Machine Learning Structure for Controlling the Speed of Variable Reluctance Motor via Transitioning Policy Iteration Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reinforcement Tracking Structure of VRM
2.1.1. Cost Function Formulation of VRM
2.1.2. Reinforcement of Policy Iteration Structure for Solving the Problem
Algorithm 1: Online Training of Q-matrix by adopting voltage iteration scheme |
Initialization: Start the algorithm with a steady voltage input. Reiterate and refine the subsequent pair of processes up to the point of confluence: (i) Policy Evaluation: (ii) Policy Improvement: |
2.2. Regulating the Speed of the VRM Drive Using Reinforcement Structure
2.2.1. Speed Regulator for the VRM Drive Using a Bidimensional Q-Grid
2.2.2. Speed Regulator for the VRM Drive Using a Tridimensional Q-Grid
3. Simulation Results
3.1. Speed Regulator of Tridimensional Q-Grid Algorithm
3.2. Speed Regulator Using Tridimensional Q-Grid Learning Algorithm
4. Experimental Results
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valdivia, V.; Todd, R.; Bryan, F.J.; Barrado, A.; Lázaro, A.; Forsyth, A.J. Behavioral Modeling of a Switched Reluctance Generator for Aircraft Power Systems. IEEE Trans. Ind. Electron. 2013, 61, 2690–2699. [Google Scholar] [CrossRef]
- Kawa, M.; Kiyota, K.; Furqani, J.; Chiba, A. Acoustic Noise Reduction of a High-Efficiency Switched Reluctance Motor for Hybrid Electric Vehicles with Novel Current Waveform. IEEE Trans. Ind. Appl. 2018, 55, 2519–2528. [Google Scholar] [CrossRef]
- Chen, H.; Yan, W.; Gu, J.J.; Sun, M. Multiobjective Optimization Design of a Switched Reluctance Motor for Low-Speed Electric Vehicles with a Taguchi–CSO Algorithm. IEEE/ASME Trans. Mechatron. 2018, 23, 1762–1774. [Google Scholar] [CrossRef]
- Kiyota, K.; Chiba, A. Design of Switched Reluctance Motor Competitive to 60-KW IPMSM in Third-Generation Hybrid Electric Vehicle. IEEE Trans. Ind. Appl. 2012, 48, 2303–2309. [Google Scholar] [CrossRef]
- Yan, N.; Cao, X.; Deng, Z. Direct Torque Control for Switched Reluctance Motor to Obtain High Torque–Ampere Ratio. IEEE Trans. Ind. Electron. 2019, 66, 5144–5152. [Google Scholar] [CrossRef]
- Isfahani, A.H.; Fahimi, B. Comparison of Mechanical Vibration between a Double-Stator Switched Reluctance Machine and a Conventional Switched Reluctance Machine. IEEE Trans. Magn. 2014, 50, 293–296. [Google Scholar] [CrossRef]
- Jia, C.; He, H.; Zhou, J.; Li, J.; Wei, Z.; Li, K. Learning-Based Model Predictive Energy Management for Fuel Cell Hybrid Electric Bus with Health-Aware Control. Appl. Energy 2024, 355, 122228. [Google Scholar] [CrossRef]
- Gobbi, R.; Ramar, K. Optimisation Techniques for a Hysteresis Current Controller to Minimise Torque Ripple in Switched Reluctance Motors. IET Electr. Power Appl. 2009, 3, 453. [Google Scholar] [CrossRef]
- Shao, B.; Emadi, A. A Digital PWM Control for Switched Reluctance Motor Drives. In Proceedings of the 2010 IEEE Vehicle Power and Propulsion Conference, Lille, France, 1–3 September 2010; pp. 1–6. [Google Scholar]
- Schulz, S.E.; Rahman, K.M. High-Performance Digital PI Current Regulator for EV Switched Reluctance Motor Drives. IEEE Trans. Ind. Appl. 2003, 39, 1118–1126. [Google Scholar] [CrossRef]
- Ye, J.; Malysz, P.; Emadi, A. A Fixed-Switching-Frequency Integral Sliding Mode Current Controller for Switched Reluctance Motor Drives. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 3, 381–394. [Google Scholar] [CrossRef]
- Lukic, S.M.; Emadi, A. State-Switching Control Technique for Switched Reluctance Motor Drives: Theory and Implementation. IEEE Trans. Ind. Electron. 2010, 57, 2932–2938. [Google Scholar] [CrossRef]
- Lin, Z.; Reay, D.; Williams, B.; He, X. High-Performance Current Control for Switched Reluctance Motors Based on on-Line Estimated Parameters. IET Electr. Power Appl. 2010, 4, 67–74. [Google Scholar] [CrossRef]
- Akcayol, M.A. Application of Adaptive Neuro-Fuzzy Controller for VRM. Adv. Eng. Softw. 2004, 35, 129–137. [Google Scholar] [CrossRef]
- Alharkan, H.; Shamsi, P.; Saadatmand, S.; Ferdowsi, M. Q-Learning Scheduling for Tracking Current Control of Switched Reluctance Motor Drives. In Proceedings of the 2020 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 27–28 February 2020; pp. 1–6. [Google Scholar]
- Alharkan, H.; Saadatmand, S.; Ferdowsi, M.; Shamsi, P. Optimal Tracking Current Control of Switched Reluctance Motor Drives Using Reinforcement Q-Learning Scheduling. IEEE Access 2021, 9, 9926–9936. [Google Scholar] [CrossRef]
- Alharkan, H. Adaptive Dynamic Programming Methods for Tracking Current Control of Switched Reluctance Motor Drive; Scholars Mine: Rolla, MI, USA, 2021. [Google Scholar]
- Lewis, F.L.; Vrabie, D.; Syrmos, V.L. Optimal Control; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 1118122720. [Google Scholar]
- Kiumarsi, B.; Lewis, F.L.; Modares, H.; Karimpour, A.; Naghibi-Sistani, M.-B. Reinforcement Q-Learning for Optimal Tracking Control of Linear Discrete-Time Systems with Unknown Dynamics. Automatica 2014, 50, 1167–1175. [Google Scholar] [CrossRef]
- Kiumarsi-Khomartash, B.; Lewis, F.L.; Naghibi-Sistani, M.-B.; Karimpour, A. Optimal Tracking Control for Linear Discrete-Time Systems Using Reinforcement Learning. In Proceedings of the 52nd IEEE Conference on Decision and Control, Firenze, Italy, 10–13 December 2013; pp. 3845–3850. [Google Scholar]
- Lewis, F.L.; Vrabie, D. Reinforcement Learning and Adaptive Dynamic Programming for Feedback Control. IEEE Circuits Syst. Mag. 2009, 9, 32–50. [Google Scholar] [CrossRef]
- Reinforcement Learning and Feedback Control: Using Natural Decision Methods to Design Optimal Adaptive Controllers. IEEE Control Syst. 2012, 32, 76–105. [CrossRef]
- Werbos, P.J.; Miller, W.T.; Sutton, R.S. A Menu of Designs for Reinforcement Learning over Time. In Neural Networks of Control; MIT Press: Cambridge, MA, USA, 1995; pp. 67–95. [Google Scholar]
- Liu, D.; Lewis, F.L.; Wei, Q. Editorial Special Issue on Adaptive Dynamic Programming and Reinforcement Learning. IEEE Trans. Syst. Man. Cybern. Syst. 2020, 50, 3944–3947. [Google Scholar] [CrossRef]
- Matwankar, C.S.; Pramanick, S.; Singh, B. Position Sensorless Torque Ripple Control of Switched Reluctance Motor Drive Using B-Spline Neural Network. In Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021; pp. 1–6. [Google Scholar]
- Kiumarsi, B.; Lewis, F.L. Actor–Critic-Based Optimal Tracking for Partially Unknown Nonlinear Discrete-Time Systems. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 140–151. [Google Scholar] [CrossRef]
- Buriakovskyi, S.; Maslii, A.; Tyshchenko, A. Synthesis of the Speed Controller of the Switched Reluctance Motor. In Systems, Decision and Control in Energy V; Springer: Berlin/Heidelberg, Germany, 2023; pp. 179–193. [Google Scholar]
- Sun, X.; Xiong, Y.; Yao, M.; Tang, X. A Hybrid Control Strategy for Multimode Switched Reluctance Motors. IEEE/ASME Trans. Mechatron. 2022, 27, 5605–5614. [Google Scholar] [CrossRef]
- Feng, L.; Sun, X.; Yang, Z.; Diao, K. Optimal Torque Sharing Function Control for Switched Reluctance Motors Based on Active Disturbance Rejection Controller. IEEE/ASME Trans. Mechatron. 2023, 28, 2600–2608. [Google Scholar] [CrossRef]
- Jackiewicz, K.; Straś, A.; Bałkowiec, T.; Kaszewski, A.; Ufnalski, B. Novel Dual Thread Angle Sampled Multioscillatory-Based Control for Speed Ripple Reduction in a Switched Reluctance Machine-Based Drive. ISA Trans. 2023, 139, 724–738. [Google Scholar] [CrossRef] [PubMed]
Parameters | Amount |
---|---|
Phase | 3 |
Stator-poles/Rotor-poles | 12/8 |
Rated power | 0.7 HP |
Stator resistance | 2 Ω |
Maximum inductance | 16.6 mH |
Minimum inductance | 6 mH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharkan, H. Machine Learning Structure for Controlling the Speed of Variable Reluctance Motor via Transitioning Policy Iteration Algorithm. World Electr. Veh. J. 2024, 15, 421. https://doi.org/10.3390/wevj15090421
Alharkan H. Machine Learning Structure for Controlling the Speed of Variable Reluctance Motor via Transitioning Policy Iteration Algorithm. World Electric Vehicle Journal. 2024; 15(9):421. https://doi.org/10.3390/wevj15090421
Chicago/Turabian StyleAlharkan, Hamad. 2024. "Machine Learning Structure for Controlling the Speed of Variable Reluctance Motor via Transitioning Policy Iteration Algorithm" World Electric Vehicle Journal 15, no. 9: 421. https://doi.org/10.3390/wevj15090421
APA StyleAlharkan, H. (2024). Machine Learning Structure for Controlling the Speed of Variable Reluctance Motor via Transitioning Policy Iteration Algorithm. World Electric Vehicle Journal, 15(9), 421. https://doi.org/10.3390/wevj15090421