complex fuzzy
and soft sets. Alex. Eng. J. 2023, 67, 473-487. [CrossRef]

Gwak, J.; Garg, H.; Jan, N.; Akram, B. A new approach to investigate the effects of artificial neural networks based on bipolar
complex spherical fuzzy information. Complex Intell. Syst. 2023, 9, 4591-4614. [CrossRef]

Akram, M.; Sarwar, M.; Dudek, W.A. Graphs for the Analysis of Bipolar Fuzzy Information; Springer: Berlin, Germany, 2021; Volume
401, p. 452.

Akram, M.; Akmal, R. Application of bipolar fuzzy sets in graph structures. Appl. Comput. Intell. Soft Comput. 2016, 2016, 5859080.
[CrossRef]

Akram, M. Bipolar fuzzy graphs. Inf. Sci. 2011, 24, 5548-5564. [CrossRef]

Ozer, O. Hamacher Prioritized Aggregation Operators Based on Complex Picture Fuzzy Sets and Their Applications in Decision-
Making Problems. J. Innov. Res. Math. Comput. Sci. 2022, 1, 33-54.

Khan, Q.; Jabeen, K. Schweizer-Sklar Aggregation Operators with Unknown Weight for Picture Fuzzy Information. J. Innov. Res.
Math. Comput. Sci. 2022, 1, 83-106.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.3390/sym14122537
https://doi.org/10.1109/ACCESS.2023.3236410
https://doi.org/10.1109/ACCESS.2023.3272388
https://doi.org/10.1002/int.22639
https://doi.org/10.1016/j.aej.2022.12.003
https://doi.org/10.1007/s40747-022-00959-4
https://doi.org/10.1155/2016/5859080
https://doi.org/10.1016/j.ins.2011.07.037

	Introduction 
	Motivation and Contribution 
	Aims and Objectives 
	Study Framework 

	Background of the Study 
	Complex Intuitionistic Fuzzy Rough Set 
	Aggregation Operators Based on CIFRSs 
	A Method of MADM in the Setting of CIFR Information 
	Algorithm 
	Case Study 

	Comparison Analysis 
	Conclusions 
	Limitations 
	Advantages 
	Future Work 

	References

