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Abstract: In the realm of urban logistics, optimizing vehicle routes for varied cargo types—including
refrigerated, fragile, and standard cargo—poses significant challenges amid complex urban infras-
tructures and heterogeneous vehicle capacities. This research paper introduces a novel model for the
multi-type capacitated vehicle routing problem (MT-CVRP) that harnesses an advanced ant colony
optimization algorithm, dubbed Lévy-EGACO. This algorithm integrates Lévy flights and elitist guid-
ing principles, enhancing search efficacy and pheromone update processes. The primary objective of
this study is to minimize overall transportation costs while optimizing the efficiency of intricate route
planning for vehicles with diverse load capacities. Through rigorous simulation experiments, we
corroborated the validity of the proposed model and the effectiveness of the Lévy-EGACO algorithm
in optimizing urban cargo transportation routes. Lévy-EGACO demonstrated a consistent reduction
in transportation costs, ranging from 1.8% to 2.5% compared to other algorithms, across different test
scenarios following base data modifications. These findings reveal that Lévy-EGACO substantially
improves route optimization, presenting a robust solution to the challenges of MT-CVRP within
urban logistics frameworks.

Keywords: vehicle routing problem; urban logistics; ant colony optimization; Lévy flights; cost
minimization

1. Introduction
1.1. The Vehicle Routing Problem and Its Derivatives

As urbanization accelerates and populations continue to grow, the logistics and trans-
portation industry has become an indispensable part of modern society. Consequently, the
vehicle routing problem (VRP) has gained significant importance. The VRP aims to opti-
mize vehicle usage during delivery or service provision to minimize costs and maximize
efficiency [1]. This problem is not only theoretically challenging but also widely applicable
in practical scenarios, including urban delivery, courier services, and public transportation
planning.

The VRP encompasses a variety of derivatives, each of which is tailored to address
specific constraints and operational demands. For instance, the capacitated vehicle routing
problem (CVRP) focuses on optimizing the number of vehicles and the total distance trav-
eled in scenarios where each vehicle has a fixed carrying capacity. Other notable variants
include the vehicle routing problem with time windows (VRPTW), where deliveries must
be completed within specific timeframes, and the green vehicle routing problem (GVRP),
which considers environmental impacts such as fuel consumption and CO2 emissions.
These variations of VRP illustrate the problem’s adaptability and relevance across different
logistical challenges.

Furthermore, urban logistics face the significant challenge of managing diverse cargo
types with unique transportation needs. The effective movement of varied goods—from
perishables and fragile items to general merchandise—is essential not only for sustaining
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economic growth but also for enhancing the operational efficiency of urban systems. To
address these complex demands, logistics operations often employ specialized solutions
such as the multi-type capacitated vehicle routing problem (MT-CVRP), which specifically
caters to the varied capacity needs of different goods.

Faced with such complex routing challenges, which involve multiple objectives, nu-
merous constraints, and dynamic environments, various metaheuristic algorithms, such
as simulated annealing (SA), genetic algorithms (GA), particle swarm optimization (PSO),
and ant colony optimization (ACO), stand out due to their high flexibility [2,3]. These
algorithms have been extensively applied and developed in the relevant fields of study,
proving indispensable in navigating the complexities of VRP and its derivatives. This
highlights the ongoing need for robust, adaptable solutions in the face of evolving logistical
challenges.

1.2. Overview of Metaheuristic Algorithms

Metaheuristic algorithms represent a class of strategies used for solving optimization
problems, particularly excelling in their adaptability and efficiency in handling complex
or NP-hard challenges. Although these algorithms do not guarantee the discovery of
an optimal solution, they can sufficiently deliver effective solutions within a reasonable
timeframe. The design of metaheuristic algorithms often draws inspiration from natural
phenomena, such as genetic algorithms that simulate biological evolution, ant colony
optimization algorithms that mimic the behavior of ants optimizing their paths to food
sources, and simulated annealing algorithms that are based on the annealing process in
solid-state physics.

Among the wide array of metaheuristic algorithms employed, various methods, such
as SA, GA, and PSO, have been extensively developed and applied in the field. For example,
Sarbijan and Behnamian [4] introduced a hybrid particle swarm optimization-simulated
annealing algorithm to tackle the multi-fleet feeder vehicle routing problem, demonstrating
that the hybrid approach had provided significant improvements in terms of solution
quality and efficiency over traditional methods, like ant colony optimization and variable
neighborhood search, particularly in large-sized instances. Alssager et al. [5] introduced a
novel hybrid approach combining cuckoo search (CS) with simulated annealing for solving
the capacitated vehicle routing problem (CVRP). This method integrates twelve distinct
neighborhood structures and a disruptive selection strategy, demonstrating significant
improvements in solution quality. Holló-Szabó and Botzheim [6] addressed the asymmet-
ric capacitated vehicle routing problem (ACVRP) using the bacterial memetic algorithm
(BMA), which improved convergence and effectiveness by combining global and local
search techniques. Yang and Tao [7] introduced a bi-objective optimization model in cold
chain logistics, employing a hybrid simulated annealing non-dominated sorting genetic
algorithm II (SA-NSGA-II) algorithm that effectively balances cost reduction and customer
satisfaction, as demonstrated in their numerical experiments. Gu et al. [8] tackled the multi-
depot vehicle routing problem (MDVRP) by initially simplifying it to a single-depot format
through depot clustering. They employed an adapted artificial bee colony algorithm, which
was enhanced by a coevolution strategy for depot combination; the test results demon-
strated substantial improvements. Ahmed et al. [9] presented a genetic algorithm and four
hybrid genetic algorithms tailored for the asymmetric distance-constrained vehicle routing
problem (ADVRP). These methods incorporate 2-opt search and local search techniques
to enhance solution quality. Their research involves comparative testing on the TSPLIB
with multiple vehicles, indicating that hybrid genetic algorithms, particularly those incor-
porating local search, provide competitive performance in both restricted and unrestricted
ADVRP scenarios. Li et al. [10] addressed the electric vehicle routing problem with time
windows (EVRPTW) using an enhanced remove–reinsert genetic algorithm (RI-GA). This
refined approach focuses on reducing energy consumption and transportation costs through
a targeted removal and reinsertion strategy, achieving faster convergence and lower routing
costs compared to traditional methods. Their results, validated in a real-world scenario
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involving apple transportation in New York’s Hudson Valley, underscore the practical
benefits of RI-GA. Liu et a l. [11] enhanced E-grocery distribution efficiency by optimizing a
two-echelon vehicle routing problem with the integration of autonomous delivery vehicles
(ADVs). Utilizing a clustering-based hybrid genetic algorithm and particle swarm optimiza-
tion (C-GA-PSO), the study efficiently managed routing from conventional vans to ADVs.
The results show the algorithm’s effectiveness at various customer scales and offer insights
into how depot layout and customer density impact overall costs, aiding in the strategic
planning of sustainable E-grocery delivery networks. Ji et al. [12] introduced a novel hy-
brid algorithm, adaptive cat swarm optimization (ACSO), which melds the strengths of
cat swarm optimization (CSO) and adaptive particle swarm optimization (APSO). This
algorithm optimizes search capabilities through enhanced strategies, such as a controlled
tracing radius and an adaptive random number parameter. Zacharia et al. [13] tackled
the vehicle routing problem with fuzzy payloads, aiming to minimize both travel distance
and fuel consumption using a bi-objective genetic algorithm. This approach incorporates
fuzziness, addressing uncertainties in payload quantities, and enhances routing efficiency
in real-world scenarios. Li et al. [14] developed a novel concentration-immune algorithm
particle swarm optimization (C-IAPSO), blending the strengths of concentration-immune
algorithm (C-IA) and PSO for vehicle path optimization in intelligent logistics systems.
Tested against standard functions, C-IAPSO demonstrates superior convergence speeds
and marked improvements in accuracy for specific functions, such as sphere and quadric.
When applied to urban rail-based logistics distribution, C-IAPSO optimized the routing,
illustrating significant enhancements in transportation efficiency and cost reduction.

In addition to the aforementioned metaheuristic algorithms and their variants, which
have shown substantial benefits in solving various complex vehicle routing problems,
another powerful approach warrants particular attention. ACO, well suited for VRP types
of issues, will be explored in greater detail in the following section. This will include a
detailed discussion of its technical aspects and practical applications.

1.3. Applications of ACO

Among the plethora of optimization algorithms, ACO is widely employed due to its
efficient search capabilities and outstanding distributed computing characteristics. This
algorithm has been theoretically proven to be applicable to a wide range of optimization
challenges [15,16], including complex problems such as route planning [17], resource
scheduling [18,19], and network design [20]. Compared to other metaheuristic algorithms,
ACO possesses distinct advantages, such as a robust positive feedback mechanism that
facilitates rapid convergence to high-quality solutions, exceptional distributed computing
capabilities suitable for large-scale problems, and high flexibility and robustness in dynamic
environments.

For example, Lesch et al. [21] developed a two-stage strategy with a timeline algorithm
for handling time windows and pause times, using GA and ACO to address real-world
constraints in VRP, showing that their method outperforms four state-of-the-art algorithms
in managing these constraints efficiently. Huang et al. [22] explored the integration of
drones with trucks in parcel delivery within the vehicle routing problem with drone (VRPD)
by ACO. Their approach not only minimizes costs and CO2 emissions but also proves more
efficient in reducing delivery times compared to traditional vehicle routing methods, with
substantial cost savings of over 30% for large instances. Frías et al. [23] presented four
hybrid algorithms addressing the energy minimizing vehicle routing Problem (EMVRP),
combining machine learning clustering and ACO techniques. These algorithms were
tested using CVRPLIB instances, showing efficient solutions and promising results that call
for further experimentation and tuning. Furthermore, the ongoing in-depth research by
numerous scholars has led to the increasingly mature and widespread technical applications
of ACO [24].

Compared with other heuristic algorithms, the positive feedback mechanism in the ant
colony algorithm makes ants tend to choose paths with higher pheromone concentrations
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during the search process, and this choice further increases the pheromones on these paths,
thus attracting more ants. This mechanism helps the algorithm to converge quickly, but at
the same time, it may cause the algorithm to prematurely focus on some paths, ignoring
other potentially better paths, and fall into local optimal solutions. Many computing
tasks in the ACO algorithm can be parallelized, such as the calculation and updating of
pheromones, which can be distributed on multiple cores of the CPU at the same time,
reducing the computation time.

Although the ACO algorithm has demonstrated robust performance in addressing
VRP types of challenges, enhancing its exploratory capabilities and preventing stagnation
at local optima remain critical areas for improvement. To address these issues, we need
to further improve the ACO algorithm. The current study integrates Lévy flight into the
ACO framework, which is a strategy inspired by random, scale-free natural movements.
This integration capitalizes on Lévy flight’s ability to facilitate extensive movements within
the solution space, thereby significantly enhancing the algorithm’s potential for thorough
exploration and optimization.

1.4. Lévy Flight

Lévy flight, named after the French mathematician Paul Lévy, refers to a class of
random walks in which step lengths are governed by Lévy distributions. This statistical
pattern allows for occasional long jumps, significantly enhancing the search process over
large solution spaces and providing a powerful mechanism to escape from local optima.
The ‘heavy-tailed’ nature of Lévy distributions is crucial to their functionality; it ensures
that the probability of taking very long steps does not decay as quickly as that in normal
distributions, enabling the search to span wider areas more effectively. Such capabilities
make Lévy flights particularly useful for global optimization challenges encountered in
complex problem domains.

Given these unique properties, Lévy flights have been widely adopted to improve the
efficacy of various metaheuristic algorithms. Their ability to facilitate extensive searches and
prevent premature convergence is highly valued in scenarios where traditional algorithms
struggle. For example, Li et al. [25] explored the integration of Lévy flight in metaheuristic
algorithms, such as cuckoo, monarch butterfly optimization, and moth search algorithms,
enhancing their ability to escape local optima. Their study covers statistical analysis,
classification of uses, and future research directions of Lévy flight. Shen et al. [26] addressed
the multi-compartment electric vehicle routing problem with soft time windows and
multiple charging types (MCEVRP-STW and MCT), utilizing a Lévy flight-based estimation
distribution algorithm (EDA-LF) for optimization. These studies collectively demonstrate
the effective role of Lévy flights in advancing the fields of optimization and path planning.
Through innovative algorithmic integrations and applications, Lévy flights contribute
significantly to enhancing solution quality and efficiency in complex scenarios.

In summary, this paper models the vehicle routing problem for various types of urban
cargo and proposes an enhanced ant colony optimization algorithm, Lévy-EGACO, which
integrates Lévy flights and elitist guiding strategies. Section 2 will present the constraint
conditions and symbol definitions of the model under study. Section 3 will elaborate on the
design of the entire algorithmic process. Section 4 will conduct simulations and display the
resulting data. The final section, Section 5, will summarize the findings of the paper. This
work provides new insights and methods for applying ant colony algorithms in complex
model optimization domains.

2. Problem Description and Modeling

According to the literature, modern logistics networks can be categorized into global,
regional, and urban levels. The distribution path of a piece of goods requires a hierarchical
path planning method. This model is developed based on the common constraints and
challenges of path planning across all logistics levels.
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In the context of urban logistics, MT-CVRP can be described as the challenge of
managing the transportation of various types of goods across a logistics center’s service
area. Given the known quantities of different goods at each distribution point, various
types of delivery vehicles must depart from the logistics center, traverse the area, and
deliver the required goods to all designated sites. In the case of meeting the delivery time,
the objective is to minimize the total costs, which include both operational and routing
expenses, such as costs for vehicles, personnel, fuel, environmental protection, etc.

The specific constraints are as follows:

• Each vehicle departs from and returns to a single logistics center, with an ample supply
of each type of vehicle available;

• Each distribution site is serviced once by the corresponding type of delivery vehicle;
• Each type of vehicle is only capable of transporting specific types of cargo in order to

enhance the quality of transportation and ensure customer satisfaction;
• Vehicle movement between sites is unidirectional, and vehicles cannot backtrack;
• Vehicles are not permitted to alter their route mid-journey and must follow the prede-

termined path;
• Vehicles are considered to be unloaded when they leave the logistics center for the first

distribution site, and the load must not exceed the maximum capacity defined for that
vehicle type during transportation.

The parameter settings are shown in Table 1.

Table 1. Parameter settings.

Symbols Definitions

O = {1, 2, 3, . . ., o, o+1} The set of site includes o distribution sites, with the logistics center designated as site o+1.
V = {1, 2, 3, . . ., j} The set of vehicle numbers consists of j vehicles.
T = {1, 2, 3, . . ., h} The set of cargo types includes h different types of goods.
W = {1, 2, 3, . . ., n} The set of vehicle types comprises n models.

capw The maximum load capacity of vehicle type w.
cw The unit transportation cost per distance for vehicle type w.
sw
dt

The startup cost for vehicle type w.
The maximum allowable transport distance of cargo type t.

qil The quantity of cargo type l at distribution site i.
a, b ∈ O Transportation route nodes a and b.

dab
eab

The distance between nodes a and b.
The traffic congestion coefficient between nodes a and b, eab ≥ 1.

gvw ∈ {0,1} If vehicle v belongs to vehicle type w, then gvw = 1, otherwise 0.
hwt ∈ {0,1} If vehicle type w transports cargo type t, then hwt = 1, otherwise 0.
mwt ∈ {0,1} If vehicle type w can transport cargo type t, then mwt = 1, otherwise 0.
xv ∈ {0,1} If vehicle v is activated, then xv = 1, otherwise 0.

yabv ∈ {0,1} If vehicle v transports from node a to node b, then yabv = 1, otherwise 0.
C The total cost, including startup and transportation costs.

Based on the specified parameters and constraints, the following mathematical model
can be established:

minC =
j

∑
v=1

n

∑
w=1

gvwswxv+
o+1

∑
a=1

o+1

∑
b=1

j

∑
v=1

n

∑
w=1

cwgvweabdabyabv (1)

Equation (1) defines the objective function, representing the total cost.

o+1

∑
a=1

j

∑
v=1

yaivgvw = 1, ∀i ∈ O\{o + 1}, ∀w ∈ W (2)
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o+1

∑
b=1

j

∑
v=1

yibvgvw = 1, ∀i ∈ O\{o + 1}, ∀w ∈ W (3)

Equations (2) and (3) stipulate that only a single vehicle of type w may visit site i.

o+1

∑
a=1

yaiv ≤ xv , ∀i ∈ O\{o + 1}, ∀v ∈ V (4)

Equation (4) ensures that vehicle v services site i only once.

o

∑
i=1

y(o+1)iv =
o

∑
i=1

yi(o+1)v = xv, ∀v ∈ V (5)

Equation (5) requires that vehicle v must start from the logistics center, complete its
delivery tasks, and then return.

yaiv + yiav ≤ 1, ∀i, a ∈ O\{o + 1}, ∀v ∈ V (6)

Equation (6) dictates that vehicle v can only travel in one direction between sites.

hwt ≤ mwt, ∀w ∈ W, ∀t ∈ T (7)

Equation (7) ensures that model w can only be loaded with the type of cargo h that is
permitted to be transported.

o+1

∑
a=1

o+1

∑
i=1

gvwhwteaidaiyaiv ≤ dt , ∀v ∈ V, ∀w ∈ W, ∀t ∈ T (8)

Equation (8) ensures that the transportation distance for each item of cargo is within
the maximum allowable limit and verifies that the transportation time for cargoes meets
user requirements.

m+1
∑

a=1

m
∑

i=1

h
∑

t=1
qitgvwhwtyaiv ≤ gvwcapw

∀v ∈ V, ∀w ∈ W
(9)

Equation (9) sets the maximum load capacity for vehicle v.

yabv ≤ xv, ∀a, b ∈ O, ∀v ∈ V (10)

Equation (10) addresses the startup constraints for vehicle v.

xv ∈ {0, 1}, ∀v ∈ V (11)

yabv ∈ {0, 1}, ∀a, b ∈ O, ∀v ∈ V (12)

Equations (11) and (12) are binary constraints.

3. Enhanced Ant Colony Algorithm Design

The ACO algorithm is a heuristic approach that simulates the foraging behavior of
ants to solve combinatorial optimization problems. In nature, ants release pheromones
during their search for food, and other ants choose their paths based on the concentration
of these pheromones. Given the complex requirements of the MT-CVRP, traditional ACO
requires design enhancements. By integrating Lévy flights and elitist guiding strategies,
the enhanced ant colony algorithm, Lévy-EGACO, is able to escape local optima more
effectively, thereby improving the efficiency and accuracy of solutions. The specific steps to
solve the problem are as follows.
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3.1. Information Gathering

Based on the problem description, the known information includes the following:

• The distance matrix between various sites and the logistics center;
• The quantities of various types of goods at each site, measured in tons;
• The types of goods that can be transported by each vehicle type, along with their

maximum load capacities;
• The activation and distance costs for each vehicle model.

Given that there are currently o distribution sites, and the logistics center is designated
as site o+1, then an initial pheromone matrix of size (o+1) · (o+1) can be generated as follows:

0 τ0 τ0 · · · τ0
τ0 0 τ0 · · · τ0
τ0 τ0 0 · · · τ0
...

...
...

. . .
...

τ0 τ0 τ0 · · · 0

 (13)

where τ0 represents the initial pheromone value, and the pheromone values at diagonal
positions are typically set to 0.

3.2. Create Paths

Define the number of ants as N, and place them at the logistics center. The path
traversed by each ant is considered as the collection of routes for all vehicles of a certain
type. Take ant k as an example. When it is at the logistics center and has not yet departed,
its load is zero, and its path is defined as Path = [o+1]. At this point, it evaluates all sites
based on its maximum load capacity, capw, to generate a list of feasible sites that will not
cause it to be overloaded. The list of feasible sites for ant k, starting from the logistics center
with zero load, should be [1, 2, 3, . . ., o].

After obtaining the list of feasible sites, the ant uses a roulette wheel selection rule
to independently choose the next site to visit, with probability pij

k. The calculation of
probability pij

k is as follows:

pk
ij =

[τij(t)]
α[ηij]

β

∑
j∈Allowedk

[τij(t)]
α[ηij]

β
(14)

Herein, τij(t) denotes the pheromone intensity from site i to site j at time t; that is,
during the t-th iteration; ηij represents the heuristic factor from site i to site j, defined as the
reciprocal of the distance between site i to site j. Allowedk denotes the list of feasible sites for
ant k, and α and β are parameters that control the importance of the pheromone strength
and the heuristic factor, respectively.

If ant k selects site 3 as its next destination, its path can be considered as Path = [o+1, 3],
with a load size of cap3. At this point, it will continue to assess all remaining sites and
generate a new list of feasible sites. After multiple selections and departures, as the load
approaches its limit and no more eligible sites are available for selection, k will return to
the logistics center.

Assume its path is Path = [o+1, 3, 2, o+1], and upon returning to the logistics center, it
unloads and departs again. Upon restarting, the list of feasible sites also removes sites 3
and 2. After repeatedly departing from and returning to the logistics center, it generates
a path as Path = [o+1, 3, 2, o+1, 6, 4, 5, o+1, . . ., 8, o+1]. Each cycle of departure from and
return to the logistics center is isolated and considered as the route planning for all vehicles
of a specific type. From this process, the required number of vehicles, each vehicle’s route,
and the current cost C can be calculated using Equation (15):

C = Cpath + Cvehicle (15)
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Herein, Cpath represents the transportation cost associated with the route, and Cvehicle
denotes the vehicle activation cost. Following the steps outlined above, the path creation
for ant k is completed, and the next ant begins to construct its path.

3.3. Cost Optimization

Since ants return to the logistics center only when nearly fully loaded, introducing an
additional vehicle while allowing the remaining vehicles to return earlier might reduce
transportation distances and lower overall costs.

Based on this idea, by appending the logistics center site at the end of the route and
transferring sites, the algorithm can search for potentially cost-reducing paths. The practical
steps are as follows:

• In the existing route Path, add a new logistics center site o+1 at the end of the path.
Taking site 6 as the transfer site, execute the relocation of cargo sites, and recalculate
costs accordingly, as shown in Figure 1.

• Perform a relocation operation for each site i. It is possible to recalculate the new load
Ci-new and the cost changes associated with the transportation route Ci-path.

• If capi-new < capw, select the minimum value among Ci-path values, denoted as Ci-path-min.
If Cpath − Ci-path-min > 0, it indicates that relocating site i has reduced the path costs.
Return to step 2 to continue new relocation operations, eventually generating Pathnew,
and proceed to step 4. Otherwise, continue with Pathnew = Path, and move to step 5.

• Utilize Pathnew, the pathway modified following site translocations, as the prevailing
route. Employ Equation (15) to calculate the revised aggregate costs, Cnew. And if
the calculation results in C − Cnew < 0, this indicates that the strategic addition and
relocation of sites within the new configuration have effectively reduced the total costs.
Subsequently, redefine Path as Pathnew, and revert to step 1 for additional site relocation
activities. Conversely, if C − Cnew > 0, indicating that the integration of additional
vehicles has not yielded a cost reduction, persist with the initial route configuration,
setting Pathnew = Path.

• Output the optimized path with reduced costs.
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Figure 1. Vehicle addition and site relocation.

3.4. Pheromone Update

Once the optimal Path from ant kbest is determined, it is first compared with the
currently known best cost path, Pathbest. If the cost Cbest of Pathbest is greater than the cost C
of the current path, then Pathbest is updated to Path; if it is the first iteration, then directly set
Pathbest = Path. Following this update, based on the cost-optimal Pathbest, the pheromone
levels across the entire distance matrix are updated. This update includes processes for
pheromone reinforcement and pheromone evaporation, which are essential for guiding the
subsequent search efforts of the ants.
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As demonstrated in Equation (16), pheromone intensification implies that ants deposit
pheromones based on the cost of the path they have discovered:

△τk
ij =

1
ηCk (16)

where Ck is the cost associated with Pathbest, and η is a proportional constant.
Pheromone evaporation, as depicted in Equation (17), occurs along each edge where

pheromones evaporate at a specified rate:

△τij(t + 1) = (1 − ρ)τij(t) (17)

where ρ is the evaporation coefficient. Consequently, the method for pheromone updating
can be derived by combining Equations (16) and (17), as shown in Equation (18):

△τij(t + 1) = (1 − ρ)τij(t) + ∑
k
△τk

ij (18)

3.5. Lévy Flights and Elitist Guiding

During deeper iterations of the ant colony algorithm, it often encounters the issue of
converging to local optima, which impedes further improvement in the quality of solutions.
To overcome this challenge, the Lévy-EGACO algorithm employs a random restart strategy,
involving reinitialization of the pheromone matrix. At this point, Lévy flights are utilized
as an innovative method to generate a step-length matrix. After limiting the maximum step
length and completing normalization, this matrix can serve as the initial values for each
element in the pheromone matrix, thereby enhancing the exploratory and diversity aspects
of the algorithm. This is combined with an elitist guiding strategy, which intensifies the
pheromone concentration along the currently optimal paths.

As illustrated in Figure 2, Lévy flight’s combination of short and long steps is congru-
ent with the realities of various natural systems, such as the foraging and flight patterns
of animals. It is commonly employed to manage fluctuations in economic data and signal
processing, particularly in scenarios that necessitate rapid jumps across the search space. In
practical applications, the Mantegna algorithm is commonly used to simulate Lévy flights,
with the calculation method for the step length as follows:

L =
µ

|υ|
1
β

(19)

where µ and υ are two normally distributed random variables, with µ ~ N(0, σ2
µ), and v ~

N(0, 1). The β is the exponent parameter of the Lévy flight. The calculation method for σ2
µ

is as follows:

σµ =


Γ(1 + β)sin

(
πβ
2

)
Γ
(

1+β
2

)
β2

(β−1)
2


1
β

(20)

where Γ denotes the gamma function, and the variable β is typically set to 1.5.
0 τLvy N0τLvy · · · τLvy

τLvy 0 τLvy · · · N0τLvy
τLvy N0τLvy 0 · · · τLvy

...
...

...
. . .

...
N0τLvy τLvy τLvy · · · 0

 (21)
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Figure 2. Lévy flight trajectory image.

The pheromone matrix following the implementation of the elitist guidance strategy
is illustrated in Equation (21). Here, τLévy represents the pheromones generated through
Lévy flights, and N0 is the intensification multiplier. After the creation of the Lévy flight
matrix, the elitist guidance strategy is applied in conjunction with the historically optimal
paths. The core idea of this strategy is to enhance the pheromone concentration on portions
of known good solutions, thereby making subsequent ants more inclined to choose these
routes. The complete flowchart for the Lévy flight and elitist guidance segment is shown in
Figure 3.
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Elitist guidance in optimization algorithms is conceptually akin to the notion of
velocity in PSO, as both are instrumental in directing the search within the solution space
toward previously identified optimal solutions. However, a significant difference exists
in their mechanisms of action, which means elitist guidance is primarily utilized during
random restarts and does not exert a continuous influence across iterations. This specific
application helps to prevent the algorithm from prematurely converging on local optima,
thereby encouraging a more comprehensive exploration of the solution space. In this
refined approach, the integration of Lévy flights with random restarts and elitist guidance
achieves a harmonious balance between maintaining diversity in the solution pool and
enabling deep exploration of the algorithmic landscape. When the iteration limit is reached,
the algorithm identifies and outputs the historically optimal solution. This solution not
only specifies the optimal paths but also outlines the overall lowest costs associated with
each vehicle type, effectively optimizing logistical efficiencies in complex transportation
networks.

4. Simulation
4.1. Simulation Construction

In line with established urban transportation paradigms, this study differentiates
among three distinct vehicle types tailored for specific cargo needs: refrigerated cargo
trucks, fragile cargo trucks, and standard cargo trucks. These vehicles are respectively ear-
marked for transporting perishable goods, fragile items, and general cargo, with respective
maximum load capacities set at 5 tons, 2 tons, and 4.5 tons. The transportation cost per
kilometer is delineated at USD 4, USD 3.5, and USD 3 for each vehicle type, while daily
startup costs for long-term rentals are determined to be USD 10, USD 8, and USD 6 per
vehicle, accordingly. Considering the environmental impact of the transportation process,
the transportation cost per kilometer includes not only the fuel price but also the carbon
emission fee. Daily startup costs include vehicle purchase or lease costs, transportation
insurance costs, driver salaries, etc. Each vehicle class is stringently utilized for its des-
ignated cargo type, ensuring that transit conditions are meticulously optimized for the
specific needs of each cargo category.

The simulation setting is orchestrated around a logistics hub situated in the Chaoyang
District of Beijing, incorporating nine distribution nodes and one central logistics facility,
sequentially numbered from one to ten. The intricacy of urban transportation infrastructure,
featuring one-way streets, subterranean passages, and elevated roadways, engenders dis-
crepancies in the bidirectional travel distances between these locations. This phenomenon
bears a resemblance to the distance asymmetries characteristic of the asymmetric traveling
salesman problem (ATSP), in which the travel expenditure from one point to another may
differ from the cost in the opposing direction [27].

The geographical positions of these sites are depicted in Figure 4. The shortest driving
distances between these sites have been measured using an open platform and are utilized
as simulation data, with specific values presented in Table 2, expressed in kilometers.
According to the real-time traffic congestion situation provided by the open platform, the
traffic congestion coefficient eab will be updated every time, and the eab is equal to 1 when
the traffic is unimpeded, the eab is equal to 1.5 when the traffic is normal congested, and
the eab is equal to 2 when the traffic is very congested. Additionally, to simulate real-world
scenarios and address the entire problem, the quantities of different types of cargo at each
distribution site have been established, as shown in Table 3, measured in tons per day.
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Table 2. Round-trip distances between distribution sites.

Number 1 2 3 4 5 6 7 8 9 10

1 - 0.5 1.3 1.2 1.5 1.9 2.4 3.3 2.7 2.2
2 0.5 - 1.4 0.6 0.9 1.2 2.3 3.1 2.5 1.0
3 2.2 1.7 - 1.8 1.2 0.4 3.2 4.0 3.4 0.9
4 1.1 0.6 1.5 - 1.0 1.7 2.4 3.2 2.7 1.1
5 1.3 0.9 0.7 0.9 - 0.5 2.3 3.1 2.6 0.5
6 1.7 1.2 0.2 1.6 1.0 - 2.3 3.1 2.6 0.4
7 2.7 2.2 2.1 1.6 2.3 2.3 - 0.8 0.8 2.6
8 2.8 2.8 2.7 2.2 2.9 2.9 0.6 - 1.4 2.9
9 1.8 1.3 1.2 0.8 1.5 1.5 1.1 0.5 - 1.5

10 3.0 2.0 0.7 2.1 1.4 0.4 1.9 1.6 2.3 -

Table 3. Quantities of goods by type at each distribution site.

Number Perishable Cargo Fragile Cargo Standard Cargo

1 2.13 0.49 2.68
2 2.31 0.16 1.78
3 0.75 0.49 1.59
4 2.33 0.48 1.22
5 1.76 0.29 2.71
6 0.70 0.42 1.76
7 1.06 0.16 1.61
8 1.59 0.27 2.65
9 2.42 0.47 1.65

4.2. Simulation Results

To highlight the advantages of Lévy-EGACO, simulation experiments were conducted
using the standard ACO and the adaptive genetic algorithm (AGA) for comparative pur-
poses. The standard ACO employs a simpler pheromone update rule without the Lévy
flights’ heavy-tailed property and lacks the intervention of an elitist guidance strategy. The
parameters for the standard ACO algorithm include the number of ants N, pheromone fac-
tor α, heuristic information factor β, evaporation coefficient ρ, and the number of iterations
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Niter. Lévy-EGACO additionally includes the elitist guidance intensification multiplier N0;
and the random restart threshold θ. Similarly, the AGA provides a basis for comparison
by utilizing adaptive mechanisms for crossover and mutation rates, allowing for dynamic
adjustment during the optimization process. The parameters for the AGA include the
population size N, crossover rate pc, mutation rate pm, and adaptation factors for crossover
and mutation rates γc and γm.

The simulation parameters are detailed in Table 4.

Table 4. Parameters.

Symbol
Definition Value

AGA ACO Lévy-EGACO

- α α Pheromone factor [0.5,2], step 0.1
- β β Heuristic information factor [1,3], step 0.1
- ρ ρ Evaporation coefficient [0.1,0.5], step 0.1
- - N0 Elitist guidance intensification multiplier 2
- - θ Random restart threshold 20

pc - - Crossover rate 0.9
pm - - Mutation rate 0.1
γc - - Adaptation factor for crossover rate 0.1
γm - - Adaptation factor for mutation rate 0.1

Niter Niter Niter Number of iterations 500
N N N Number of population size/ants 100/20

The standard ACO, Lévy-EGACO, and AGA algorithms will use relatively optimal
parameter values to ensure the best possible results.

The number of ants N is set to 20, based on experimental results. A smaller group of
ants might not adequately explore the complex search space, while a larger number could
lead to wastage of computational resources and increased algorithm runtime; thus, 20 has
been demonstrated to be the optimal balance between efficiency and effectiveness. Given
the smaller scale model used in experiments and the lower computational complexity, α,
β, and ρ can be determined within a predefined range through grid search. N0 is set to
2 to enhance the pheromone on high-quality paths, thereby making the algorithm more
likely to revisit known quality paths. This value was determined based on observations
of path stability and solution quality from multiple experiments. θ is set to 20, based on
the algorithm’s performance once a local optimum is reached. When the algorithm fails to
improve the current solution after 20 consecutive iterations, introducing a random restart
helps to escape local optima and increases solution diversity. Niter is set to 500, based on
the average number of iterations needed for the algorithm to converge on similar problems.
This value ensures sufficient time for the algorithm to conduct a thorough search within
the solution space while also effectively managing the runtime of the algorithm. The initial
crossover rate pc and mutation rate pm in the AGA algorithm are set to some classical values
and can adaptively change during iterations based on the adaptation factors. Since the
population size N in the AGA algorithm significantly impacts the algorithm’s performance,
setting a small population size may cause the algorithm to fall into local optima easily.
Therefore, the population size is reasonably set to 100 as an initial value.

The hardware configuration used for the simulation consists of a standard personal
computer platform running the Windows 10 operating system, equipped with an Intel Core
i5-8300H processor. The programs were developed and executed using MATLAB R2022b.
Following 20 runs of the algorithm, the average path costs for each type of cargo under
both algorithms were calculated. The data obtained are presented in Table 5. The optimal
paths and loads for each type of cargo obtained by the algorithm are shown in Table 6.
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Table 5. Cost data results.

Cost
Lévy-EGACO ACO AGA

Best Average Optimal
Ratio Best Average Optimal

Ratio Best Average Optimal
Ratio

Refrigerated 100.8 100.88 95% 102 103.14 45% 102 103.12 55%
Fragile 49.25 49.25 100% 49.25 49.25 100% 49.25 49.25 100%

Standard 186 186 100% 186 189.85 15% 186 190.05 10%
Total 336.05 336.13 - 337.25 342.24 - 337.25 342.42 -

Table 6. Transportation routes for each vehicle type.

Number Vehicle Type Transportation Route Load/Ton

1 Refrigerated cargo trucks 10-6-1-5-10 4.59
2 Refrigerated cargo trucks 10-8-7-4-10 4.95
3 Refrigerated cargo trucks 10-9-2-10 4.73
4 Refrigerated cargo trucks 10-3-10 0.75
5 Fragile cargo trucks 10-6-3-5-1-2-10 1.85
6 Fragile cargo trucks 10-8-7-9-4-10 1.38
7 Standard cargo trucks 10-6-5-10 4.47
8 Standard cargo trucks 10-1-2-10 4.46
9 Standard cargo trucks 10-7-9-4-10 4.48
10 Standard cargo trucks 10-8-3-10 4.42

The “Optimal Ratio” column in Table 5 represents the proportion of the number of
times the algorithm achieved the optimal cost to the total number of rounds.

To validate the effectiveness and generalizability of the designed algorithm, simulation
construction parameters were adjusted and resolved.

Changes were made to various vehicle types:

• The payload capacity of refrigerated trucks was increased to 7 tons, and their unit
transportation costs were raised to USD 6 per unit distance.

• The daily startup costs of fragile cargo trucks were reduced to USD 3 per day, and
their unit transportation costs were raised to USD 5 per unit distance.

• The payload capacity of standard cargo trucks was raised to 6 tons. The unit trans-
portation costs for standard cargo trucks were raised to USD 10 per unit distance, and
the daily startup costs were reduced to USD 8 per day.

Under these revised conditions, the resultant cost data following these changes are
presented in Table 7. The optimal paths and loads for each type of cargo obtained by the
algorithm are shown in Table 8.

Table 7. Cost data results.

Cost
Lévy-EGACO ACO AGA

Best Average Optimal
Ratio Best Average Optimal

Ratio Best Average Optimal
Ratio

Refrigerated 97.2 97.2 100% 99.6 101.67 10% 99.6 101.61 10%
Fragile 53.5 53.5 100% 53.5 53.5 100% 53.5 53.5 100%

Standard 106.4 106.46 95% 107.6 108.32 45% 107.6 107.99 50%
Total 257.1 257.16 - 260.7 263.49 - 260.7 263.1 -
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Table 8. Transportation routes for each vehicle type.

Number Vehicle Type Transportation Route Load/Ton

1 Refrigerated cargo trucks 10-8-7-9-5-10 6.83
2 Refrigerated cargo trucks 10-4-1-2-10 6.77
3 Refrigerated cargo trucks 10-3-6-10 1.45
4 Fragile cargo trucks 10-6-3-5-1-2-10 1.85
5 Fragile cargo trucks 10-8-7-9-4-10 1.38
6 Standard cargo trucks 10-4-1-2-10 5.68
7 Standard cargo trucks 10-8-7-9-10 5.91
8 Standard cargo trucks 10-3-5-10 4.3
9 Standard cargo trucks 10-6-10 1.76

4.3. Data Analysis

From the comparative analysis presented in Tables 5 and 7, it is evident that Lévy-
EGACO demonstrates enhanced stability and reliability in solving the MT-CVRP. Within
20 rounds of solution trials, Lévy-EGACO nearly reached the known optimal cost values in
every attempt, whereas both the standard ACO and AGA algorithms frequently fell into
local optima, preventing them from achieving the lowest average costs. Moreover, before
the base data modification, Lévy-EGACO reduced the average cost by 1.8% compared to
standard ACO and by 1.9% compared to AGA. After the data changes, in the second round
of testing, this reduction increased to 2.5% and 2.3%, respectively.

Additionally, from the perspective of solution correctness, as observed in Tables 6
and 8, the routes for each vehicle type are very rational with no repetitions or omissions of
any station. For refrigerated cargo trucks, the increase in load allowed a reduction in the
number of transport vehicles needed, which decreased the overall costs despite an increase
in per-kilometer transportation costs. For fragile cargo trucks, there was no change in load
capacity, which meant that within the load limits, there were no additional route options
available even though the daily startup and per-kilometer transportation costs were altered.
For standard cargo trucks, which had all base data altered, the algorithm significantly
changed the routes to effectively reduce the total costs. The load of each vehicle during
individual transports did not exceed the set load limits, and the variations in simulation
conditions leading to changes in the results also conformed to all constraints and theoretical
expectations.

Thus, it is clear that Lévy-EGACO significantly outperforms the standard ACO algo-
rithm in solving the MT-CVRP, demonstrating its superiority.

5. Conclusions

In this investigation of the MT-CVRP, the study rigorously examines the deployment
of ACO techniques, introducing the Lévy-EGACO algorithm. The efficacy of Lévy-EGACO
in solving the MT-CVRP has been substantiated through comprehensive simulation tri-
als. Importantly, the integration of elitist guidance alongside Lévy flight mechanisms
enriches the pheromone update process, significantly broadening diversity and effectively
circumventing the issue of premature convergence to local optima.

Looking forward, the research agenda for the algorithm could shift toward exploring
a broader range of adaptive strategies to enhance both its applicability and practical
effectiveness. Sensitivity analysis could be carried out to study the influence degree of
each parameter on the target, which can optimize the location of distribution sites, thereby
improving the utilization of vehicles and the robustness of the model under various extreme
conditions. Additionally, the incorporation of parallelization strategies could further adapt
the algorithm for larger-scale scenarios and real-world complex scenarios. The findings
of this research endeavor to contribute valuable insights to the academic community,
encouraging sustained scholarly inquiry and innovation within this domain.
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