Backstepping-Based Quasi-Sliding Mode Control and Observation for Electric Vehicle Systems: A Solution to Unmatched Load and Road Perturbations
Abstract
:1. Introduction
- ▪
- Development of backstepping based on a quasi-sliding mode disturbance observer (BS-QSMO) using Lyapunov stability. The key contribution of this part is to conduct a rigorous mathematical analysis to determine the ultimate bound of disturbance estimation error;
- ▪
- Development of a backstepping control algorithm based on the quasi-integral sliding mode control (BS-QISMC) using Lyapunov stability analysis. The key contribution of this part is to conduct a rigorous mathematical analysis to determine the ultimate bound of disturbance estimation error;
- ▪
- Conducting a comparison study of the performance of the two proposed controllers.
2. Mathematical Modelling and Problem Formulation
3. Controller Design
3.1. Backstepping
3.2. Backstepping Controller Based on Quasi-Sliding Mode Disturbance Observer
3.3. Backstepping Controller Based on QISMC (BS-QISMC)
4. Discussion and Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaarlela, T.; Villagrossi, E.; Rastegarpanah, A.; San-Miguel-Tello, A.; Pitkäaho, T. Robotised disassembly of electric vehicle batteries: A systematic literature review. J. Manuf. Syst. 2024, 74, 901–921. [Google Scholar] [CrossRef]
- Shchurov, N.I.; Dedov, S.I.; Malozyomov, B.V.; Shtang, A.A.; Martyushev, N.V.; Klyuev, R.V.; Andriashin, S.N. Degradation of lithium-ion batteries in an electric transport complex. Energies 2021, 14, 8072. [Google Scholar] [CrossRef]
- Girardi, P.; Brambilla, P.C. Electric Cars vs. Diesel and Gasoline: A Comparative LCA Ranging from MicroCar to Family Car; Academic Star Publishing Company: New York, NY, USA, 2019. [Google Scholar]
- Kosuru, V.S.R.; Kavasseri Venkitaraman, A. Trends and challenges in electric vehicle motor drivelines-A review. Int. J. Electr. Comput. Eng. Syst. 2023, 14, 485–495. [Google Scholar]
- Akhtar, N.; Patil, V. Electric vehicle technology: Trends and challenges. In Proceedings of the International Conference on Smart Technologies for Energy, Environment, and Sustainable Development; Springer: Berlin/Heidelberg, Germany, 2020; pp. 621–637. [Google Scholar]
- Ahmed, A.K.; Al-Khazraji, H. Optimal control design for propeller pendulum systems using gorilla troops optimization. J. Eur. Syst. Autom. 2023, 56, 575–582. [Google Scholar] [CrossRef]
- Jin, X.; Wang, Q.; Yan, Z.; Yang, H. Nonlinear robust control of trajectory-following for autonomous ground electric vehicles with active front steering system. AIMS Math 2023, 8, 11151–11179. [Google Scholar] [CrossRef]
- Zouari, F.; Ibeas, A.; Boulkroune, A.; Cao, J. Finite-time adaptive event-triggered output feedback intelligent control for noninteger order nonstrict feedback systems with asymmetric time-varying Pseudo-state constraints and nonsmooth input nonlinearities. Commun. Nonlinear Sci. Numer. Simul. 2024, 136, 108036. [Google Scholar] [CrossRef]
- Humaidi, A.J.; Hasan, S.; Al-Jodah, A.A. Design of second order sliding mode for glucose regulation systems with disturbance. Int. J. Eng. Technol. (UAE) 2018, 7, 243–247. [Google Scholar] [CrossRef]
- Hussein, E.Q.; Al-Dujaili, A.Q.; Ajel, A.R. Design of sliding mode control for overhead crane systems. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2020, 881, 012084. [Google Scholar] [CrossRef]
- Al-Ani, A.; Seitz, J. An approach for QoS-aware routing in mobile ad hoc networks. In Proceedings of the 2015 International Symposium on Wireless Communication Systems (ISWCS), Brussels, Belgium, 25–28 August 2015; pp. 626–630. [Google Scholar]
- Rakan, A.B.; Ridha, T.M.; Al-Saamray, S.A. Automatic glycemia regulation: Avoiding hypoglycemia and hyperglycemia. In Proceedings of the International Conference on Communication and Information Technology, ICICT 2021, Basrah, Iraq, 5–6 June 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 74–79. [Google Scholar]
- Salman, A.D.; Khudheer, U.; Abdulsaheb, G.M. An adaptive smart street light system for smart city. J. Comput. Theor. Nanosci. 2019, 16, 262–268. [Google Scholar] [CrossRef]
- M Raafat, S.; Akmeliawati, R. Survey on robust control of precision positioning systems. Recent Pat. Mech. Eng. 2012, 5, 55–68. [Google Scholar] [CrossRef]
- Raafat, S.M.; Martono, W.; Akmeliawati, R. comparative study of parametric and intelligent unstructured uncertainties for robust controller design. In Proceedings of the 2009 IEEE Symposium on Industrial Electronics & Applications, Kuala Lumpur, Malaysia, 4–6 October 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 259–264. [Google Scholar]
- Humaidi, A.J.; Hameed, A.H. Robustness Enhancement of MRAC Using Modification Techniques for Speed Control of Three Phase Induction Motor. J. Electr. Syst. 2017, 13, 723–741. [Google Scholar]
- Zouari, F.; Boubellouta, A. Adaptive neural control for unknown nonlinear time-delay fractional-order systems with input saturation. In Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems; IGI Global: Hershey, PA, USA, 2018; pp. 54–98. [Google Scholar]
- Estrada, A.; Fridman, L.M. Integral HOSM Semiglobal Controller for Finite-time Exact Compensation of Unmatched Perturbations. IEEE Trans. Autom. Control 2010, 55, 2645–2649. [Google Scholar] [CrossRef]
- Mattei, G.; Monaco, S. Robust backstepping control of missile lateral and rolling motions in the presence of unmatched uncertainties. In Proceedings of the 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 October 2012; IEEE: Piscataway, NJ, USA, 2009; pp. 2878–2883. [Google Scholar]
- Hassan, M.Y.; Humaidi, A.J.; Hamza, M.K. On the design of backstepping controller for Acrobot system based on adaptive observer. Int. Rev. Electr. Eng. 2020, 15, 328–335. [Google Scholar] [CrossRef]
- Bacha, S.; Saadi, R.; Ayad, M.Y.; Sahraoui, M.; Laadjal, K.; Cardoso, A.J.M. Autonomous electric-vehicle control using speed planning algorithm and back-stepping approach. Energies 2023, 16, 2459. [Google Scholar] [CrossRef]
- Castanos, F.; Fridman, L. Analysis and Design of Integral Sliding Manifolds for Systems with Unmatched Perturbations. IEEE Trans. Autom. Control 2006, 51, 853–858. [Google Scholar] [CrossRef]
- Zouari, F.; Saad, K.B.; Benrejeb, M. Adaptive backstepping control for a single-link flexible robot manipulator driven DC motor. In Proceedings of the 2013 International Conference on Control, Decision and Information Technologies (CoDIT), Hammamet, Tunisia, 6–8 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 864–871. [Google Scholar]
- Merazka, L.; Zouari, F.; Boulkroune, A. High-gain observer-based adaptive fuzzy control for a class of multivariable nonlinear systems. In Proceedings of the 2017 6th International Conference on Systems and Control (ICSC), Batna, Algeria, 7–9 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 96–102. [Google Scholar]
- Saleh, A.K.; Al-Zughaibi, A.I.; Hussein, E.Q. Develop a servo actuator system adaptive sliding mode controller. AIP Conf. Proc. 2023, 2977, 030023. [Google Scholar]
- Rigatos, G.; Abbaszadeh, M.; Sari, B.; Siano, P.; Cuccurullo, G.; Zouari, F. Nonlinear optimal control for a gas compressor driven by an induction motor. Results Control Optim. 2023, 11, 100226. [Google Scholar] [CrossRef]
- Al-Khazraji, H.; Naji, R.M.; Khashan, M.K. Optimization of Sliding Mode and Back-Stepping Controllers for AMB Systems Using Gorilla Troops Algorithm. J. Eur. Systèmes Autom. 2024, 57, 417–424. [Google Scholar] [CrossRef]
- Ahmed, M.; Masood, U.; Azeem, M.K.; Ahmad, I.; Jabbar, A.U. Barrier function based adaptive sliding mode controller for the hybrid energy storage system of plugin hybrid electric vehicles. J. Energy Storage 2023, 72, 108051. [Google Scholar] [CrossRef]
- Aljuboury, A.S.; Hameed, A.H.; Ajel, A.R.; Humaidi, A.J.; Alkhayyat, A.; Mhdawi, A.K.A. Robust Adaptive Control of Knee Exoskeleton-Assistant System Based on Nonlinear Disturbance Observer. Actuators 2022, 11, 78. [Google Scholar] [CrossRef]
- Al-Samarrai, S.A.; Al-Nadawi, Y.K.; Hama, T.G.; Al-Gadery, T.A. Robust Adaptive Sliding Mode Controllers Design for a Non-holonomic Mobile Robot. Stud. Comput. Intell. 2023, 1090, 489–556. [Google Scholar] [CrossRef]
- Ao, D.; Wong, P.K.; Huang, W. Model predictive control allocation based on adaptive sliding mode control strategy for enhancing the lateral stability of four-wheel-drive electric vehicles. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024, 238, 1514–1534. [Google Scholar] [CrossRef]
- Rahman, M.H.; Al-Zughaibi, A.I.; Hussein, E.Q. Design of robust control strategy for nonlinear wind turbine under parametric uncertainty. AIP Conf. Proc. 2023, 2804, 030003. [Google Scholar]
- Kang, S.; Chen, J.; Qiu, G.; Tong, H. Slip Ratio Adaptive Control Based on Wheel Angular Velocity for Distributed Drive Electric Vehicles. World Electr. Veh. J. 2023, 14, 119. [Google Scholar] [CrossRef]
- Al-Khazraji, H. Comparative study of whale optimization algorithm and flower pollination algorithm to solve workers assignment problem. Int. J. Prod. Manag. Eng. 2022, 10, 91–98. [Google Scholar] [CrossRef]
- Al-Zughaibi, A.I.; Hussein, E.Q.; Huseein, N.A. Simulation study of a linear quadratic control for active seat suspension systems. AIP Conf. Proc. 2023, 2631, 030005. [Google Scholar]
- Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A. Sliding Mode Control and Observation; Springer: Berlin/Heidelberg, Germany, 2014; Volume 10. [Google Scholar]
- Zouari, F.; Boulkroune, A.; Ibeas, A.; Arefi, M.M. Observer-based adaptive neural network control for a class of MIMO uncertain nonlinear time-delay non-integer-order systems with asymmetric actuator saturation. Neural Comput. Appl. 2017, 28, 993–1010. [Google Scholar] [CrossRef]
- Hamad, Q.M.; Raafat, S.M. A flatness-based trajectory tracking control for chemical reactor. In Proceedings of the 2024 21st International Multi-Conference on Systems, Signals & Devices (SSD), Erbil, Iraq, 22–25 April 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 819–825. [Google Scholar]
- Haddad, M.; Zouari, F.; Boulkroune, A.; Hamel, S. Variable-structure backstepping controller for multivariable nonlinear systems with actuator nonlinearities based on adaptive fuzzy system. Soft Comput. 2019, 23, 12277–12293. [Google Scholar] [CrossRef]
- Saleh, A.K.; Al-Zughaibi, A.I.; Hussein, E.Q. Using an adaptive sliding mode control to improve control in hydraulic servo systems. AIP Conf. Proc. 2024, 3091, 050006. [Google Scholar]
- Zouari, F.; Ibeas, A.; Boulkroune, A.; Cao, J.; Arefi, M.M. Adaptive neural output-feedback control for nonstrict-feedback time-delay fractional-order systems with output constraints and actuator nonlinearities. Neural Netw. 2018, 105, 256–276. [Google Scholar] [CrossRef]
- Utkin, V.; Guldner, J.; Shi, J. Sliding Mode Control in Electro-Mechanical Systems; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Humaidi, A.J.; Talaat, E.N.; Hameed, M.R.; Hameed, A.H. Design of Adaptive Observer-Based Backstepping Control of Cart-Pole Pendulum System. In Proceedings of the 2019 3rd IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2019, Tamil Nadu, India, 20–22 February 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Al-Samarraie, S.A.; Midhat, B.F.; Gorial, I.I. Nonlinear integral control design for DC motor speed control with unknown and variable external torque. J. Eng. Sustain. Dev. 2016, 20, 19–33. [Google Scholar]
- Mahmood, Z.N.; Al-Khazraji, H.; Mahdi, S.M. Adaptive control and enhanced algorithm for efficient drilling in composite materials. J. Eur. Systèmes Autom. 2023, 56, 507–512. [Google Scholar] [CrossRef]
- Boumegouas MK, B.; Kouzi, K.; Birame, M.H. Robust synergetic control of electric vehicle equipped with an improved load torque observer. Int. J. Emerg. Electr. Power Syst. 2024, 25, 197–205. [Google Scholar] [CrossRef]
- Ekinci, S.; Izci, D.; Hekimoğlu, B. PID speed control of DC motor using Harris hawks optimization algorithm. In Proceedings of the 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, Turkey, 12–13 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Talib, A.A.; Salman, A.D. Design and develop authentication in electronic payment systems based on IoT and biometric. Telkomnika (Telecommun. Comput. Electron. Control.) 2022, 20, 1297–1306. [Google Scholar] [CrossRef]
- Hoyos, F.E.; Candelo-Becerra, J.E.; Hoyos Velasco, C.I. Application of zero average dynamics and fixed point induction control techniques to control the speed of a DC motor with a Buck converter. J. Appl. Sci. 2020, 10, 1807. [Google Scholar] [CrossRef]
- Lotfy, A.; Kaveh, M.; Mosavi, M.; Rahmati, A. An enhanced fuzzy controller based on improved genetic algorithm for speed control of DC motors. J Analog Integr. Circuits Signal Process. 2020, 105, 141–155. [Google Scholar] [CrossRef]
- Maghfiroh, H.; Sujono, A.; Apribowo, C.H.B. Basic tutorial on sliding mode control in speed control of DC-motor. J. Electr. Electron. Inf. Commun. Technol. 2020, 2, 1–4. [Google Scholar] [CrossRef]
- Rauf, A.; Zafran, M.; Khan, A.; Tariq, A.R. Finite-time nonsingular terminal sliding mode control of converter-driven DC motor system subject to unmatched disturbances. J. Int. Trans. Electr. Energy Syst. 2021, 31, e13070. [Google Scholar] [CrossRef]
- Humaidi, A.J.; Kadhim, S.K.; Gataa, A.S. Development of a Novel Optimal Backstepping Control Algorithm of Magnetic Impeller-Bearing System for Artificial Heart Ventricle Pump. Cybern. Syst. 2020, 51, 521–541. [Google Scholar] [CrossRef]
- Abdul-Adheem, W.R.; Azar, A.T.; Ibraheem, I.K.; Humaidi, A.J. Novel active disturbance rejection control based on nested linear extended state observers. Appl. Sci. 2020, 10, 4069. [Google Scholar] [CrossRef]
- Roldán-Caballero, A.; Hernández-Marquez, E.; Marciano-Melchor, M.; García-Sánchez, J.R.; Silva-Ortigoza, G. Hierarchical Flatness-Based Control for Velocity Trajectory Tracking of the “DC/DC Boost Converter–DC Motor” System Powered by Renewable Energy. IEEE Access 2023, 11, 32464–32475. [Google Scholar]
- Patil, M.D.; Vadirajacharya, K.; Khubalkar, S.W. Design and tuning of digital fractional-order PID controller for permanent magnet DC motor. IETE J. Res. 2023, 69, 4349–4359. [Google Scholar] [CrossRef]
- Humaidi, A.J.; Hameed, M.R. Design and performance investigation of block-backstepping algorithms for ball and arc system. In Proceedings of the 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India, 21–22 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 325–332. [Google Scholar] [CrossRef]
- Zouari, F.; Saad, K.B.; Benrejeb, M. Robust adaptive control for a class of nonlinear systems using the backstepping method. Int. J. Adv. Robot. Syst. 2013, 10, 166. [Google Scholar] [CrossRef]
- Zouari, F.; Saad, K.B.; Benrejeb, M. Adaptive internal model control of a DC motor drive system using dynamic neural network. J. Softw. Eng. Appl. 2012, 5, 18298. [Google Scholar] [CrossRef]
Parameters | Values | Units |
---|---|---|
J | 7.95 × 10−5 | kg·m2/rad |
La | 105 × 10−6 | H |
Ra | 0.7 | Ω |
b | 0 | N·m·s/rad |
Kb | 59 × 10−3 | N·m/A or V·s/rad |
Controller | RMS of Variables | |||
---|---|---|---|---|
BS-QISMC | 2.6401 | 327.3881 | 6.5568 | 7.1404 × 10−5 |
BS-QSMO | 2.6307 | 349.9241 | 6.5624 | 5.4685 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hameed, A.H.; Al-Samarraie, S.A.; Humaidi, A.J.; Saeed, N. Backstepping-Based Quasi-Sliding Mode Control and Observation for Electric Vehicle Systems: A Solution to Unmatched Load and Road Perturbations. World Electr. Veh. J. 2024, 15, 419. https://doi.org/10.3390/wevj15090419
Hameed AH, Al-Samarraie SA, Humaidi AJ, Saeed N. Backstepping-Based Quasi-Sliding Mode Control and Observation for Electric Vehicle Systems: A Solution to Unmatched Load and Road Perturbations. World Electric Vehicle Journal. 2024; 15(9):419. https://doi.org/10.3390/wevj15090419
Chicago/Turabian StyleHameed, Akram Hashim, Shibly Ahmed Al-Samarraie, Amjad Jaleel Humaidi, and Nagham Saeed. 2024. "Backstepping-Based Quasi-Sliding Mode Control and Observation for Electric Vehicle Systems: A Solution to Unmatched Load and Road Perturbations" World Electric Vehicle Journal 15, no. 9: 419. https://doi.org/10.3390/wevj15090419
APA StyleHameed, A. H., Al-Samarraie, S. A., Humaidi, A. J., & Saeed, N. (2024). Backstepping-Based Quasi-Sliding Mode Control and Observation for Electric Vehicle Systems: A Solution to Unmatched Load and Road Perturbations. World Electric Vehicle Journal, 15(9), 419. https://doi.org/10.3390/wevj15090419