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Abstract: The suspension of a car has different structural forms but usually consists of springs, shock
absorbers, guiding mechanisms, etc. As a vehicle moves, the terrain often induces a multifaceted
non-white noise vibration within the vehicle. Research on this type of vibration often uses the
operational modal analysis (OMA) method, due to its advantages of not requiring knowledge of
excitation signals. The disadvantage is that it can only analyze systems under white noise excitation,
otherwise it will bring errors. So, this paper proposes a frequency domain fitting algorithm (FDFA)
based on colored noise excitation. Initially, an exposition on the foundational principles of the
FDFA technique was provided, followed by a demonstration of the modal identification approach.
Subsequently, a simulation scenario involving a cantilever beam, akin to a suspension system, was
chosen for examination in three instances, revealing that the frequency discrepancies are under
2.94%, and for damping coefficients, they are less than 2.76%. In conclusion, the paper’s introduced
FDFA technique, along with the frequency-spatial domain decomposition (FSDD) approach, were
employed to determine the modal characteristics of aluminum cantilever beams subjected to four
distinct colored noise stimulations. The findings indicate that when utilizing the FDFA technique, the
error in modal frequency is kept below 2.5%, while the error for the damping ratio does not exceed
15%. Compared with FSDD, the accuracy was improved.

Keywords: colored noise; operational modal analysis; modal parameter identification; environmental
excitation; frequency domain fitting algorithm; frequency-spatial domain decomposition

1. Introduction

In many practical applications, the vibration of suspension systems has a significant
impact on mechanical structures, mechanical fatigue, and user ride comfort, such as heavy-
duty vehicles, military vehicles, and high-speed racing cars [1,2]. Vibration modal analysis
based on suspension systems is also being carried out vigorously. Therefore, operational
modal analysis (OMA) is widely used in various fields like vehicle engineering, mechanical
processing, aerospace, civil engineering [3], etc., due to its advantages of not requiring
knowledge of excitation signals, its low cost, and the ability to test modes that cannot be
measured in some laboratories.

The study of OMA began in the 1960s [4]. OMA has attracted wide attention since the
mid-1990s. And it has developed in both time [5-11] and frequency domains [12-16].

OMA has been applied in many cases in recent years. Zhu Y [17] used the fast
Bayesian FFT method to obtain dynamic feature parameters of the structure and quantified
the related uncertainties of the identified parameters. An interactive optimization method
was proposed to update the model using a set of automatic model correction schemes
based on the particle swarm optimization algorithm. Feng Y [18] conducted OMA on
the causes of bolt failure on high-speed trains. He proved that the front cover exhibits
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nonlinear vibration under 20th order polygonization and studied the reasons for bolt failure
and dynamic characteristics of the front cover caused by different wheel polygon orders.
Ma HL [19] proposed a Moving Window Incremental Multidimensional Scale (MWIMDS)
method and analyzed non-stationary random vibration signals as stationary random time
series in each window. Lyu LF [20] used the OMA method to track and scan rotating
fan blades and conducted experimental research on edge detection methods. The modal
parameters and non-constant speed instantaneous undamped vibration modes of rotating
fan blades under different constant speed random excitations were estimated.

Nevertheless, the majority of studies concerning operational modal analysis presup-
pose that excitation comes from the white noise source. All of the above papers consider ex-
citation as white noise. But in most practical situations, the stimulus is colored noise [21-23].
In recent years, some studies on non-white noise excitation have been about the fusion of
white noise and several fixed frequencies [24-26]. But research about broadband colored
noise is also lacking, and this paper is based on them.

The research in this paper is mainly based on the cantilever structure under colored
excitation. The novelty of this study lies in considering the influence of colored noise on
modal identification, extending the traditional working modal parameter identification
method under the assumption of white noise to colored noise, thereby conducting more
effective testing on the structure of locomotive suspension in complex working conditions.

Section 2 of this article describes the algorithm and principle of FDFA from a single
degree of freedom and a multi-degree of freedom, respectively. Section 3 uses a cantilever
beam structure and simulates three different excitation scenarios and four different exci-
tations. Section 4 uses a cantilever beam structure for actual testing on a vibration table.
Section 5 is a summary of this article.

2. Theory of Frequency Domain Fitting Algorithm (FDFA)
2.1. Definition of Colored Noise

Colored noise refers to noise with a non-uniform distribution of power spectral density
(PSD) in the frequency domain. The colored noises are distinguished by their shapes of
PSD, respectively. Here, four kinds of common colored noises are researched in this paper,
namely pink noise, blue noise, purple noise, and brown noise; the PSD Gxx of them can be
expressed as

Gxx = k" 1)

where k is related to the magnitude of the noise, and « determines the color (—1 is for pink,
1is for blue, 2 is for purple, and —2 is for brown).

2.2. Single Degree of Freedom (SDOF) System

For linear classic damping SDOF systems, the velocity PSD of the system under colored
noise excitation can be expressed as

Gyy(@w) = k2 |H?

_ k. wit2p

" (@) (2wnco) @)
_ Kk 1
=2 [w%wﬂx—Zﬁ+w47a72‘5+(4C2_2)w%w27ﬂz—2ﬁ]

where m is the mass of the SDOF system, w, is the natural frequency, and ( is the damping
ratio. The Gyy(w) is the PSD of response. H is the frequency response function. The
index B is related to the type of sensors used (i.e., displacement § = 0, velocity § =1, and
acceleration f = 2).

From Equation (2) we can obtain

1 _ mer oy —a—28 4—x—2p 2 2 2-x—2p
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Let

where

¢ = (42 72)’%

w;

)

w; represents frequency points near natural frequency, and Sy(w;) is the spectrum
measured in the experiment. In alignment with the least squares approach, 4, b, and ¢

should fulfill
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From Equations (3) and (8) we can have
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Equation (9) can be rewritten as
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from Equations (5)-(7) the modal frequency and damping ratio can be obtained as
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2.3. Multi Degree of Freedom (MDOF) System

According to the frequency response function of a multi-degree of freedom system,
the relationship between colored noise excitation and PSD can be written as

y(w) = H(w)d(w) (14)

where y represents the frequency spectrum of the response signal. H is the frequency
response function matrix, d represents the excitation signal spectrum, and w is the excita-
tion frequency.

Supposing that each excitation is uncorrelated from the other, the PSD of excitation
can be written as follows:

de = diag{klw“l,kzwaz, tty kPwaP} (15)

where k;, (i=1,2,-- -, P) determine the magnitude of excitation noise, and &; (i = 1,2,--- , P)
represent the colors of the excitation noise.
The response spectrum matrix is

Syy(w) = E(yy*T) = E(Hdd*TH*T) = HSgqH*T

T
_ 3 ®rof Sy T ®rof (16)
=1\ K} — M,w? + ]CL)Cr dd —1\ Ky — M,w? — ](UCr

where T represents the transpose operation, and * represents the complex conjugate; @,
represents the rth modal vector; K;, M,, and C, represent the rth modal stiffness, modal
mass, and modal damping, respectively.

Sdad T
Syy(w) =TAIT ~ @, 0] - OO (17)
() (K= M)’ + (0G)?2

where T’ = @,e,@], e, is a constant, and A = diag{cy,09,---0n} (07 > 00> --- >0y)isa
diagonal matrix.
Let B
Syy(w) =TSy, T (18)

We can have
S..(1.1) = 01 Jer o2 .. apy. 1 _ . 1
Syy(L1) = max(kiw® ko™, - ky™ ) iy (19)
_ kyw™ 1

oM (w$7w2)2+(2§,w,w)2

where w;, represents the rth frequency, and {, represents the rth damping ratio. The initial
column of I corresponds to the rth mode shape.

kyw™ = max(kjw™, kpw"?, - - -, kpw™) (20)
From Equation (19), we can obtain

1 GMF (4 aop | 4an-28 2 2 2,2
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Let
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w,; represents frequency points near the rth mode, and Sy(w;,;) is the spectrum near
the rth mode obtained from the experiment.
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In Equation (28), the leftmost term is often reversible; a,, by, c; can be written as
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e I y Lri
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In this process, the pseudo inverse is avoided. From Equations (23)—(25), the modal

parameter can be obtained

a
wy = ¢ 17: (30)
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1 Cy
ér = E \/ﬁ +2 (31)
o = 1) (32)

~ max(T(:1))]
In this segment, the writers suggest a colored noise-induced FDFA modal parameter
detection approach, examining both single and multiple degrees of freedom structures and

supplying mathematical formulae to determine modal frequency, damping, and modal
shapes when excited by colored noise.

3. Simulation
3.1. Settings of Simulation
3.1.1. Cantilever Beam Setting

Figure 1 exhibits a cantilever beam employed for the simulation. The details of the
size are shown in Table 1. The random excitation by the colored noise is applied at the free
end. The acceleration responses, totaling ten, are derived using the finite element approach
utilizing planar beam elements.

Acceleration response

\ \ \ \ \ \ \ \ \ \
1h=0.0125

Excitation T
5 1=0.8 o
Unit:m | <&
Figure 1. Model of ten-element cantilever beam.
Table 1. Parameters of the cantilever beam.
Density p Modulus of Elasticity E Damping Ratio Spectral Line Number  Analysis Bandwidth
2700 kg /m? 7.1 x 10! GPa 0.002 1600 800 Hz

3.1.2. Colored Noises Setting

In this simulation example, the magnitude and exponents of different noises are set as
shown in Table 2.

Table 2. Settings of the colored noises.

Type of Noises Blue Purple Pink Brown

Power spectrum Gyy =2 x 1072w Gyx = 2 X 10782 Gyy = % Gyx = 8w ™2

3.2. Analysis and Comparison

In this section, three common engineering cases were researched. The previous
approach often treated flat signals with limited bandwidth as white noise, as this made
mathematical analysis more convenient for researchers [15,16]. The external excitation
during aircraft flight can be seen as a single-colored noise [27], while civil engineering
structures similar to bridges often have a mixed effect of multiple noises on a point [28].
The suspension structure of a vehicle can also be seen as a comprehensive effect of multiple
noise excitations on a point. In Case 1, the color of the noise can be known in advance. In
Case 2, the color of the noise cannot be known. In Case 3, the excitation at a certain point is
a mixture of several colored noises.
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3.2.1. Case 1: The Color of the Excitation Is Known

We collected acceleration response signals and applied the modal analysis technique
detailed in the present study. For example, blue noise excitation is shown in Figure 2a.
Figure 2b shows the acceleration PSD of the response of the free end.

Amplitude (m/s?)

0 20 40 60 80 100 120 140 160 0 100 200 300 400 500 600 700 800
time (s) Frequence (Hz)

(a) (b)

Figure 2. Information in time and frequency domain of the free end. (a) Time acceleration response.
(b) PSD of the free end.

Tables 3 and 4 display theoretical values of the first four modal parameters of this
model, as well as the identification values using FDFA under colored noise excitation. The
first four identified mode shapes under blue noise excitation are shown in Figure 3.

0 T T T T T T T T 08 T T - — - -
- odegumber

N

o
L

Amplitude of mode shapes
Amplitude of mode shapes

Theoretical vibration mode

Theoretical vibration mode
— — - Actual vibration mode

" Actual vibration mode

1 2 3 4

5 6 7 8 9 10 11 1 5 3
Node number

(@) )

0.8 T T T T T T T T T

4 5 6 7
Node number

— Theoretical vibration mode
— — - Actual vibration mode

Amplitude of mode shapes
Amplitude of mode shapes

—Theoretical vibration mode|
- Actual vibration mode

5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 10 11
Node number Node number

(0) (d)

Figure 3. Identified mode shapes under blue noise. (a) The 1st mode shape. (b) The 2nd mode shape.
(c) The 3rd mode shape. (d) The 4th mode shape.
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Table 3. Frequencies with errors (%) under different noise excitation (Hz).

Mode Pink Blue Purple Brown
1 17.52(2.93)  17.52(294)  1752(2.93)  17.52(2.93)
2 107.19 (0.46)  107.19 (0.46)  107.19 (0.46)  107.19 (0.46)
3 299.33 (0.20) 299.33 (0.21)  299.33(0.20)  299.33 (0.21)
4 586.63 (0.14) 586.63 (0.14) 586.63 (0.14)  586.63 (0.14)

Table 4. Damping ratios (%) with errors (%) under different noise excitations.

Mode Pink Blue Purple Brown
1 1.03 (2.76) 1.01(0.96)  1.00(—0.04)  0.98 (—2.16)
2 098 (~1.58)  098(—1.61) 098(-1.62)  0.99 (—1.38)
3 099 (—1.28) 099 (~1.28)  0.99(—129)  0.99 (—1.23)
4 1.00 (—0.25)  1.00(—025)  1.00(—0.25)  1.00 (—0.21)

It can be seen from Tables 3 and 4 and Figure 3 that the maximum error for frequencies
is 2.94% and 2.76% for damping ratios. The effect of using FDFA modal analysis is within a
permissible margin.

3.2.2. Case 2: The Color of the Excitation Is Not Known

Now, we study the case where alpha is unknown. Let us suppose that the excitation is
colored noise with alpha equal to 2. The free end response PSDs are shown in Figure 4a,b.
When the modal parameters are identified, the excitation color is unknown. In order to
observe the error range, the alpha values in Equation (29) vary from —2 to 2. The random
excitation of the colored noise is applied at the free end. Tables 5-8 display the determined
vibration frequencies and the corresponding damping ratios.

Amplitude (g/Hz)

Amplitude (g/Hz)

0 100 200 300 400 500 600 700 800 900 1000

Frequency(Hz)

1ol L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

Frequency(Hz)
(a) (b)
Figure 4. PSD of the free end under 2 different kinds of colored noise. (a) PSD of the free end when
« =2. (b) PSD of the free end when a = —2.

From Tables 5-8, it can be seen that in the case of unknown excitation, we can estimate
the alpha from the PSD of response depending on if it is positive or negative. The alpha is
positive in Figure 4a, so we can select alpha as 1 or 2 in identification. The alpha is negative
in Figure 4b, so the alpha may be chosen to be either —1 or —2 while maintaining the error
in identification well within permissible limits.

Table 5. Identified frequencies and errors (%) with different alpha under purple noise (Hz).

Mode -2 -1 0 1 2
1 17.52 (2.97) 17.52 (2.96) 17.49 (2.77) 17.51 (2.85) 17.52 (2.94)
2 107.22 (0.53) 107.21 (0.52) 107.19 (0.50) 107.19 (0.49) 107.18 (0.48)
3 299.39 (0.22) 299.37 (0.22) 299.35 (0.21) 299.34 (0.20) 299.33 (0.20)
4 586.74 (0.16) 586.71 (0.16) 586.68 (0.15) 586.65 (0.14) 586.62 (0.14)
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Table 6. Identified damping ratios and errors (%) with different alpha under purple noise.

Mode -2 -1 0 1 2
1 0.80 (—19.76)  0.86 (—13.79)  0.90 (—10.29) 0.94 (—6.18) 1.00 (—0.04)
2 097 (—253)  097(—2.66) 098 (—1.94)  098(—1.66)  0.98 (—1.62)
3 0.98 (—1.93) 0.98 (—1.82) 0.98 (—1.57) 0.99 (—1.40) 0.99 (—1.29)
4 1.00 (—0.40) 1.00 (—0.38) 1.00 (—0.30) 1.00 (—0.30) 1.00 (—0.25)

Table 7. Identified frequencies and errors (%) with different alpha under brown noise (Hz).

Mode -2 -1 0 1 2
1 0.80 (—19.76)  0.86 (—13.79) 0.90 (—10.29)  0.94 (—6.18)  1.00 (—0.04)
2 097 (—2.53)  097(—2.66) 098(—194) 098 (—1.66)  0.98 (—1.62)
3 0.98 (—1.93) 0.98 (—1.82) 0.98 (—1.57) 0.99 (—1.40) 0.99 (—1.29)
4 1.00 (—0.40)  1.00(—0.38)  1.00(—0.30)  1.00(—0.30)  1.00 (—0.25)

Table 8. Identified damping ratios and errors (%) with different alpha under brown noise.

Mode -2 -1 0 1 2
1 1.01 (0.80) 1.04 (—2.16) 1.03 (3.02) 1.04 (4.31) 1.04 (4.33)
2 1.00 (—0.36) 0.99 (—0.60) 0.99 (—0.85) 0.98 (—1.37) 0.99 (—1.11)
3 0.99 (—0.64) 0.99 (—0.77) 0.99 (—0.92) 0.99 (—1.23) 0.99 (—1.07)
4 1.00 (—0.18) 1.00 (—0.18) 1.00 (—0.17) 1.00 (—0.21) 1.00 (—0.22)

3.2.3. Case 3: Different Excitations Applied at the Same Point

Next, the authors consider the case when different excitations are superposed at the
same point. We set the excitation as the composition of two kinds of noises. In Set 1,
excitations are blue and purple noises. In Set 2, purple and pink noises are applied, and in
Set 3, excitations are blue and pink noises. Figure 5a—c illustrate the impact of excitations
on the power spectral density.

10% 10
107
N
o
“&p 10°
-
ERS
=
g
< o4
109
mmo 100 200 300 400 500 600 700 800 900 1000 o w0 20 a0 40 sw w0 70 0 %0 1000
Frequency(Hz) Frequency(Hz)
(a) (b)
104
102
N
jan}
“En10’)
]
£
=
<
WIO 100 200 300 400 500 600 700 800 900 1000
Frequency(Hz)
(c)
Figure 5. The PSD of 3 kinds of settings in simulation. (a) The PSD in Set 1. (b) The PSD in Set 2.
(c) The PSD in Set 3.

The resulting identified frequencies and damping ratios correspond to exponent alpha = —1
and exponent alpha =1 (in Equation (29)) and are shown in Tables 9 and 10.
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Table 9. The modal parameters identified when exponent alpha is forced as —1 (Hz).
Set1 Set 2 Set3
Mod Frequency Damping ratio Frequency Damping Ratio Frequency Damping Ratio
ode (Error%) (Error%) (Error%) (Error%) (Error%) (Error%)
1 17.52 (2.94) 0.98 (—2.30) 17.56 (3.16) 1.03 (2.95) 17.56 (3.15) 1.03 (2.83)
2 107.20 (0.50) 0.98 (—1.75) 107.18 (0.48) 0.99 (—1.24) 107.18 (0.48) 0.99 (—1.16)
3 299.34 (0.21) 0.99 (—1.40) 299.34 (0.21) 0.99 (—1.38) 299.32 (0.20) 0.99 (—1.21)
4 586.65 (0.15) 1.00 (—0.27) 586.65 (0.15) 1.00 (—0.28) 586.62 (0.14) 1.00 (—0.25)
Table 10. The modal parameters identified when exponent alpha is forced as 1 (Hz).
Set1 Set2 Set3
Mode Frequency Damping ratio Frequency Damping Ratio Frequency Damping Ratio
(Error%) (Error%) (Error%) (Error%) (Error%) (Error%)
1 17.12 (0.59) 0.97 (—3.11) 17.52 (2.95) 0.98 (—2.30) 17.52 (2.95) 0.98 (—2.50)
2 106.80 (0.12) 1.01 (0.85) 107.19 (0.50) 0.98 (—1.79) 107.19 (0.49) 0.98 (—1.71)
3 298.97 (0.08) 1.00 (—0.15) 299.37 (0.21) 0.98 (—1.73) 299.35 (0.21) 0.98 (—1.54)
4 586.30 (0.09) 1.01 (0.62) 586.71 (0.16) 1.00 (—0.35) 586.68 (0.15) 1.00 (—0.32)

From Figure 5a—c, it is better to choose 1, —1, and —1 as the alpha in Set 1, Set 2, and
Set 3, respectively. Upon examination of the information in Tables 9 and 10, it is evident that
Table 10 provides superior results for Set 1, while for Set 2 and Set 3, Table 9 provides better.

In case 3, it is possible to estimate the alpha from the PSD of response, and then
the modal parameters can be calculated accurately by the FDFA. Therefore, FDFA is still
applicable in dealing with the effect of different excitation superposed at the same position.

In this section, the authors present a simulation model for the FDFA scheme and
conduct a modal analysis based on the cantilever beam, a mechanical structure that ap-
proximates the vehicle suspension. This analysis demonstrates the FDFA strategy with the
conventional FSDD method, revealing the former’s enhanced performance when subjected
to colored noise excitation.

4. Results and Discussion

In the conducted experiment, the cantilever’s overall span measured 1 m, with a
free extension of 0.78 m, a breadth of 0.06 m, and a cross-sectional depth of 0.0125 m.
Accelerometers were positioned with a separation of 0.16 m apart. The experimental setup
is depicted in Figure 6, where it is indicated by an arrow that the source of excitation
prompted lateral oscillations along the y-axis. The excitation was provided by a three-axis
shaker. The instrument used for gathering and transmitting data was the Agilent VXI. The
sampling frequency was 2560 Hz, and the sampling time was 32 s. The average number
of PSD was 40. The analysis frequency band was 1000 Hz. The number of spectral lines
was 800. The colored noises as excitations were pink noise, blue noise, purple noise, brown
noise, and white noise. And the RMS of all signalsis 1.5 g.

In the experiment, the frequencies and damping ratios with white noise are used
as the reference for comparison. Frequency values and damping ratios obtained via
FDFA amid different noise stimuli appear in Tables 11 and 12, respectively. The modal
shapes identified in several cases are similar, so further description is not provided here.
Tables 13 and 14 enumerate the frequency and damping ratio determined via the FSDD
technique. Table 15 compares the average errors of identifying the first four frequencies
using FDFA and FSDD under different noise excitations and damping ratios for Table 16.
Tables 15 and 16 demonstrate that the FDFA method proposed in this paper has superiority
over the FSDD method.
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Figure 6. Experiment scenario.
Table 11. Modal frequencies under white noise and different excitations (Hz).
Mode White Pink Blue Purple Brown
1 17.68 17.8875 18.1192 17.7147 17.8912
2 98.65 97.9262 98.6749 98.7049 98.2007
3 310.7 310.8123 309.4072 305.3694 312.7043
4 612.9 610.2332 610.6779 610.6414 609.5456
Table 12. Damping ratios (%) under different excitations with the FDFA method.
Mode White Pink Blue Purple Brown
1 4.49 4.7417 4.7499 4.8798 (8.68) 4.3826 (—2.39)
2 3.8 3.8243 3.6947 (—2.77) 3.7422 (—1.52) 4.2588 (12.07)
3 2.63 24115 2.35 (—10.00) 2.2503 (—14.24) 2.3461 (—10.79)
4 1.13 1.0516 1.0117 (—10.47) 1.0345 (—8.45) 0.9607 (—14.98)

Table 13. Frequencies under different excitations with the FSDD method.

Mode White Pink Blue Purple Brown
1 17.68 17.9 (1.24) 18.06 (2.14)  18.67(5.60)  18.04 (2.03)
2 98.65 96.59 (—2.09)  99.25(0.60)  97.41(—1.25) 96.34 (—2.34)
3 310.7 306.7 (—1.29) 308.3(—0.77)  311.7(0.32)  300.9 (—3.15)
4 612.9 615.6 (044) 6207 (1.27)  623.7(176)  631.1(2.96)

Table 14. Damping radios (%) under different excitations with the FSDD method.

Mode White Pink Blue Purple Brown
1 4.49 4.89 (8.91) 3.65(—18.71) 4.04(—10.02) 4.12(—8.24)
2 38 3.02(—20.5) 2.53(—33.42) 3.42(-10.00) 3.21(—15.52)
3 2.63 0.34(—87.1)  1.21(—54.00) 1.54(—41.44) 0.73 (—72.24)
4 1.13 0.52 (—54.0) 0.52 (—54.0) 0.43 (—61.94) 0.52 (—53.98)

Table 15. Average frequency error (%) under different excitations with the FDFA and FSDD methods.

Mode Pink Blue Purple Brown
FDFA 0.595 0.8225 0.5875 0.7125
FSDD 1.2650 1.1950 2.2325 2.6201

Table 16. Average damping error (%) under different excitations with FDFA and FSDD method.

Mode Pink Blue Purple Brown
FDFA 5.3675 7.2575 8.2225 10.06
FSDD 42.62 40.0325 30.85 37.495
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During the experiment, the recognition mistake concerning the damping ratio is
comparatively significant. The main reason may be due to damping being a mechanism for
dissipating mechanical energy, which is also influenced by many factors such as boundary
conditions, temperature, humidity, structural deformation forms, vibration frequency
distribution, etc. Frequently, this results in variations in the outcomes of the damping ratio
measurements, particularly when subjected to varying loading scenarios. The author will
further investigate this topic in the future.

In this section, modal vibration tests were conducted on cantilever beam structures
under colored noise excitation, and the FDFA scheme and FSDD scheme were compared.
From the result, the modal parameters using FDFA are better than those using the FSDD
method when the excitation is colored noise. The modal shapes obtained by FDFA are
also acceptable.

5. Conclusions

The paper introduces an innovative technique for identifying modal parameters under
colored noise excitation, referred to as FDFA. The authors derived mathematical formulas
for calculating modal parameters. Simulations show a frequency discrepancy of less than
2.94% and a damping discrepancy of less than 2.76%, while real-world tests reveal a
frequency discrepancy of less than 2.5% and a damping discrepancy of less than 15%.
Therefore, before identifying modal parameters, estimating the noise index based on the
PSD of the system response and using the FDFA identification method can obtain more
accurate modal parameters than FSDD.
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